
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 12 | Dec - 2025                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                

 

© 2025, IJSREM      | https://ijsrem.com                                    DOI: 10.55041/IJSREM54819                                         |        Page 1 
 

DNA Based Crop Selector System Using AI 

Dr Sreenivasa B C1, Bhaanavee C S2, Deepika K Naik3, Greeshma V4, Harshitha V5 

1Associate Professor, Dept. of CSE,  Sir M. Visvesvaraya Institute of Technology 
2Computer Science and Engineering, Sir M. Visvesvaraya Institute of Technology 
3Computer Science and Engineering, Sir M. Visvesvaraya Institute of Technology 

4Computer Science and Engineering, Sir M. Visvesvaraya Institute of Technology 
5Computer Science and Engineering, Sir M. Visvesvaraya Institute of Technology 

 

---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - Genomic Selection (GS) utilizing deep learning 

offers significant potential to accelerate crop breeding. 

However, state-of-the-art interpretable deep learning 

frameworks, often combining Convolutional Neural Networks 

(CNNs) and multi-head self-attention, frequently exhibit limited 

real-world applicability due to their exclusion of environmental 

factors, failing to capture crucial Genotype x Environment 

(GxE) interactions. This research addresses this limitation by 

enhancing such an interpretable framework through the 

integration of key environmental variables. We collected and 

engineered relevant weather (NASA POWER) and soil (ISRIC 

SoilGrids) data corresponding to the datasets of five major 

crops: maize, rice, wheat, foxtail millet, and tomato, leveraging 

publicly available datasets used in foundational studies. By 

incorporating these environmental features alongside the 

genomic (SNP) data within the deep learning architecture, we 

developed GxE-aware prediction models. This work 

demonstrates a comprehensive methodology for building GxE-

enabled deep learning models for genomic prediction across 

diverse crop species, aiming to improve predictive accuracy and 

provide a more robust tool for practical plant breeding 

applications. 

Key Words: genomic selection, deep learning, Cropformer, 

Genotype x Environment interaction, environmental data, crop 

breeding, interpretability. 

 

1.INTRODUCTION  

 
Meeting global food security demands necessitates accelerating 

crop breeding beyond traditional methods, which struggle with 

complex traits. Genomic Selection (GS), enhanced by deep 

learning (DL) models—including advanced architectures using 

Convolutional Neural Networks (CNNs) and multi-head self-

attention—offers improved prediction accuracy and 

interpretability. However, a critical limitation in many current 

GS frameworks is their exclusive focus on genetic data, 

neglecting the significant impact of Genotype x Environment 

(GxE) interactions, which fundamentally determine crop 

performance in real-world agricultural settings. Models lacking 

environmental context fail to capture these crucial interactions, 

potentially leading to inaccurate predictions across diverse 

locations and climates. 

This research addresses this GxE limitation inherent in modern 

DL frameworks for GS. Our primary objective is to enhance 

predictive capability by systematically integrating key 

environmental variables (daily weather metrics from NASA 

POWER, soil properties from ISRIC SoilGrids) alongside 

genomic (SNP) data for five major crops (maize, rice, wheat, 

foxtail millet, tomato). We hypothesized that incorporating 

relevant environmental context would enable the model to learn 

GxE interactions, resulting in more robust and accurate 

predictions for practical breeding scenarios. To achieve this, we 

acquired and engineered environmental data into meaningful 

summary features, integrated them within the established DL 

architecture, and employed rigorous training (nested cross-

validation, Optuna) and evaluation (Pearson Correlation 

Coefficient) methodologies. This study presents a 

comprehensive approach to developing and evaluating GxE-

aware deep learning models based on interpretable attention 

mechanisms, contributing a potentially more powerful tool for 

accelerating genomic-design crop breeding. 

 

2. Body of Paper 

 
2.1 LITERATURE REVIEW 

 
The pursuit of faster and more accurate crop breeding cycles has 

driven continuous innovation in Genomic Selection (GS). 

While early statistical and conventional machine learning 

models established the predictive foundation for complex traits, 

the latest advancements, encapsulated by the Cropformer 

framework, demonstrate a critical shift toward integrating deep 

learning power with biological interpretability. 

