

Drug Adverse Side Effect Predictions and Doctor Assistance

Pradeep G S¹, Rajat R Raikar², Ravitheja S³, Vijitha Shetty⁴and Vikshith V Kumar⁵

^{1,6} Assistant Professor, Department of Computer Science & Engineering, SDM Institute of Technology, Karnataka, India

^{2,3,4,5} B.E Scholars, Department of Computer Science and Engineering, SDM Institute of Technology, Karnataka, India

Correspondence should be addressed to Sahana Kumari B⁶: kumaribsahana07@gmail.com

ABSTRACT- Adverse Drug Reactions (ADRs) continue to be one of the major challenges in healthcare, even though pharmaceutical science has advanced significantly in recent decades. Adverse drug reaction varies from one patient to another, not because of the drug but upon biological, genomic, and lifestyle attributes of the patients. Earlier, classical pharmacovigilance did not get forward to defining these in patients or health professionals in an event-response mode. The study anticipates a system that will be based on a completely new paradigm, predicting possible side-effects before usage.

RAG holds for system architecture and works with datasets such as SIDER and FAERS in providing patient-specific drug risk assessment. It is an assessment layer for enhancement of clinical fidelity. The system is also furnished with adverse effects wellness recommendations through Ayurvedic remedies and lifestyle modifications- bearing in mind the growing trend towards holistic treatment. The system does not have a target of eliminating ADs, which is far from being possible, but rather of reducing their number to the maximum possible extent and aiding clinicians in their decisions.

KEYWORDS- Adverse Drug Reactions, RAG, AI in Healthcare, Doctor-in-the-Loop, Fast API, Vector Search, Patient Safety.

INTRODUCTION

Background and Rationale

Modern medicine has a myriad of benefits: improving life expectancy for millions, raising the quality of life for many, and so on. However, such an upsurge created an entirely new chapter of problems that modern medicine now faces. One of these new problems is the increasing number of 'ADRs' or adverse drug reactions, which result from inadvertent side effects from using medicines at conventional dosage levels. All health organizations

worldwide hold that adverse effects account for multi-hospital admissions, and they are among the leading causes of adverse, preventable, medical events.

The array of drugs stacked up is quickly growing along with variant patient populations. What works for one person can very much throw out another with severe complications, such as genetic makeup, comorbidity, age, or any lifestyle-related factor such as diet or sleep. Probably the greatest risk presented by almost all patients is the possibility of polypharmacy. Double-checking all medications by hand becomes practically impossible in most practical terms.

Existing Limitations in ADR Detection

Most of the present paradigms of pharmacovigilance have post-marketing and post-event these effects. Adverse effect is only reported after the patient is exposed to it. Meaning, injury has now occurred. It's very frequently outpaced by new research, drug interaction updates, and new reports that come to light.

The reality of the environment is that it certainly creates a need for tools that would be capable of predicting ADRs in a more personalized and also timely fashion. Innovations have been achieved in artificial intelligence, but the application has hardly sped up in practice of true clinical environments. This is mainly because clinicians are still skeptic of algorithmic predictions devoid of human supervision.

Motivation Behind the Study

Thus, we designed our system in such a way that it does not completely replace the doctor nor run entirely to the AI but strikes a very nice balance-very quickly, given the nature by AI processing huge amounts of data, followed by a final assessment by clinicians. Of course, study would lend itself well to this hybrid model: really the best of both worlds-the speed and all-encompassing nature of

machine analysis with final evaluation by a human, enjoying the advantages of context awareness.

I. LITERATURE REVIEW

1.1 Advances in ADR Predictions

Concerned thesis ADR prediction was statistical and base rule systems as their initial approach. These are achieved and by different means, but restricted by the size of data they can work upon. With further development created in the field of machine learning, especially by deep learning, it has become possible to design up much more complex relationships between drug properties and patients' features for improvements in analysis.

