

Dynamic Traffic Signal Management Using IOT

¹Mr. S. H. Sangle, ²Aditya Navale*, ³Tejas Deore, ⁴Sumit Wagh, ⁵Anushka Kadam

1. Lecturer, Department of Computer Technology, K. K. Wagh Polytechnic, Nashik
2. Student, Department of Computer Technology, K. K. Wagh Polytechnic, Nashik
3. Student, Department of Computer Technology, K. K. Wagh Polytechnic, Nashik
4. Student, Department of Computer Technology, K. K. Wagh Polytechnic, Nashik
5. Student, Department of Computer Technology, K. K. Wagh Polytechnic, Nashik

Corresponding Author: ²Aditya Navale* (adityaknavale123@gmail.com)

ABSTRACT

Rapid urbanization and the continuous increase in vehicular population have made traffic congestion a critical challenge in modern cities. Conventional fixed-time traffic signal systems operate on predefined intervals and fail to adapt to real-time traffic conditions, resulting in longer waiting times, fuel wastage, increased air pollution, and delayed emergency response. This review paper presents an IoT-based Dynamic Traffic Signal Management System that utilizes real-time data collected from sensors and cameras installed at road intersections to optimize traffic signal timings. The proposed system dynamically adjusts green, yellow, and red signal durations based on vehicle density, ensuring efficient traffic flow and reduced congestion. Additionally, it incorporates an emergency vehicle prioritization mechanism to facilitate the rapid movement of ambulances, fire trucks, and police vehicles. Integration with cloud platforms enables data storage, monitoring, and traffic analysis for better decision-making and future planning. The review highlights system architecture, hardware and software requirements, advantages, feasibility, challenges, and future scope of IoT-enabled traffic management. Overall, the IoT-based dynamic traffic control approach offers a scalable, energy-efficient, and smart solution for sustainable urban traffic management and smart city applications.

KEYWORDS

Dynamic Traffic Management, Internet of Things (IoT), Smart Traffic Signals, Real-Time Traffic Monitoring, Vehicle Density Detection, Emergency Vehicle Priority, Smart City, Intelligent Transportation System

1. INTRODUCTION

1.1 Introduction

Traffic congestion has become one of the major problems in modern cities due to rapid urbanization and the increasing number of vehicles. Most cities still rely on fixed-time traffic signal systems, which operate on pre-set intervals and cannot adjust according to real-time traffic conditions. As a result, vehicles often wait unnecessarily at red signals even when the roads are clear. This leads to long waiting times, fuel wastage, increased air pollution, and frustration among drivers.

The Dynamic Traffic Signal Management System using IoT is designed to overcome these limitations. The system uses sensors or cameras installed at intersections to monitor traffic density in real time. Data collected from these devices is sent to a microcontroller, which processes the information using algorithms to adjust signal timings dynamically. Lanes

with higher traffic density get longer green-light durations, while less congested lanes get shorter ones. Additionally, the system can detect emergency vehicles like ambulances, fire trucks, or police cars and prioritize their movement by turning the signals green in their direction.

This approach enhances traffic efficiency, reduces congestion, and contributes to fuel conservation and environmental sustainability.

1.2 Problem Definition

The main problem with current traffic control systems is that they operate on fixed-time cycles, regardless of actual traffic flow. As vehicle numbers continue to increase, this outdated approach results in:

- Long waiting times at traffic lights.
- Wastage of fuel due to idling vehicles.
- Higher carbon emissions and air pollution.
- Delays for emergency vehicles.
- Inefficient use of road infrastructure.

1.3 Objectives

- To monitor traffic in real time using sensors or cameras:

Continuously detect and measure vehicle density on each road to understand current traffic conditions.

- To control traffic signals automatically based on real-time data:

Adjust signal durations dynamically according to the number of vehicles on each lane to minimize delays.

- To give priority to emergency vehicles:

Allow ambulances, fire trucks, and police vehicles to pass smoothly by changing signals automatically in their favor.