2.1.1. The Pre-Transformer Landscape: Limits of GS 

(rrBLUP, CNNs) 

The first generation of GS models relied primarily on linear and 

non-linear statistical methods, such as rrBLUP (Ridge 

Regression Best Linear Unbiased Prediction) and Bayesian 

approaches. While effective for traits governed by simple 

additive genetic effects, these models struggled to capture the 

complex, non-linear dependencies known as epistasis (GxG) 

and Genotype-by-Environment (GxE) interactions, which 

account for a substantial portion of phenotypic variation. 

The introduction of Deep Learning (DL) offered a solution to 

non-linearity. Convolutional Neural Networks (CNNs), 

notably used in models like DeepGS and DeepG2P, were 
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adapted to the genomic domain, recognizing DNA as a 

sequence. The CNN's strength lay in local feature extraction 

identifying short-range patterns and haplotypes but models 

relying solely on CNNs or standard Multilayer Perceptrons 

(MLPs) often lacked the ability to model global interactions 

across the entire genome or between different data modalities 

(G, E, M). Furthermore, DL models were generally perceived as 

"black-boxes," hindering biological validation. 

 

2.1.2 The Fusion Era: Modeling GxE Interactions 

Recognizing that phenotype is a product of GxE, several 

advanced DL architectures emerged to fuse multi-modal data: 

• DeepG2P: This framework treated DNA as 

natural language, using 1D CNNs for local GxG 

modeling and introducing a novel cross-attention 

module to explicitly calculate GxE interactions. By 

treating environmental data (weather time series, soil) 

as contextual inputs to genetic variants (SNPs), 

DeepG2P demonstrated superior performance in 

predicting yield in unseen environments. 

• Sequential Models (LSTM): Other 

approaches used LSTM (Long Short-Term Memory) 

Autoencoders to efficiently encode the vast, high-

dimensional genomic sequence into a dense, lower-

dimensional latent representation, significantly 

improving the predictive capability of subsequent MLP 

layers. This highlighted the necessity of sophisticated 

feature engineering for raw genomic data. 

 

2.1.3 Cropformer: A Synthesis of Accuracy and 

Interpretability 

The Cropformer framework (Wang et al., 2025) synthesized 

the strengths of prior models while directly addressing the 

critical issues of non-linearity, global dependency, and 

interpretability: 

 

Feature Architecture 
Advantage over Prior 

Models 

Hybrid Feature 

Extraction 

CNN Layer + 

Multi-Head 

Self-Attention 

Combines local haplotype 

discovery (CNN) with 

global GxG dependency 

mapping (Attention), 

resulting in superior 

predictive accuracy across 

five major crop species. 

Custom 

Encoding 

0-9 Numeric 

Scheme 

Preserves non-additive 

and heterozygous 

information (AT vs. CG) 

lost by traditional 0/1/2 

encoding, feeding richer 

data to the network. 

High-Resolution 

Interpretability 

Attention 

Weights 

Extracts the model's 

learned significance for 

every input SNP, directly 

linking highly-weighted 

loci to the predicted 

phenotype (e.g., 

identifying flowering-

time genes like ATX3), 

effectively opening the 

"black-box." 

 

 

Cropformer thus establishes a new state-of-the-art by providing 

a robust, generalizable, and scalable framework that not only 

achieves improved prediction performance (0.3-10% 

improvement in rice performance over competitors) but also 

delivers actionable biological insights required for effective 

genomic design in modern crop breeding. The fusion of attention 

and CNN mechanisms represents the current pinnacle in 

modeling polygenic traits. 

 

2.2 METHODOLOGY 

 

The predictive framework for crop phenotypic traits utilized in 

this study is based on the Cropformer architecture, a hybrid 

deep neural network designed to robustly capture complex 

Genotype-by-Genotype (GxG) and Genotype-by-Environment 

(GxE) interactions. The methodology is structured across three 

primary phases: data processing and fusion, feature selection, 

and model training and evaluation. 