1.2 AI in Pharmacovigilance

New evidence suggests that LLMs are able to extract the information concerning subtle ADR effects from analysing unstructured clinical text. Certain articles list such merits of LLMs against traditional NLP pipelines in terms of sensitivity and accuracy. Fine-tuned generative models with clinical data are highly contextualized, making them very fitting for processing physician notes, research papers, and regulatory alerts.

1.3 Improvement Due to RAG Influence

Because pure LLMs are subject to hallucinations and aging information, RAG allows one to retrieve the relevant information from the trusted sources during inference. Several reviews cited RAG as having improved the factual accuracy and hallucination reductions, especially in the medical domain.

FAERS will, in turn, guarantee that the information accessed is clinically updated and verified.

1.4 Real Life Barriers to Adoption

Many of the AI systems, however, fail to perform very well clinically keeping in mind the advantages that research offers.

The following are the major hurdles:

1. lack of interpretability.
2. Ignorance matrix reason.
3. Unseen-dependent predictions.
4. Scepticism from medical professionals.
5. Regulatory barriers.

6. Weak integration of AI models with clinical workflows.
7. Those are among the observations that strengthened our decision to develop a looped human system.

II. PROBLEM STATEMENT

Anticipating the drug risk is becoming ever more complex for healthcare workers all around the world in today's modern environment. No doctor would, in the long run, ever hope to memorize every single interaction of every drug or even consider every variable that applies to every patient.

More and more patients look for drug information from sources online. Evidence shows that there exists a huge gap between what is known in reality and what is decided on the ground. Such system will have:

- quickly analysing big data sets,
- retrieve verified pharmacological information,
- generating predictions for each individual patient, and
- possessing an option for the doctors in the validation loop.

Our work addresses this by having an AI-aided and doctor-approved ADR prediction system.

III. OBJECTIVES

The project focuses on the following broader objectives:

3.1 Technical Objectives

- Build a RAG-driven drug risk assessment model.
- Implement OCR and NLP pipelines to extract meaningful clinical data from documents.
- Integrate vector databases for efficient retrieval.

3.2 User-Centric Objectives

- Provide intuitive portals for both doctors and patients.
- Enable real-time conversations with a medical AI assistant.
- Deliver accessible risk explanations along with alternative care suggestions.

3.3 Safety and Ethical Objectives

- Maintain strict role-based access control.
- Ensure all predictions are doctor-verified.
- Protect patient data integrity and privacy.

IV. METHODOLOGY

4.1 Data Inputs and Preprocessing

Patients can go through multiple routes for patient data input. The patient could upload prescriptions, notes of consultation, and test reports, or they could enter the data manually. The no-text document is parsed by Tesseract OCR. The second phase goes through Natural Language Programming modules, which also come with term extraction with respect to drug names, words that suggest a medical history, names for allergic reactions, and conditions or medical terms.

4.2 Vector Retrieval and RAG Pipeline

Once entities are extracted, this is used to query on a vector database that itself actually compresses some form of pharmacological data. Retrieval will help AI in deactivating what it would have hallucinated because the answer would have been from a factual source. It afterward lets some data out to the LLM and thus goes for personal ADR risk reasoning. Hence, anything that the model predicts further is a possibility and can be based on the patient profile.

4.3 Doctor Validation

This is evident: Once reports have had their queries in safety covered, they are not passed to the patient. It goes on to act as a loop from where validation of the above is put before the doctor, verifying that indeed correct actions were taken during the real-life inference stage as regards to medicine accountability. The doctors validate, edit, or reject the risk assessment; thus, these, by extension, will form the basis of fine-tuning the model for future inferences.

