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Abstract - Genomic Selection (GS) utilizing deep learning
offers significant potential to accelerate crop breeding.
state-of-the-art  interpretable deep learning
frameworks, often combining Convolutional Neural Networks
(CNNs) and multi-head self-attention, frequently exhibit limited
real-world applicability due to their exclusion of environmental

factors, failing to capture crucial Genotype x Environment

However,

(GxE) interactions. This research addresses this limitation by
enhancing such an interpretable framework through the
integration of key environmental variables. We collected and
engineered relevant weather (NASA POWER) and soil (ISRIC
SoilGrids) data corresponding to the datasets of five major
crops: maize, rice, wheat, foxtail millet, and tomato, leveraging
publicly available datasets used in foundational studies. By
incorporating these environmental features alongside the
genomic (SNP) data within the deep learning architecture, we
developed GxE-aware prediction models. This
demonstrates a comprehensive methodology for building GxE-
enabled deep learning models for genomic prediction across
diverse crop species, aiming to improve predictive accuracy and
provide a more robust tool for practical plant breeding
applications.

work

Key Words: genomic selection, deep learning, Cropformer,
Genotype x Environment interaction, environmental data, crop
breeding, interpretability.

1.INTRODUCTION

Meeting global food security demands necessitates accelerating
crop breeding beyond traditional methods, which struggle with
complex traits. Genomic Selection (GS), enhanced by deep
learning (DL) models—including advanced architectures using
Convolutional Neural Networks (CNNs) and multi-head self-
attention—offers improved prediction accuracy and
interpretability. However, a critical limitation in many current
GS frameworks is their exclusive focus on genetic data,
neglecting the significant impact of Genotype x Environment
(GxE) interactions, which fundamentally determine crop
performance in real-world agricultural settings. Models lacking
environmental context fail to capture these crucial interactions,
potentially leading to inaccurate predictions across diverse
locations and climates.

This research addresses this GXE limitation inherent in modern
DL frameworks for GS. Our primary objective is to enhance
predictive capability by systematically integrating key
environmental variables (daily weather metrics from NASA
POWER, soil properties from ISRIC SoilGrids) alongside
genomic (SNP) data for five major crops (maize, rice, wheat,
foxtail millet, tomato). We hypothesized that incorporating
relevant environmental context would enable the model to learn
GxE interactions, resulting in more robust and accurate
predictions for practical breeding scenarios. To achieve this, we
acquired and engineered environmental data into meaningful
summary features, integrated them within the established DL
architecture, and employed rigorous training (nested cross-
validation, Optuna) and evaluation (Pearson Correlation
Coefficient) methodologies. This study presents a
comprehensive approach to developing and evaluating GxE-
aware deep learning models based on interpretable attention
mechanisms, contributing a potentially more powerful tool for
accelerating genomic-design crop breeding.

2. Body of Paper
2.1 LITERATURE REVIEW

The pursuit of faster and more accurate crop breeding cycles has
driven continuous innovation in Genomic Selection (GS).
While early statistical and conventional machine learning
models established the predictive foundation for complex traits,
the latest advancements, encapsulated by the Cropformer
framework, demonstrate a critical shift toward integrating deep
learning power with biological interpretability.

2.1.1. The Pre-Transformer Landscape: Limits of GS
(rrBLUP, CNNs)

The first generation of GS models relied primarily on linear and
non-linear statistical methods, such as rrBLUP (Ridge
Regression Best Linear Unbiased Prediction) and Bayesian
approaches. While effective for traits governed by simple
additive genetic effects, these models struggled to capture the
complex, non-linear dependencies known as epistasis (GxG)
and Genotype-by-Environment (GxE) interactions, which
account for a substantial portion of phenotypic variation.

The introduction of Deep Learning (DL) offered a solution to
non-linearity. Convolutional Neural Networks (CNNs),
notably used in models like DeepGS and DeepG2P, were
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adapted to the genomic domain, recognizing DNA as a
sequence. The CNN's strength lay in local feature extraction
identifying short-range patterns and haplotypes but models
relying solely on CNNs or standard Multilayer Perceptrons
(MLPs) often lacked the ability to model global interactions
across the entire genome or between different data modalities
(G, E, M). Furthermore, DL models were generally perceived as
"black-boxes," hindering biological validation.