 

2.2.1 Data Acquisition and Preprocessing 

The pipeline begins with the rigorous cleaning, alignment, and 

encoding of multimodal input data. 

 

2.2.1.1 Genomic Data Encoding (G) 

Raw Single Nucleotide Polymorphism (SNP) data for the target 

crop is processed to create a uniform, high-resolution feature 

vector for every accession: 

1. Sample Alignment: Phenotype and genotype 

datasets are cross-referenced to identify a single set of 

overlapping accessions (using a unique identifier, e.g., 

GHID), ensuring consistency between genotypic and 

phenotypic records. 

2. Genotype Normalization: The raw genotype 

data (e.g., HapMap/VCF) is processed through 

standard genomic tools (PLINK) to be converted into 

the intermediate numeric format (representing the 

count of the alternate allele: 0, 1, or 2). 

3. Custom 0-9 Encoding: The intermediate 

SNP data is converted into a custom 0-9 numeric 

encoding scheme. This method uniquely maps all 10 

possible diploid nucleotide combinations (AA→0 to 

GG→9) preserving non-additive (epistatic) 

information often lost in standard additive encodings. 
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2.2.2 Environmental Data Integration (E) 

Environmental and location-based inputs are collected and 

matched to the genomic data to facilitate GxE modeling: 

1. Location-Based Data Collection: 

Geographic coordinates for experimental field sites are 

used to gather microclimatic and soil data. This 

typically includes Mean Seasonal Temperature, 

Total Seasonal Rainfall, Soil pH, and Soil Organic 

Carbon (or equivalent variables for a given 

crop/region). 

2. Phenotype Averaging: Phenotype records 

are averaged across replicates and environments (if 

applicable) for each unique accession ID to derive a 

single, reliable target trait value (Y). 

3. Data Concatenation: The final set of N 

environmental features are horizontally concatenated 

with the genomic SNP features for all samples, forming 

a single multimodal input vector            XGXE = [XSNPs 

| XE]. 

2.2.3 Feature Selection and Data Splitting 

To manage the high dimensionality of the genomic data (often 

over 100,000 SNPs) and ensure model focus, a two-step feature 

selection process is applied. 

1. Pearson Pre-filtering: The initial massive set 

of encoded SNPs is pre-filtered based on the absolute 

Pearson Correlation Coefficient (|r|) between each 

SNP and the target trait (Y). This quickly reduces the 

feature space to a predefined manageable size (e.g., the 

top 30,000 SNPs). 

2. MIC Final Selection: The remaining pre-

filtered SNPs undergo selection based on the Maximal 

Information Coefficient (MIC). MIC measures the 

strength of non-linear relationships, selecting the final 

set of top 10,000 SNPs with the highest relevance to the 

target phenotype. 

3. Data Partitioning: The final XGXE dataset is 

partitioned using a randomized 80% training set and 

20% held-out test set with a fixed random seed (e.g., 

random_state = 42), ensuring objective performance 

evaluation. 

 

2.2.4 Cropformer Model Architecture and Training 

The core prediction is performed by a specialized hybrid 

network designed for robustness and interpretability. 

 

 

2.2.4.1 Model Architecture 

The Cropformer model utilizes the SelfAttention module, 

combining local and global learning components: 

1. 1D Convolutional Neural Network (CNN): 

The raw input vector XGXE is passed through a 1D CNN 

layer (with a typical kernel size of 3). This layer serves 

as the local feature extractor, identifying short-range 

motifs or haplotypes from the SNP sequence and 

adding local context to all input features (G and E). 

2. Multi-Head Self-Attention (MHSA): The 

contextualized output from the CNN is then fed into the 

MHSA mechanism. This transformer block, typically 

configured with 4 or 8 heads, calculates attention 

scores to map global dependencies across the entire 

input sequence. The MHSA is critical for identifying 

long-range epistatic interactions and global GxE 

correlations. 

3. Prediction Head: The weighted output of the 

MHSA is passed through standard dense layers (Multi-

Layer Perceptron) to produce the final predicted 

phenotypic value. 