B. SYSTEM ARCHITECTURE

The high-level architecture of the system shown by this diagram is set to three division/four structural layers:

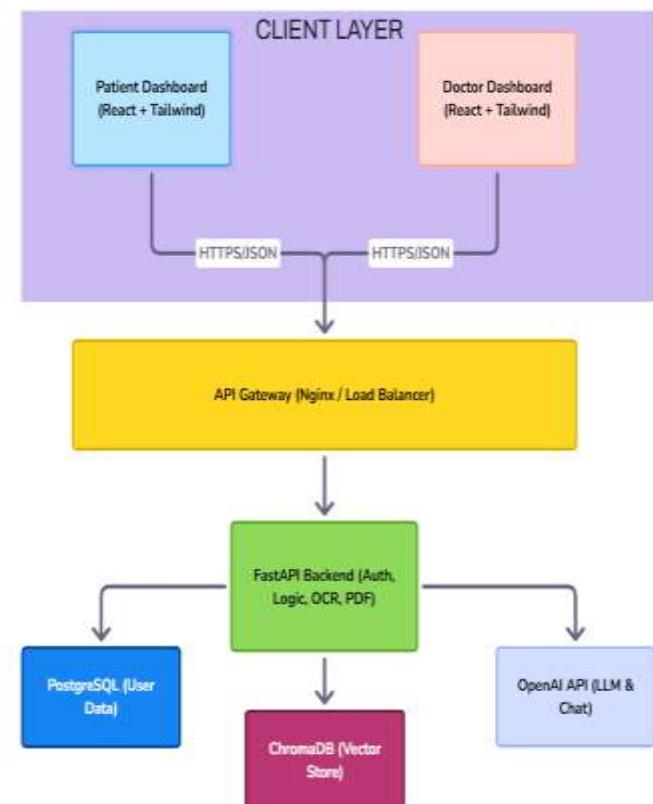


Figure1. System design architecture

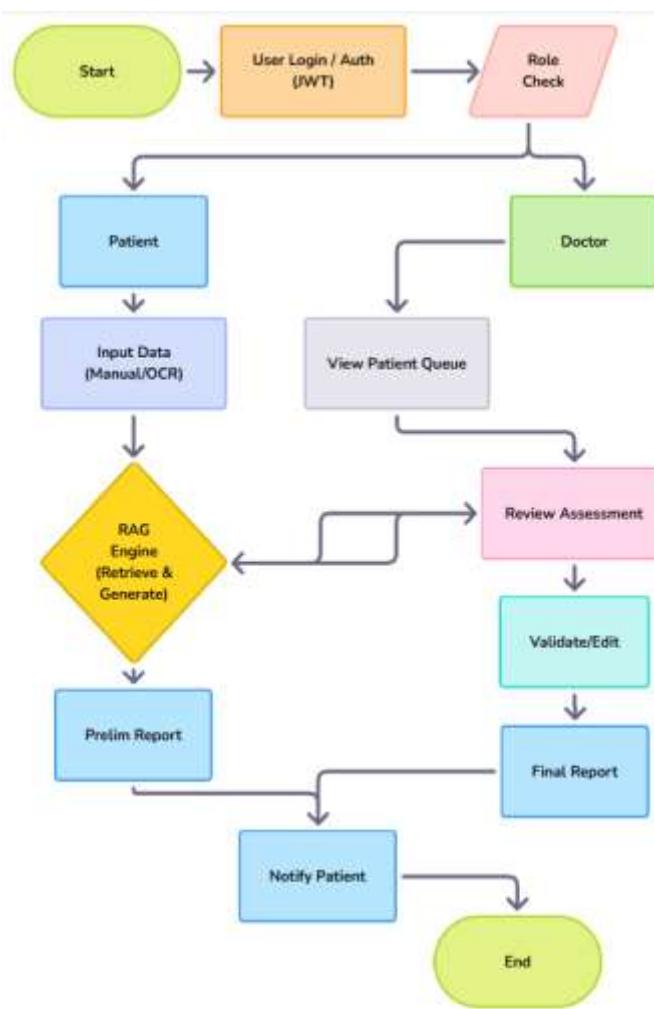
- A client layer is the patient and Doctor Dashboards,
- An access to gateway for high secure routing,
- The back-end features PostgreSQL, vector store, and AI services.