1.4 Scope

The scope of the Dynamic Traffic Signal Management System using IoT includes:

- Installation of sensors or cameras at intersections to detect and count vehicles in real time.
- Processing of collected data using a microcontroller (Arduino or Raspberry Pi) to determine signal timing.
- Dynamic adjustment of signal lights based on real-time vehicle density.
- Detection and prioritization of emergency vehicles to ensure timely passage.
- Testing of the system in both simulated and real-world conditions to ensure accuracy and reliability.
- Implementation at multiple intersections across cities for integrated traffic control.
- Reduction in pollution and fuel usage through efficient traffic management.

2. LITERATURE SURVEY

In recent years, several research studies and pilot projects have focused on leveraging IoT, Artificial Intelligence (AI), and wireless communication for intelligent traffic management. The goal has been to replace traditional static systems with responsive, data-driven solutions that can handle real-time traffic challenges.

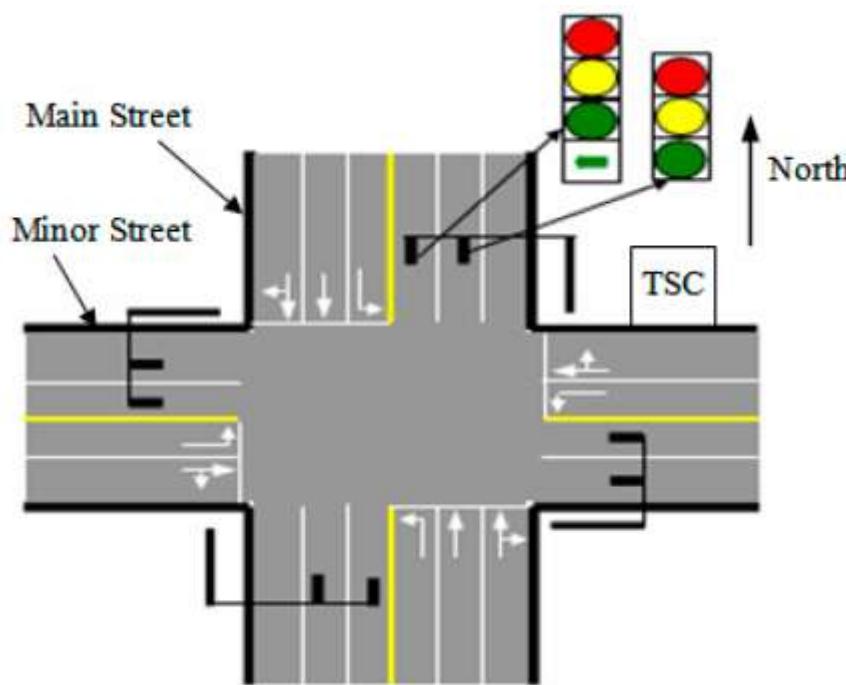
This study proposed an intelligent traffic control architecture that uses Infrared (IR) sensors in combination with Raspberry Pi boards installed at road intersections to monitor and count vehicles in real time. The IR sensors continuously detect the presence and movement of vehicles in each lane, while the Raspberry Pi processes this data to determine traffic density. Based on the detected vehicle count, the system dynamically adjusts traffic signal timings to allocate green signals more efficiently, thereby reducing unnecessary waiting times.

The implementation results showed a significant reduction in vehicle idle time, especially at intersections with low or uneven traffic flow, where traditional fixed-time signals often cause delays. By adapting signal durations according to real-time traffic conditions, the system improved traffic flow and reduced congestion during off-peak hours. However, the proposed architecture did not incorporate cloud integration, which limited its ability to store historical traffic data or perform advanced data analysis. As a result, long-term traffic pattern analysis, predictive modeling, and centralized monitoring were not supported in this system [1].

A wireless sensor network (WSN) was implemented to collect real-time traffic flow data from multiple points within the road network. Sensor nodes were strategically deployed to monitor vehicle movement and transmit the collected data to a central controller. An optimization algorithm was then applied to this data to dynamically control traffic signal timings, with the aim of improving traffic flow and reducing congestion at intersections.

The proposed approach emphasized low power consumption to extend the operational lifetime of the sensor nodes and utilized mesh networking to enable reliable data transmission between nodes. Mesh networking allowed sensors to relay data through neighboring nodes, enhancing network flexibility and coverage. However, despite these advantages, the system faced challenges in maintaining stable long-term connectivity in dense urban environments due to interference, signal obstruction by buildings, and increased network complexity. These issues affected communication reliability and limited the overall effectiveness of the system in large-scale urban deployments [2].