2.2.4.2 Training and Evaluation 

Training emphasizes stability and optimization of 

hyperparameters: 

1. Nested Cross-Validation (CV): A robust 5-

fold outer CV loop is used for performance validation, 

while a 3-fold inner CV loop is used concurrently with 

the Optuna framework for automated hyperparameter 

optimization. 

2. Evaluation Metrics: Model performance is 

assessed primarily using the Pearson Correlation 

Coefficient (r) between the predicted and true 

phenotypic values, with the final reported accuracy 

based on the average performance across the nested CV 

folds. 

3. Interpretability Analysis: Post-training, the 

model’s attention weights are extracted and analyzed 

to rank the contribution of each individual SNP or 

environmental feature to the final prediction, providing 

high-resolution, biologically actionable insights. 

 

2.3 RESULTS 

 

2.3.1 Baseline Model Performance (Genomic Only) 

 

Genomics-only models built on high-density SNP features 

produced variable prediction accuracy across all studied crops. 

In maize, the model for days to tasseling (DTT) achieved a high 

Pearson correlation (𝑟 = 0.9156), indicating strong genetic 

determination of this trait. Wheat’s genomic-only prediction for 

thousand kernel weight (TKW) was moderately accurate (𝑟 =

0.5760). Foxtail millet showed a low baseline accuracy for 

thousand seed long length (TSLL) (𝑟 = 0.0789), reflecting the 

major role of environmental variance. For tomato, the genomics-

only model for DTT yielded a modest correlation (𝑟 = 0.1752), 

much lower than in maize. Rice genomic-only models were 

constructed with an accuracy of approximately 𝑟 = 0.33, but 

lacked sample-matched environmental data; as such, no G+E 

results or improvement figures are available for rice. 

 

2.3.2 Genotype + Environment Model Performance (GxE) 

 

Incorporating environmental data—such as location-specific 

weather and soil characteristics—improved model performance 

for all crops tested. The G+E model correlation for maize DTT 
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increased to 𝑟 = 0.9248, and for wheat TKW to 𝑟 = 0.6360. 

Notably, foxtail millet TSLL showed its correlation rise from 

0.0789 to 0.1537, constituting a 94.8% improvement. While the 

absolute value remains moderate, this represents a near doubling 

of predictive power for a complex, environment-sensitive trait. 

 

For tomato, environmental data consisted of uniform values 

across all samples, as the dataset was derived from a single 

location with no intra-sample variation. Consequently, 

integrating these constant environmental features into the model 

did not improve prediction accuracy but slightly decreased it 

(Pearson correlation fell from 0.1752 in the genomic-only model 

to 0.1345 in the G+E model). For rice, environmental data 

matched to individual genotypes was not available, limiting the 

analysis to genomic-only predictive models. These constraints 

highlight the necessity for relevant, variable environmental data 

to realize the benefits of genotype-environment interaction 

modeling. 

2.3.3 Comparative Analysis 

Table 1 provides a direct comparison between G-only and G+E 

models for the three crops, including percentage improvements.  

 

Crop Trait 

G-

only 

Corr. 

(r) 

G+E 

Corr. 

(r) 

% 

Improvement 

Maize DTT 0.9156 0.9248 +1.0% 

Wheat 

Thousand 

Kernel 

Weight 

0.5760 0.6360 +10.4% 

Foxtail 

Millet 

Thousand 

Seed Long 

Length 

0.0789 0.1537 +94.8% 

 

Table -1: Comparative trait prediction accuracy of G-only vs. 

G+E models for major crops. 

 
 

Figure -1: Bar chart comparing the Pearson correlation 

coefficients of genomics-only and G+E models for the three 

crops. The chart illustrates the magnitude of improvement in 

prediction accuracy gained by adding environmental data, with 

a particularly pronounced relative boost for foxtail millet. 

 

 

2.3.4 Web Application Overview 

 

The developed web application provides an intuitive platform 

for breeders to upload genomic and environmental data (CSV 

format) per sample. Upon submission, the app predicts the 

specified trait value using either G-only or GxE models, and 

ranks entries by likelihood of superior agronomic performance. 