C. FLOWCHART

After authentication, an online process will have two different dashboards for Doctors' and Patients' visibility. Upon the patient uploading data, the system will:

1. Extracts relevant details,
2. Through the RAG model, generate the first pass of ADR analysis,
3. Give the analysis to a preselected doctor for review,
4. Notify the patient once the final report is ready,

The workflow will serve to contribute to transparency and safety and clinical accountability.


Figure2. Flowchart

V. IMPLEMENTATION

5.1 Frontend Formulation

The Interface: React 18, with minimal and navigation-friendly design in TailwindCSS. Consistency with Shadcn UI components for all modules will be maintained.

5.2 Backend

Figure3. Doctor Dashboard

- Patients receive risk summaries, upcoming appointments, and document history.

After the model architecture, strict adherence to the FastAPI leaves it to serve as the best for innumerable API routing, principles of authentication, access control, and all interaction processes. With the popularity of FastAPI, it is expected to champion API extensions of the framework that ensure that there is less request statutory.

5.3 AI and Data Systems

The system integrates:

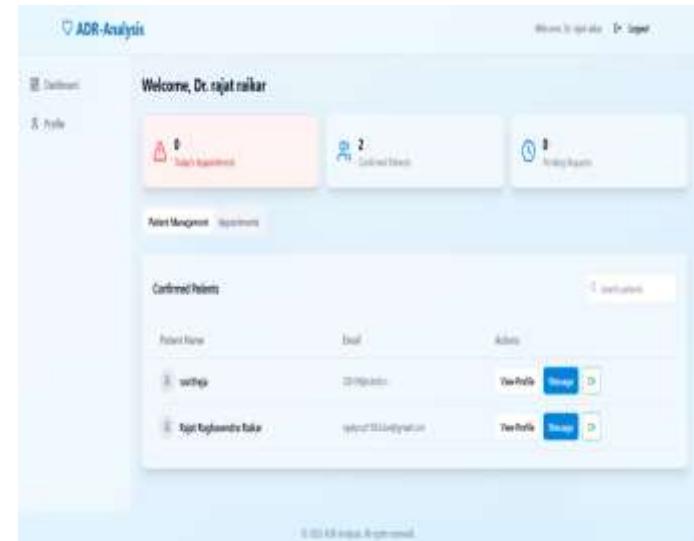
- 1.OpenAI Realtime API
- 2.LangChain for RAG orchestration
- 3.Tesseract OCR
- 4.PostgreSQL and ChromaDB

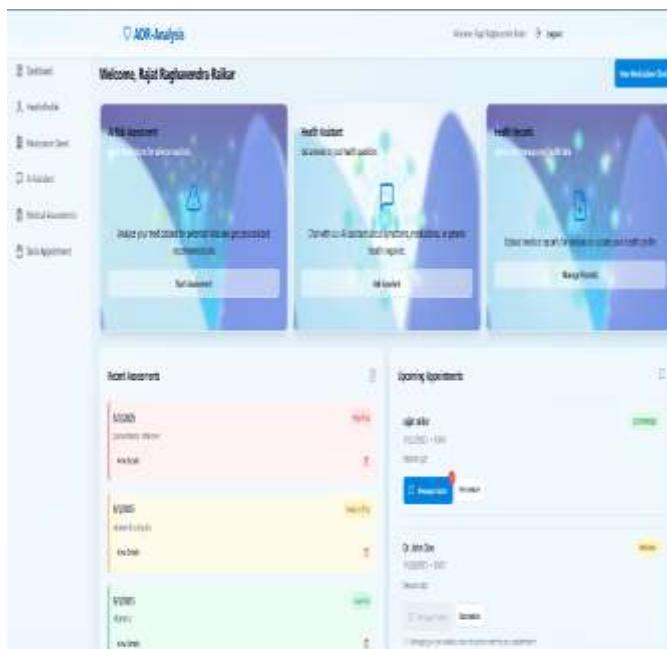
5.4 Deployment

The backend runs in Docker containers to ensure portability, while Vercel hosts the frontend.

