
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                              Volume: 09 Issue: 02 | Feb - 2025                                 SJIF Rating: 8.448                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                             DOI: 10.55041/IJSREM41900                                            |        Page 1 
 

Docker Like a Pro: Essential Practices for Secure and Scalable Containers 

Author(s): 

Kriti Khattar 

Docker Like a Pro 

Abstract 

Adopting best practices in project development is 

crucial for ensuring security, efficiency, and 

sustainability. Key practices include minimizing 

security risks by limiting access permissions, 

optimizing container images for faster deployments, 

and automating processes to reduce manual 

intervention. Additionally, effective configuration 

management, container health checks, and seamless 

integration of security tools within CI/CD pipelines 

help maintain system reliability and code quality. By 

leveraging cross-account access, choosing secure 

base images, and automating container restarts, 

projects can maintain operational stability while 

minimizing downtime. Overall, these practices foster 

a secure, scalable, and well-maintained environment 

for application development and deployment. 

Keywords: Docker Security Practices, Principle of 

Least Privilege, Multi-Stage Docker file, Docker 

Image Optimization, Configuration Management, 

Docker Tagging, Container Health Check, Base 

Image Selection, Cross-Account Access, CI/CD 

Pipeline Security, SonarQube, Prisma Cloud, 

Container Automation 

Introduction 

In DevOps, containerization has revolutionized 

software deployment by enabling consistency, 

scalability, and faster release cycles. However, 

without proper security measures and best practices, 

containers can introduce vulnerabilities and 

inefficiencies. This paper provides a comprehensive 

guide to Docker security and deployment best 

practices that help DevOps teams build, deploy, and 

manage containerized applications efficiently while 

ensuring security, performance, and resilience. 

Few of the practices that we can implement in our 

project are: 

1.Apply the Principle of Least Privilege for User 

Access 

By default, Docker file does not specify a user, it uses 

the root user. The functionality can run fine without 

root permissions as well. 

This can cause security issue since the container starts 

on the host, it potentially has root access on the 

Docker host. 

If an attacker exploits a vulnerability in the 

application, they can gain control not only over the 

container but potentially over the underlying server 

and its processes as well. This makes the entire server 

more susceptible to being compromised. 

How can we avoid this? 

 

Create a new user and group acp. Then set a 

password and change the ownership and 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                              Volume: 09 Issue: 02 | Feb - 2025                                 SJIF Rating: 8.448                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                             DOI: 10.55041/IJSREM41900                                            |        Page 2 
 

permission as required. This helps to switch to that 

user and can perform our task with ease. 

2.MultiStage Docker file Breakdown 

We can use docker file in stages. 

i. Stage1 

a. Build the environment in isolation: This 

ensures that the final runtime image does not 

contain unnecessary build tools or 

dependencies. 

 

b. Reusability: The build stage can be reused in 

different pipelines if required.  

 

In stage1 create a runtime image and name it as java-

compiler & reused it in later stage. 

c. Security: The final image is smaller in size 

and does not include build tools. Thus, 

reducing the chance of attack. 

ii. Stage2:  

a. Minimal Image Size: Create a runtime image 

of very small by only including the necessary 

runtime dependencies and the compiled 

application. Reducing the image size results 

in faster startup times and lower resource 

consumption. 

 

3. Manage Configuration Changes During 

Deployment 

As a best practice, Docker says “Build once, Run 

anywhere concept”. 

This can be implemented by storing our docker image 

in ECR and then reusing this image in any 

environment in future. This has been implemented in 

our buildspec.yml 

 

Handle other dependencies in our deployment and not 

in docker file which makes it readily usable in any 

environment. 

This can been implemented in appspec.yml 

 

4.Docker tag using Commit ID 

Generally, the container tags build by code build 

contains build number only. We have implemented a 

tag that mentions the commit id along with build 

number. Easier roll back since it helps find the 

commit user and commit history. 

 

 

 

We have implemented in our buildspec.yml to 

accommodate this. 

 

5. Health check for container 

Docker health checks monitor the application inside 

the container using the HEALTHCHECK instruction, 

ensuring it runs as expected. A monitoring script 

periodically inspects the container's health status 

using docker inspect. If the container is marked as 

"unhealthy," the script automatically sends a 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                              Volume: 09 Issue: 02 | Feb - 2025                                 SJIF Rating: 8.448                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                             DOI: 10.55041/IJSREM41900                                            |        Page 3 
 

notification to a configured Microsoft Teams channel, 

enabling real-time alerts and prompt issue resolution. 