2.1.2 The Fusion Era: Modeling GxE Interactions

Recognizing that phenotype is a product of GxE, several

advanced DL architectures emerged to fuse multi-modal data:
. DeepG2P: This framework treated DNA as
natural language, using 1D CNNs for local GxG
modeling and introducing a novel cross-attention
module to explicitly calculate GXE interactions. By
treating environmental data (weather time series, soil)
as contextual inputs to genetic variants (SNPs),
DeepG2P demonstrated superior performance in
predicting yield in unseen environments.
. Sequential Models (LSTM):  Other
approaches used LSTM (Long Short-Term Memory)
Autoencoders to efficiently encode the vast, high-
dimensional genomic sequence into a dense, lower-
dimensional latent representation, significantly
improving the predictive capability of subsequent MLP
layers. This highlighted the necessity of sophisticated
feature engineering for raw genomic data.

2.1.3 Cropformer:
Interpretability
The Cropformer framework (Wang et al., 2025) synthesized
the strengths of prior models while directly addressing the
critical issues of non-linearity, global dependency, and
interpretability:

A Synthesis of Accuracy and

Advantage over Prior
Models

Combines local haplotype
discovery (CNN) with
CNN Layer +global GxG dependency
Multi-Head  mapping (Attention),
Self-Attention resulting in  superior
predictive accuracy across
five major crop species.

Feature Architecture

Hybrid Feature
Extraction

Preserves  non-additive
and heterozygous
0-9 Numeric information (AT vs. CG)
Scheme lost by traditional 0/1/2
encoding, feeding richer
data to the network.

Custom
Encoding

Extracts the model's
learned significance for
every input SNP, directly
linking highly-weighted

High-Resolution Attention loci to the predicted
Interpretability Weights phenotype (e.g.,
identifying flowering-

time genes like ATX3),
effectively opening the
"black-box."

Cropformer thus establishes a new state-of-the-art by providing
a robust, generalizable, and scalable framework that not only
improved  prediction performance (0.3-10%
improvement in rice performance over competitors) but also
delivers actionable biological insights required for effective
genomic design in modern crop breeding. The fusion of attention
and CNN mechanisms represents the current pinnacle in
modeling polygenic traits.

achieves

2.2 METHODOLOGY

The predictive framework for crop phenotypic traits utilized in
this study is based on the Cropformer architecture, a hybrid
deep neural network designed to robustly capture complex
Genotype-by-Genotype (GxG) and Genotype-by-Environment
(GxE) interactions. The methodology is structured across three
primary phases: data processing and fusion, feature selection,
and model training and evaluation.

2.2.1 Data Acquisition and Preprocessing
The pipeline begins with the rigorous cleaning, alignment, and
encoding of multimodal input data.

2.2.1.1 Genomic Data Encoding (G)

Raw Single Nucleotide Polymorphism (SNP) data for the target

crop is processed to create a uniform, high-resolution feature

vector for every accession:
1. Sample Alignment: Phenotype and genotype
datasets are cross-referenced to identify a single set of
overlapping accessions (using a unique identifier, e.g.,
GHID), ensuring consistency between genotypic and
phenotypic records.
2. Genotype Normalization: The raw genotype
data (e.g., HapMap/VCF) is processed through
standard genomic tools (PLINK) to be converted into
the intermediate numeric format (representing the
count of the alternate allele: 0, 1, or 2).
3. Custom 0-9 Encoding: The intermediate
SNP data is converted into a custom 0-9 numeric
encoding scheme. This method uniquely maps all 10
possible diploid nucleotide combinations (AA—>0 to
GG—>9)  preserving  non-additive  (epistatic)
information often lost in standard additive encodings.
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2.2.2 Environmental Data Integration (E)

Environmental and location-based inputs are collected and

matched to the genomic data to facilitate GXE modeling:
1. Location-Based Data Collection:
Geographic coordinates for experimental field sites are
used to gather microclimatic and soil data. This
typically includes Mean Seasonal Temperature,
Total Seasonal Rainfall, Soil pH, and Seil Organic
Carbon (or equivalent variables for a given
crop/region).
2. Phenotype Averaging: Phenotype records
are averaged across replicates and environments (if
applicable) for each unique accession ID to derive a
single, reliable target trait value (Y).
3. Data Concatenation: The final set of N
environmental features are horizontally concatenated
with the genomic SNP features for all samples, forming
a single multimodal input vector Xaxe = [Xsnps
| Xg].