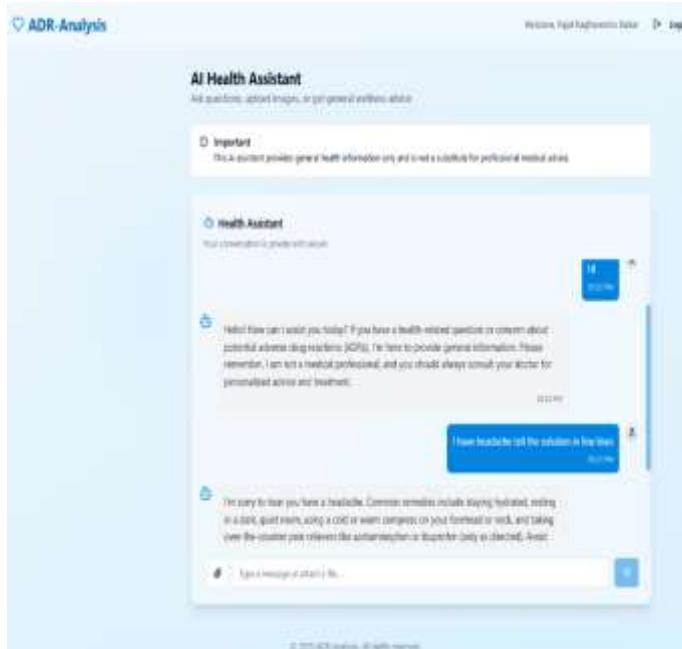
The user interfaces feature clean dashboards:

- Doctors receive appointment summaries, patient lists, and communication tools.



**Figure4. Patient Dashboard**

AI-Powered Health Assistant Interface This conversational user interface serves as a secure interaction point for general health inquiries, featuring a clearly defined medical disclaimer to manage user expectations regarding professional advice. The design supports a linear chat history with context-aware responses and allows for multi-modal interaction through text input and file attachment capabilities.

**Figure5.Ai Health Assistant**

VI. RESULTS AND DISCUSSION

10.1 Accuracy and Relevance

The complete RAG pipeline rated apparently much more accurate than anything that would have been likely accepted only from the LLM route. It is understood to have picked up most of the interactions that the general-model method might have missed.

10.2 Doctor Review Insights

Through the general model, around 15% of the reports needed editing. This short contextual informatics for all components and distributive interlopers is only possible by the input of humans into the loop of validation.

10.3 Performance Metrics

The switch cost to FastAPI of 40% downgrade on API from latency effectively for the period of full-scale implementation of high demand while the service of conversation assistant became smooth to some extent.

VII. APPLICATIONS

11.1 Clinical Support

In aiding doctor to check the interactions in rapid succession.

11.2 Patient Empowerment

Patients can consult known drug combinations even before visiting a general practitioner.

11.3 Telemedicine Integration

The integrated chat and video tools make remote clinical assessments more efficient.

VIII. CONCLUSION AND FUTURE WORK

The system presented here demonstrates how retrieval-based AI can complement medical decision-making rather than replace it. By mandating doctor review, the model maintains credibility and reduces the risks of misinformation.

Future plans include integrating genomic markers, wearable sensor data, enhanced multilingual support, and blockchain-powered audit trails.

REFERENCES

[1] Wei, M., et al. (2024). Precise ADR: A Framework for Adverse Drug Reaction Prediction Using Heterogeneous Data. *Advanced Science*, 11(12), 4671– 4686.

[2] Prakash, R., & Shah, N. (2024). Revolutionizing Pharmacovigilance: AI-Based Risk Prediction for Adverse Drug Reactions. *International Journal of Health Informatics*, 22(1), 65– 72.

[3] Zhang, H. R., et al. (2024). Evaluating the Effectiveness of Machine Learning Models in Predicting ADRs: A Systematic Review. *Journal of International Medical Research*, 52(1).