 

Docker runs the health check every 35 seconds (--

interval=35s) and allows up to 30 seconds for each 

check to complete (--timeout=30s). If the check fails, 

Docker will retry it 3 times (--retries=3) before 

marking the container as unhealthy. The command 

CMD curl --fail 'http://localhost:8000/health' || exit 1 

sends an HTTP request to the /health endpoint of the 

application inside the container. If the request fails or 

returns a non-successful status code, the command 

exits with a non-zero code, indicating a failed health 

check. 

6. Choosing the Most Efficient Base Image for Your 

Container 

When choosing between a JRE (Java Runtime 

Environment) and JDK (Java Development Kit) for a 

Docker container, the decision hinges on the 

container's use case. If the container's main task is to 

run Java applications and you don't need to compile 

or develop Java code, the JRE Alpine version (e.g., 

openjdk:17-jre-alpine) is the better option. The JRE 

only includes the essential runtime components, 

making the image lighter and more efficient in terms 

of size and resource consumption. Conversely, if your 

container needs to compile Java code or use 

development tools like the Java compiler, a JDK 

Alpine version (e.g., openjdk:17-alpine) is required. 

While JDK images are more heavyweight due to the 

inclusion of development tools, they are necessary for 

compiling and developing Java applications. For 

most production environments, where you only need 

to execute Java applications, the JRE Alpine image 

is preferred to keep the container smaller and 

optimized. 

 

Sample image names: 

JRE Alpine: openjdk:17-jre-alpine 

JDK Alpine: openjdk:17-alpine 

7. Cross-Account Access to AWS Code Commit 

Repository in Jenkins Pipeline 

In this process, the pipeline in one account uses AWS 

credentials to access a Code Commit repository in 

another account. For cross-account access, these 

credentials must be configured with permissions to 

assume a role in the target account, granting access to 

the repository. The pipeline begins by setting up the 

AWS CLI with the appropriate credentials, 

allowing interaction with AWS resources. Next, Git is 

configured to use the Code Commit credential 

helper for secure authentication without storing 

credentials manually. The pipeline then executes a git 

clone command to retrieve the repository from Code 

Commit. This process ensures secure, temporary 

authentication and enables seamless access to 

repositories across accounts. 

 

8. Importance of Docker Hub References in Docker 

file Comments 

Adding Docker Hub references in comments within a 

Docker file provides several key benefits. First, it 

offers clear documentation, allowing developers to 

easily access additional information about the base 

image, including details, versioning, and usage 

instructions on Docker Hub. Second, it helps with 

version control, enabling developers to track the 

latest updates and security patches for the base image 

by referencing its official Docker Hub page. Third, it 

promotes collaboration within teams, as it helps 

others understand the reasoning behind choosing 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                              Volume: 09 Issue: 02 | Feb - 2025                                 SJIF Rating: 8.448                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                             DOI: 10.55041/IJSREM41900                                            |        Page 4 
 

specific base images, ensuring consistency across 

environments. Finally, using official Docker Hub 

images ensures compliance and best practices, as 

these images are regularly updated and maintained, 

making them secure and trusted. This approach 

enhances the overall clarity, maintainability, and 

security of Docker files. 

 

 

9. Automatic Container Startup on Server Restart 

Earlier, after server maintenance and a restart, manual 

intervention was required to restart the Docker 

containers, resulting in services remaining down until 

the containers were manually started. This was a 

manual intervention because it required extra steps to 

bring the services back up. However, the introduction 

of a restart feature has resolved this problem. The 

script automatically restarts the Docker containers 

after the server restarts, ensuring that services are up 

and running without manual intervention. This 

automation helps reduce downtime and ensures that 

the system is fully operational as soon as the server is 

back online. 

 

Add this in docker compose to automate the issue 

10.Ensuring Code Quality and Security in CI/CD 

Pipeline 

In the CI/CD pipeline, both SonarQube and Prisma 

Cloud scans are integrated to ensure that code quality 

and security are thoroughly checked before 

deployment. SonarQube analyzes the source code 

for potential issues, such as bugs, security 

vulnerabilities, and code smells, helping maintain 

high code quality and security standards. Prisma 

Cloud then scans the Docker image for any security 

vulnerabilities, misconfigurations, or compliance 

issues, ensuring the container is secure and free from 

known risks. The pipeline is only allowed to proceed 

with deployment if both scans pass without any 

critical issues, guaranteeing that only secure and 

high-quality code is deployed to production. Other 

security tools can also be integrated in the pipeline. 

 

11. Avoid Hardcoding Secrets in Docker Images 

Hardcoding secrets in Docker images introduces 

critical security vulnerabilities. If images with 

embedded credentials are pushed to public or poorly 

secured registries, sensitive data can be exposed. 