The interface features input modules for phenotype and 

environmental parameters, a display of prediction results, and a 

suggestion panel for optimal selections. This tool establishes an 

applied link between advanced modeling and practical breeding 

decision-making. 

 

2.4 DISCUSSION 

 

2.4.1 Interpretation of Findings 

 

Integrating environmental parameters with genomic data 

systematically enhances the accuracy of trait predictions, 

affirming the principle that most agronomic traits are regulated 

by both genetics and the growing environment. The pronounced 

improvement for foxtail millet, despite its modest absolute 

value, underscores how GxE modeling can substantially aid 

prediction for traits and crops where environmental variance is 

high. The negligible or negative impact of environmental 

features on tomato trait prediction reflects the lack of sample-

specific environmental variation in the dataset, emphasizing that 

uniform environmental data can introduce noise rather than 

improve model accuracy. Similarly, the absence of sample-level 

environmental data for rice precluded assessment of GxE effects 

in this study. These findings underscore the critical importance 

of incorporating meaningful, variable environmental 

information when modeling genotype-environment interactions 

to enhance prediction of complex traits. 

 

2.4.2 Literature Comparison and Insight 

 

The results confirm and extend findings from GS studies and 

Cropformer (Wang et al., 2025), where GxE models consistently 

outperform genomics-only approaches for adaptive agronomic 

traits. The significant improvements for foxtail millet and wheat 

not only validate prior work but highlight cases where 

environment is the dominant source of trait variance. 

Importantly, this research addresses limitations of previous 

work, such as limited environmental feature engineering or 

insufficient cross-validation, by employing robust preprocessing 

and evaluation schemes. 

 

2.4.3 Limitations 

 

Key constraints include environmental data availability for only 

three crops, variable sample sizes, and dependence on a single 
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trait per crop. Small sample-to-feature ratios risk model 

overfitting despite countermeasures (e.g., early stopping, nested 

CV). Some traits (such as tomato DTT) did not yield major 

improvements, likely due to a constrained environmental data 

set or strong canalization of flowering time. 

 

2.4.4 Implications for Breeding and Future Work 

 

This study delivers a scalable computational pipeline that can be 

readily adopted by breeding programs. By leveraging both 

genomic and environmental markers, the web application 

provides actionable predictions for breeders in real-world, 

variable environments. Future work should focus on expanding 

trait coverage, refining environmental indices, and validating 

models across broader geographic ranges. Ultimately, the GxE 

modeling framework paves the way for more resilient and 

productive crop varieties in the face of climate challenges. 

 

3. CONCLUSIONS 

 

This project successfully addressed the primary limitations of 

modern genomic prediction by developing and evaluating 

enhanced Gene-by-Environment (GxE) models. We sought to 

bridge the gap between theoretical deep learning frameworks 

and practical, accessible tools for agriculture. 

Our results consistently validate our central hypothesis: 

incorporating real-world environmental data is critical for 

improving predictive accuracy. For all GxE models developed, 

the inclusion of environmental data from sources like NASA 

POWER and ISRIC SoilGrids provided a clear, quantitative 

improvement over "Genetics-Only" baselines. This was evident 

across diverse crops; for instance, the Pearson correlation (r) for 

our Maize model increased from 0.9156 to 0.9248 (Figure-1), 

our Wheat model improved from 0.5760 to 0.6360 (Figure-1), 

and our Foxtail Millet model showed a relative improvement 

from r=0.0789 to r=0.1537 (Figure-1). 

Beyond model performance, this project's primary contribution 

is the development of the "DNA Base Crop Selector," a 

functional web application prototype. This platform successfully 

operationalizes the entire complex GxE prediction pipeline into 

a simple, accessible file-upload interface. While not yet publicly 

deployed, this application serves as a robust proof-of-concept, 

demonstrating how to bridge the accessibility gap between 

complex AI research and practical decision-making for 

agronomists and breeders. 

Future work should focus on three key areas: first, the public 

deployment and scaling of the web application to handle real-

world user load; second, improvising and extending the 

platform's modular architecture to incorporate a wider variety of 

crops. 
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