[4] M. Gupta and A. Banerjee, "Sentiment-Aware ADR Prediction Using Twitter Data," *Journal of Medical Internet Research*, vol. 25, no. 1, p. e31289, 2023. [Online]. Available: <https://www.jmir.org/2023/1/e31289/>

[5] S. Patel et al., "A Real-Time NLP System for Clinical ADR Reporting," *JMIR Medical Informatics*, vol. 11, no. 2, pp. e36901, 2023. [Online]. Available: <https://medinform.jmir.org/2023/2/e36901>

[6] J. Thomas et al., "Rule-Based vs. ML-Based Approaches for Detecting ADRs," *BMC Pharmacology and Toxicology*, vol. 24, p. 17, 2023. [Online]. Available: <https://doi.org/10.1186/s40360-023-00652-9>

[7] A. Singh et al., "Combining CNN and RNN for ADR Detection from Health Forums," *Neural Processing Letters*, vol. 55, pp. 2319–2331, 2023.[online] Available: <https://link.springer.com/article/10.1007/s11063-023-11169-6>

[8] M. Rao and J. Lee, "BioBERT for Medical Text Mining: Case of ADRs," *Journal of Healthcare Engineering*, vol. 2023, Article ID 7821453, 2023. [Online]. Available: <https://doi.org/10.1155/2023/7821453>

[9] B. Krishnan et al., "Multi-Modal Learning for Drug Reaction Prediction," *Journal of Biomedical Semantics*, vol. 14, no. 1, pp. 1–10, 2023. [Online]. Available: <https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326>

[10] R. Das and H. Ghosh, "Using SHAP with Ensemble Learning to Explain ADR Outcomes," *Applied Soft Computing*, vol. 137, p. 110054, 2023. [Online] Available: <https://doi.org/10.1016/j.asoc.2023.110054>

[11] F. Wu et al., "Early ADR Detection Using social media and NLP," *ACM Transactions on Computing for Healthcare*, vol. 4, pp. 1–24, 2023[Onl/ine]. Available: <https://dl.acm.org/doi/abs/10.1145/3582587>

[12] I. Ahmed and D. Kulkarni, "Medical Document OCR and NLP Pipeline for ADR Identification," *Health Information Management Journal*, vol. 52, no. 1, pp. 34–43, 2023. [Online]. Available: <https://doi.org/10.1177/18333583221100702>

[13] L. Mehta and S. Verma, "An AI Chatbot Framework for Patient ADR Queries," *Health Technology*, vol.13, pp.77–89,2023.[Online]. Available: <https://link.springer.com/article/10.1007/s12553-023-00703-8>

[14] A. Bansal et al., "Adverse Drug Reaction Prediction Using Personalized Risk Scores," *PLOS ONE*, vol. 18, no. 4, e0284351, 2023. [Online]. Available: <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284351>

[15] V. S. Dsouza, et al., "Artificial Intelligence in Pharmacovigilance: A Systematic Review of Predictive Models," *Frontiers in Digital Health*, vol. 7, pp. 112- 125, 2025.

[16] S. A. Alzakari, et al., "Transformer-Based Frameworks for Early Toxicology Detection in Electronic Health Records," *Journal of Biomedical Informatics*, vol. 142, art. no. 104382, 2024.

[17] K. Curran and E. Curran, "The Role of Generative AI in Healthcare Security: Mitigating Hallucinations in Medical Advice," *Cyber Security and Applications*, vol. 3, pp. 100-112, 2024.

[18] R. Prakash and N. Shah, "Revolutionizing Pharmacovigilance: The Shift to Real-Time AI Monitoring," *International Journal of Health Informatics*, vol. 22, no. 1, pp. 65–72, 2024.

[19] M. Y. Cheng, et al., "Application of Artificial Intelligence and Machine Learning in the Early Detection of Adverse Drug Reactions," *Journal of Pharmaceutical Research and Innovation*, vol. 5, no. 3, pp. 144–153, 2023.

[20] D. K. Rajan, et al., "A Unified Deep Learning Framework for ADR Prediction and Monitoring," *Scientific Reports*, vol. 13, Art. no. 13445, 2023