IoT and AI-driven dynamic traffic signal manipulation is a smart transportation system that uses IoT sensors to collect real-time data about vehicle movement on roads. This data is processed using AI algorithms to understand traffic conditions and automatically adjust traffic signal timings. By responding to actual traffic flow, the system helps reduce unnecessary waiting at signals.


The system uses Vehicle-to-Infrastructure (V2I) communication, which allows vehicles to share information directly with traffic signals. This communication helps control signals more accurately, reducing traffic congestion and improving road safety. As a result, traffic flows more smoothly, travel time is reduced, and overall urban mobility efficiency is improved [3].

3. METHODOLOGY

3.1 Existing System

Fixed-Time Traffic Management System

In most urban areas across the world, the fixed-time traffic control system is the traditional and most commonly used approach to manage vehicular movement at intersections. In this system, the duration of each traffic signal light green, yellow, and red is predetermined and remains constant, following a continuous cycle irrespective of the actual traffic conditions on the roads. Although this system is simple, cost-effective, and easy to implement, it fails to address the growing traffic challenges of modern cities where vehicle density fluctuates dynamically throughout the day.

Fig: 3.1.1. Fixed-Time Traffic Management System

1) Working Mechanism and Usage

The fixed-time traffic signal system operates on a predefined schedule, where each signal phase is allocated a fixed time slot. For example, a green light may remain active for 60 seconds for each lane in a four-way junction, followed by yellow and red lights in a regular sequence. This sequence is repeated continuously without any adjustment based on the real-time volume of vehicles.

Such systems are programmed to run automatically and do not utilize sensors or live data for decision-making. As a result, even when one lane is empty and another is heavily congested, the duration of the green light remains the same for all directions. This creates a significant imbalance in vehicle flow and reduces the efficiency of road usage.

2) Challenges in the Fixed-Time System

One of the primary drawbacks of the fixed-time system is its inability to adapt to fluctuating traffic conditions. Since it does not analyze real-time traffic density, it often results in inefficient traffic control during peak hours. Roads with high congestion continue to experience long waiting times, while roads with minimal or no traffic still receive green signals unnecessarily.

This inflexibility leads to traffic jams, slow vehicular movement, and longer travel times. During special situations like public events, accidents, or road closures, the fixed-time system becomes even less effective, as it lacks the capability to modify signal durations instantly.

3.2 Proposed System

3.2.1 Introduction

Urban traffic congestion has become a significant challenge due to rapid urbanization and the increase in vehicles on the road. Traditional traffic management systems rely on fixed-time traffic signals, which cannot adapt to real-time traffic variations. This inefficiency causes long waiting times, fuel wastage, increased pollution, and driver frustration.

The proposed system introduces a Dynamic Traffic Management System using IoT that uses real-time data from sensors

and cameras to dynamically adjust traffic signals, optimize traffic flow, and improve urban mobility.

3.2.2 System Architecture

The system integrates multiple IoT components, sensors, and cloud-based analytics to create an intelligent traffic management solution. The main components include:

1) Vehicle Detection

At intersections, IR sensors, ultrasonic sensors, and cameras are installed to monitor vehicle count. These devices enable real-time traffic monitoring and supply accurate data to control and optimize traffic signal timing effectively.