2.2.3 Feature Selection and Data Splitting

To manage the high dimensionality of the genomic data (often

over 100,000 SNPs) and ensure model focus, a two-step feature

selection process is applied.
1. Pearson Pre-filtering: The initial massive set
of encoded SNPs is pre-filtered based on the absolute
Pearson Correlation Coefficient (|r|) between each
SNP and the target trait (Y). This quickly reduces the
feature space to a predefined manageable size (e.g., the
top 30,000 SNPs).
2. MIC Final Selection: The remaining pre-
filtered SNPs undergo selection based on the Maximal
Information Coefficient (MIC). MIC measures the
strength of non-linear relationships, selecting the final
set of top 10,000 SNPs with the highest relevance to the
target phenotype.
3. Data Partitioning: The final Xgxg dataset is
partitioned using a randomized 80% training set and
20% held-out test set with a fixed random seed (e.g.,
random_state = 42), ensuring objective performance
evaluation.

2.2.4 Cropformer Model Architecture and Training
The core prediction is performed by a specialized hybrid
network designed for robustness and interpretability.

2.2.4.1 Model Architecture

The Cropformer model utilizes the SelfAttention module,

combining local and global learning components:
1. 1D Convolutional Neural Network (CNN):
The raw input vector Xgxe is passed through a 1D CNN
layer (with a typical kernel size of 3). This layer serves
as the local feature extractor, identifying short-range
motifs or haplotypes from the SNP sequence and
adding local context to all input features (G and E).

2. Multi-Head Self-Attention (MHSA): The
contextualized output from the CNN is then fed into the
MHSA mechanism. This transformer block, typically
configured with 4 or 8 heads, calculates attention
scores to map global dependencies across the entire
input sequence. The MHSA is critical for identifying
long-range epistatic interactions and global GxE
correlations.

3. Prediction Head: The weighted output of the
MHSA is passed through standard dense layers (Multi-
Layer Perceptron) to produce the final predicted

phenotypic value.
2.2.4.2 Training and Evaluation
Training emphasizes stability and optimization of
hyperparameters:

1. Nested Cross-Validation (CV): A robust 5-

fold outer CV loop is used for performance validation,
while a 3-fold inner CV loop is used concurrently with
the Optuna framework for automated hyperparameter
optimization.

2. Evaluation Metrics: Model performance is
assessed primarily using the Pearson Correlation
Coefficient (r) between the predicted and true
phenotypic values, with the final reported accuracy
based on the average performance across the nested CV
folds.

3. Interpretability Analysis: Post-training, the
model’s attention weights are extracted and analyzed
to rank the contribution of each individual SNP or
environmental feature to the final prediction, providing
high-resolution, biologically actionable insights.

2.3 RESULTS
2.3.1 Baseline Model Performance (Genomic Only)

Genomics-only models built on high-density SNP features
produced variable prediction accuracy across all studied crops.
In maize, the model for days to tasseling (DTT) achieved a high
Pearson correlation (r = 0.9156), indicating strong genetic
determination of this trait. Wheat’s genomic-only prediction for
thousand kernel weight (TKW) was moderately accurate (r =
0.5760). Foxtail millet showed a low baseline accuracy for
thousand seed long length (TSLL) (r = 0.0789), reflecting the
major role of environmental variance. For tomato, the genomics-
only model for DTT yielded a modest correlation (r = 0.1752),
much lower than in maize. Rice genomic-only models were
constructed with an accuracy of approximately r = 0.33, but
lacked sample-matched environmental data; as such, no G+E
results or improvement figures are available for rice.

2.3.2 Genotype + Environment Model Performance (GxE)
Incorporating environmental data—such as location-specific

weather and soil characteristics—improved model performance
for all crops tested. The G+E model correlation for maize DTT
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increased to r = 0.9248, and for wheat TKW to r = 0.6360.
Notably, foxtail millet TSLL showed its correlation rise from
0.0789 to 0.1537, constituting a 94.8% improvement. While the
absolute value remains moderate, this represents a near doubling
of predictive power for a complex, environment-sensitive trait.

For tomato, environmental data consisted of uniform values
across all samples, as the dataset was derived from a single
location with no intra-sample variation. Consequently,
integrating these constant environmental features into the model
did not improve prediction accuracy but slightly decreased it
(Pearson correlation fell from 0.1752 in the genomic-only model
to 0.1345 in the G+E model). For rice, environmental data
matched to individual genotypes was not available, limiting the
analysis to genomic-only predictive models. These constraints
highlight the necessity for relevant, variable environmental data
to realize the benefits of genotype-environment interaction
modeling.

2.3.3 Comparative Analysis

Table 1 provides a direct comparison between G-only and G+E
models for the three crops, including percentage improvements.

G-

onl G+E %
Crop Trait v Corr. °
Corr. ) Improvement
()
Maize DTT 09156  0.9248 +1.0%
Thousand
Wheat  Kernel 0.5760  0.6360 +10.4%
Weight
., Thousand
Foxtail
; Seed Long 0.0789  0.1537 +94.8%
Millet
Length

Table -1: Comparative trait prediction accuracy of G-only vs.
G+E models for major crops.