Hardcoded secrets can also end up in version control 

systems, leaving a permanent record even after 

deletion. Anyone with access to the image can easily 

extract these secrets using basic commands. 

Moreover, rotating hardcoded credentials becomes 

complex, requiring image rebuilds and 

redeployments, leading to delays and increased risks. 

This practice also violates compliance standards like 

PCI DSS, HIPAA, and GDPR, which require secure 

handling of sensitive data. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                              Volume: 09 Issue: 02 | Feb - 2025                                 SJIF Rating: 8.448                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                             DOI: 10.55041/IJSREM41900                                            |        Page 5 
 

AWS Secrets Manager, AWS SSM Parameter Store, 

HashiCorp Vault, and Jenkins Credentials provide 

different approaches to secure secret management. 

AWS Secrets Manager is designed for sensitive data, 

offering automatic rotation, encryption, and audit 

logging, making it ideal for production use. AWS 

SSM Parameter Store allows encrypted storage of 

secrets and configurations but lacks native rotation, 

making it more suitable for non-critical data. 

HashiCorp Vault delivers robust secret management 

with dynamic secrets, granular access control, and 

multi-cloud support, perfect for complex 

environments. Jenkins Credentials focuses on 

securely managing secrets within CI/CD pipelines but 

doesn’t offer features like automatic rotation or 

broader integrations. 

DevOps can implement secret manager in 

buildspec.yml.

 

12. Multi-Host Docker Setups 

Using docker overlay networks allow containers on 

different Docker hosts to communicate seamlessly 

without exposing ports to the public. This is highly 

beneficial in setups in containerization for multi-

host Docker environments. 

One of the key advantages is enhanced security. 

Overlay networks encapsulate container traffic using 

VXLAN (Virtual Extensible LAN), isolating 

internal communication from the external network. 

Additionally, encryption can be enabled to secure 

data transmitted between containers. 

Overlay networks also simplify service discovery by 

using internal DNS, allowing containers to 

communicate using service names rather than IP 

addresses.  

They also improve high availability and scalability 

by enabling containers to run across multiple hosts 

while remaining connected on the same network, 

ensuring resilience and flexibility as services scale. 

It can be integrated in Docker Compose. 

 

Conclusion 

In today's fast-evolving market, adopting Docker 

security best practices is crucial for developers and 

DevOps teams in streamlining software delivery. By 

integrating advanced security measures such as 

secure secret management, controlled port exposure, 

and encrypted container communication, 

development workflows become more resilient and 

efficient. Developers can focus on building features 

without constant security concerns, while DevOps 

teams can enhance deployments and maintain strong 

governance over infrastructure. These practices not 

only improve system reliability and compliance but 

also enable organizations to navigate the demands of 

modern digital environments with confidence and 

agility. 

 

References: 

Books: 

[1] B. Potter and S. Ward, Docker Security: 

Virtualization and Container Security, O'Reilly 

Media, 2015. 

[2] P. Raj and V. Singh, Learning Docker, Packt 

Publishing, 2015. 

[3] K. Matthias and S. P. Kane, Docker: Up & 

Running, O'Reilly Media, 2015. 

[4] N. Poulton, Docker Deep Dive, Independently 

Published, 2017. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                              Volume: 09 Issue: 02 | Feb - 2025                                 SJIF Rating: 8.448                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                             DOI: 10.55041/IJSREM41900                                            |        Page 6 
 

Journal Papers: 

[5] G. Combe, R. State, and M. Festor, “To Docker or 

Not to Docker: A Security Perspective,” IEEE Cloud 

Computing, vol. 3, no. 5, pp. 54-62, 2016. 

[6] Y. Wu, Y. Ding, and Y. Fu, “Vulnerability Analysis 

and Security Research of Docker Container,” IEEE 

Int. Conf. on Computational Science and Engineering 

(CSE), pp. 646-653, 2020. 

[7] M. You, J. Kim, and S. Shin, “Revisiting Security 

Landscape of Docker Hub Container Images,” 

Journal of Korean Institute of Communications and 

Information Sciences, vol. 47, no. 3, pp. 321-330, 

2022. 

[8] M. Dahlmanns, C. Sander, R. Decker, and K. 

Wehrle, “Secrets Revealed in Container Images: An 

Internet-wide Study on Occurrence and Impact,” 

arXiv preprint arXiv:2307.03958, 2023. 

[9] S. P. Mullinix, E. Konomi, R. D. Townsend, and 

R. M. Parizi, “On Security Measures for 

Containerized Applications Imaged with Docker,” 

arXiv preprint arXiv:2008.04814, 2020. 

 

http://www.ijsrem.com/