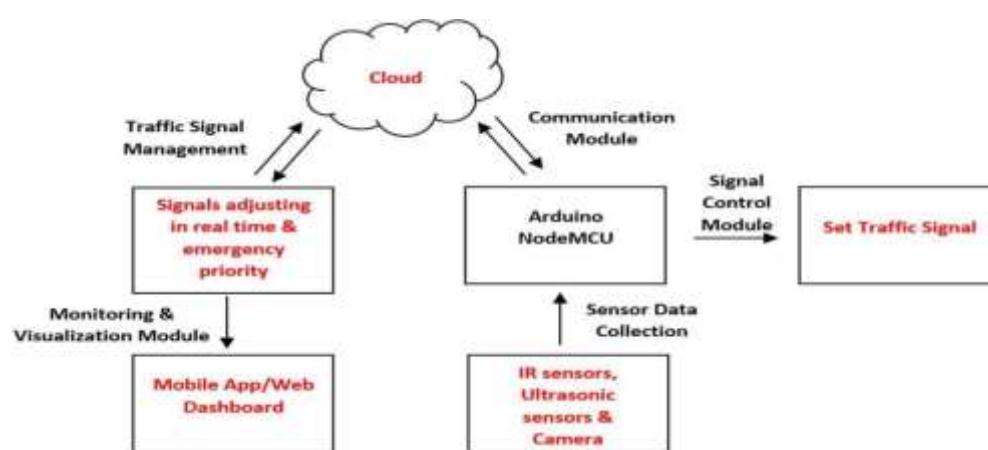
2) Dynamic Signal Timing

The traffic signal durations green, yellow, and red are dynamically adjusted based on real-time traffic conditions. Lanes with little or no traffic are skipped or given minimal green time, ensuring that signal duration is allocated only to lanes with active vehicles. This intelligent approach optimizes overall traffic flow by distributing signal time efficiently according to actual lane usage instead of relying on fixed cycles.

3) Emergency Vehicle Prioritization

The system detects emergency vehicles such as ambulances, fire trucks, and police cars using sensors or RFID technology, providing immediate green signals to allow their smooth and uninterrupted passage.

4) Real-Time Traffic Monitoring


The system delivers live traffic updates on dashboards enabling authorities to monitor congestion and take proactive corrective actions for smoother traffic management.

5) Data Storage and Analytics

All traffic data is stored for historical analysis, allowing AI and machine learning algorithms to predict future traffic trends and optimize signal timings during peak hours for better efficiency.

6) Integration with IoT Devices

Sensors, microcontrollers, and cloud platforms work together seamlessly to enable real-time and accurate traffic management across intersections.

Fig: 3.2.1. Functional Block Diagram of Dynamic Traffic Signal Management System using IoT

3.2.3 Advantages of the Proposed System

1) Real-Time Traffic Adaptation

Minimizes congestion and reduces waiting time at intersections.

2) Emergency Vehicle Prioritization

Ensures fast passage for ambulances, fire trucks, and police vehicles.

3) Energy Efficiency

Reduces idle time, saving fuel and lowering emissions.

4) Data Analytics & Prediction

Historical data enables predictive traffic management and urban planning.

3.3 Project Requirement Analysis

3.3.1 Analysis

The analysis chapter focuses on the key components, methodologies, and feasibility of implementing an IoT- based Dynamic Traffic Management System. This system aims to improve traffic flow, reduce congestion, and prioritize emergency vehicles by utilizing IoT sensors, cameras, and intelligent controllers. The chapter also discusses hardware and software requirements, system functionality, security measures, and performance evaluation parameters.

3.3.2 System Requirements Analysis

Hardware Requirements

Component	Specification / Purpose
Microcontroller Board	NodeMCU (ESP8266) / ESP32 / Arduino Uno – collects sensor data and sends it to the cloud
IR Sensors / Ultrasonic Sensors	For vehicle detection and lane density measurement
Cameras	USB/Webcam/ESP32-CAM – for emergency vehicle tracking
Traffic Light LEDs	Red, Yellow, Green high-brightness LEDs or mini signal heads – for signal simulation
Relay Module / Motor Driver	To control traffic lights or physical signal systems
IoT Communication Module	Inbuilt in ESP8266/ESP32 or external Wi-Fi/Bluetooth/LoRa module
Cloud Server	Secure cloud-based platform for storing and analyzing real-time traffic data
Power Supply Unit	Provides regulated DC voltage to all IoT components, signal lights, mobile phones, and computers
Mobile Phone / Computer / PC	Used by authorities and commuters to monitor live traffic data and control signals remotely

Table: 3.3.1.1 Hardware Requirements

Software Requirements

Software / System Component	Purpose / Usage
Operating System	Raspberry Pi OS (Linux) or Windows-based environment for system control and development
Programming Languages	Python, C++, or Node.js for coding sensor logic, data analysis, and communication modules
IoT Platform	ThingSpeak, Blynk, or Google Cloud IoT Core for real-time data monitoring and visualization