Pearson Corralation: G-only va G+E Models

Figure -1: Bar chart comparing the Pearson correlation
coefficients of genomics-only and G+E models for the three
crops. The chart illustrates the magnitude of improvement in

prediction accuracy gained by adding environmental data, with
a particularly pronounced relative boost for foxtail millet.

2.3.4 Web Application Overview

The developed web application provides an intuitive platform
for breeders to upload genomic and environmental data (CSV
format) per sample. Upon submission, the app predicts the
specified trait value using either G-only or GXE models, and
ranks entries by likelihood of superior agronomic performance.
The interface features input modules for phenotype and
environmental parameters, a display of prediction results, and a
suggestion panel for optimal selections. This tool establishes an
applied link between advanced modeling and practical breeding
decision-making.

2.4 DISCUSSION
2.4.1 Interpretation of Findings

Integrating environmental parameters with genomic data
systematically enhances the accuracy of trait predictions,
affirming the principle that most agronomic traits are regulated
by both genetics and the growing environment. The pronounced
improvement for foxtail millet, despite its modest absolute
value, underscores how GXE modeling can substantially aid
prediction for traits and crops where environmental variance is
high. The negligible or negative impact of environmental
features on tomato trait prediction reflects the lack of sample-
specific environmental variation in the dataset, emphasizing that
uniform environmental data can introduce noise rather than
improve model accuracy. Similarly, the absence of sample-level
environmental data for rice precluded assessment of GXE effects
in this study. These findings underscore the critical importance
of incorporating meaningful, variable environmental
information when modeling genotype-environment interactions
to enhance prediction of complex traits.

2.4.2 Literature Comparison and Insight

The results confirm and extend findings from GS studies and
Cropformer (Wang et al., 2025), where GXE models consistently
outperform genomics-only approaches for adaptive agronomic
traits. The significant improvements for foxtail millet and wheat
not only validate prior work but highlight cases where
environment is the dominant source of trait variance.
Importantly, this research addresses limitations of previous
work, such as limited environmental feature engineering or
insufficient cross-validation, by employing robust preprocessing
and evaluation schemes.

2.4.3 Limitations

Key constraints include environmental data availability for only
three crops, variable sample sizes, and dependence on a single
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trait per crop. Small sample-to-feature ratios risk model
overfitting despite countermeasures (e.g., early stopping, nested
CV). Some traits (such as tomato DTT) did not yield major
improvements, likely due to a constrained environmental data
set or strong canalization of flowering time.

2.4.4 Implications for Breeding and Future Work

This study delivers a scalable computational pipeline that can be
readily adopted by breeding programs. By leveraging both
genomic and environmental markers, the web application
provides actionable predictions for breeders in real-world,
variable environments. Future work should focus on expanding
trait coverage, refining environmental indices, and validating
models across broader geographic ranges. Ultimately, the GXE
modeling framework paves the way for more resilient and
productive crop varieties in the face of climate challenges.

3. CONCLUSIONS

This project successfully addressed the primary limitations of
modern genomic prediction by developing and evaluating
enhanced Gene-by-Environment (GXE) models. We sought to
bridge the gap between theoretical deep learning frameworks
and practical, accessible tools for agriculture.

Our results consistently validate our central hypothesis:
incorporating real-world environmental data is critical for
improving predictive accuracy. For all GXE models developed,
the inclusion of environmental data from sources like NASA
POWER and ISRIC SoilGrids provided a clear, quantitative
improvement over "Genetics-Only" baselines. This was evident
across diverse crops; for instance, the Pearson correlation (r) for
our Maize model increased from 0.9156 to 0.9248 (Figure-1),
our Wheat model improved from 0.5760 to 0.6360 (Figure-1),
and our Foxtail Millet model showed a relative improvement
from r=0.0789 to r=0.1537 (Figure-1).

Beyond model performance, this project's primary contribution
is the development of the "DNA Base Crop Selector,”" a
functional web application prototype. This platform successfully
operationalizes the entire complex GXE prediction pipeline into
a simple, accessible file-upload interface. While not yet publicly
deployed, this application serves as a robust proof-of-concept,
demonstrating how to bridge the accessibility gap between
complex AI research and practical decision-making for
agronomists and breeders.

Future work should focus on three key areas: first, the public
deployment and scaling of the web application to handle real-
world user load; second, improvising and extending the
platform's modular architecture to incorporate a wider variety of
Crops.
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