Database Management System (DBMS)	MySQL or Firebase for storing sensor data, traffic records, and historical patterns
Web Interface	HTML, CSS, JavaScript, or Flask/Django framework for a web-based traffic control dashboard
Security Protocols	HTTPS, MQTT over TLS, and API authentication keys to ensure secure device-server communication

Table: 3.3.1.2 Software Component Requirements

Software / Tool	Purpose / Usage
Arduino IDE	For programming microcontrollers like NodeMCU, ESP32, or Arduino Uno
Python	For edge computing, data pre-processing, and backend server scripts
OpenCV Library (Python or C++)	For vehicle detection via camera
Front End	To design the web application using HTML, CSS, JavaScript

Table: 3.3.1.3 Software Tool

3.4 Project Design & Analysis

3.4.1 Design Concept

The Dynamic Traffic Management System using IoT is designed to monitor, analyze, and control traffic flow in real time using smart sensors and microcontrollers. It automatically adjusts signal timings based on vehicle density, ensuring smooth traffic movement and reduced congestion.

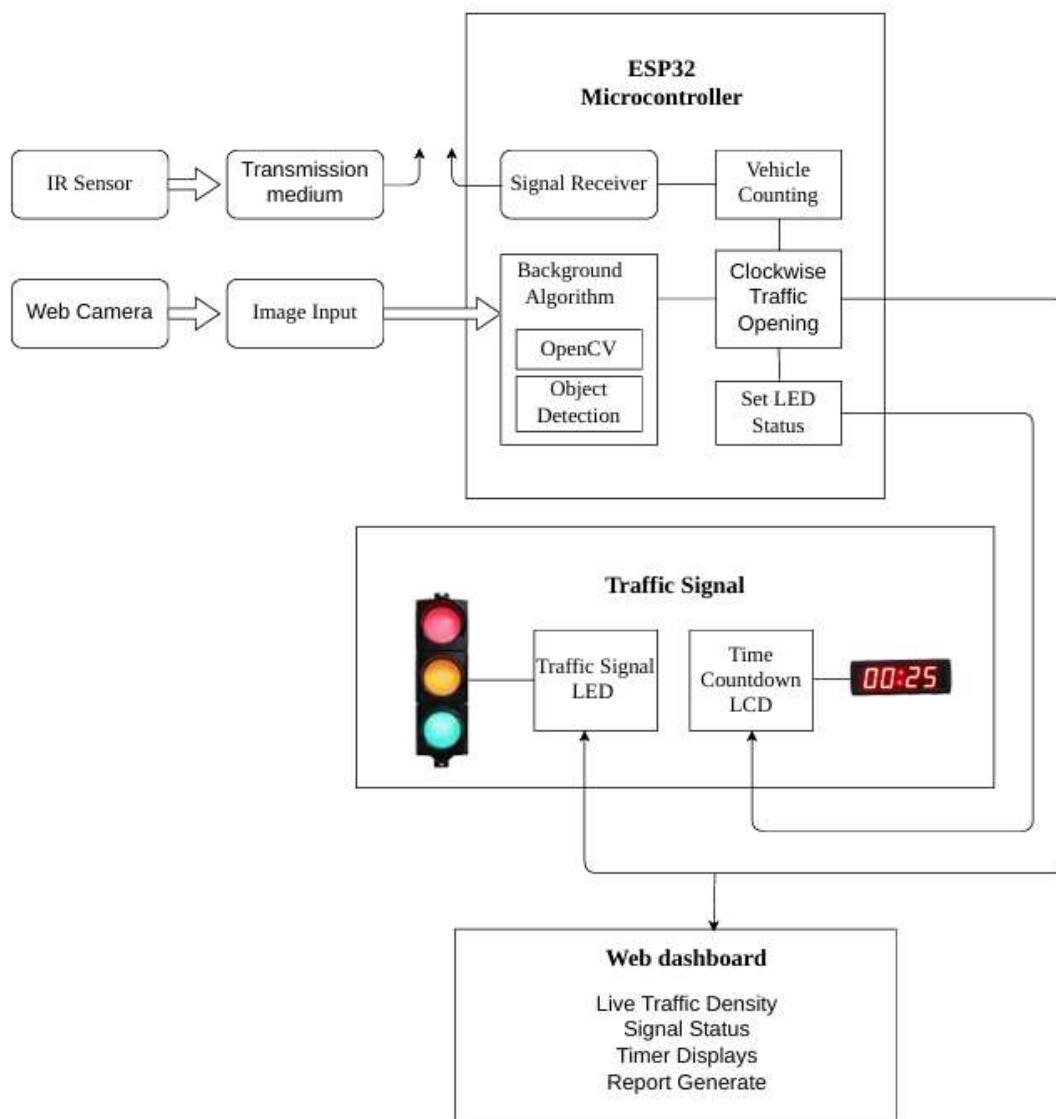
1) Vehicle Detection and Data Collection:

Ultrasonic or IR sensors are installed at each lane to detect the number of vehicles. These sensors send real-time data to a microcontroller such as Arduino. The controller processes this data and communicates with a central server through Wi-Fi or GSM for further analysis.

2) Data Processing and Control:

An intelligent algorithm calculates the duration of green, yellow, and red lights according to the traffic load. Lanes with higher vehicle density receive a longer green signal, while less busy lanes get shorter durations. In case of emergencies, the system can detect emergency vehicles (like ambulances) and immediately provide a green signal path.

3) Cloud Integration and Dashboard:


The system stores traffic data on a cloud-based database such as MySQL or Firebase. A web dashboard allows traffic authorities to monitor live traffic conditions, adjust signal timings manually if required, and analyze historical traffic data to identify problem areas.

4) Security and Maintenance:

Data communication is protected using SSL/TLS encryption. Only authorized traffic personnel can access the control dashboard through secure login. Regular maintenance, including sensor calibration and software updates, ensures the reliability and accuracy of the system.

5) User Benefits:

This system reduces waiting time, fuel consumption, and pollution levels. It also improves emergency response times and provides a scalable, cost-effective solution for smart city traffic management.

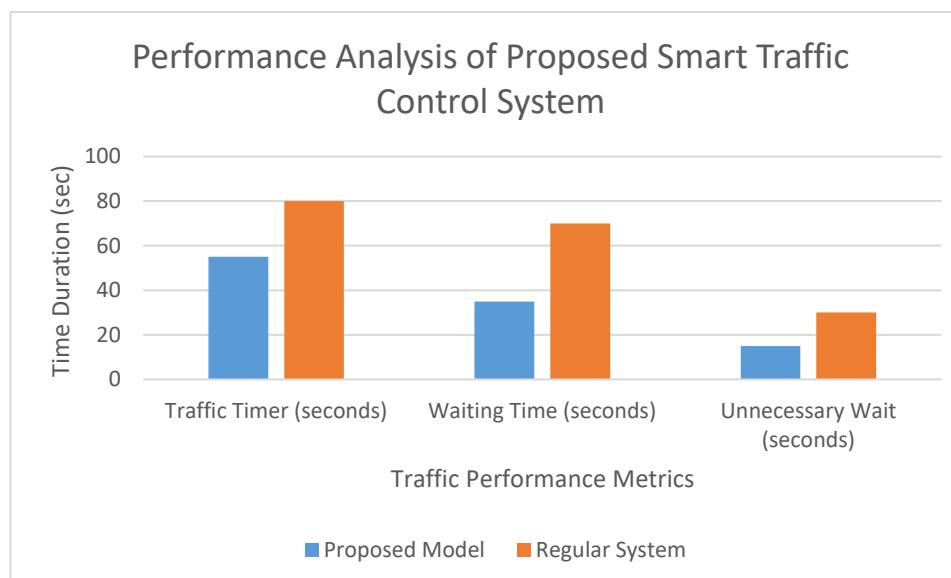


Fig: 3.4.1. System Architecture diagram for Dynamic Traffic Signal Management System using IoT

3.5. Experimental Analysis:

We compared the existing traffic signal system with the proposed new system to evaluate their effectiveness. In the current system, both sides of the road are allotted almost fixed signal timings, regardless of the actual number of vehicles present. Even when one side has very low traffic, it still receives the same green signal duration. This inefficient allocation of time often leads to unnecessary waiting and causes traffic congestion on the more crowded side of the junction.

In the proposed system, signal timing is dynamically adjusted based on traffic density. The unused or extra time from the less crowded road is transferred to the road with higher traffic volume. As a result, more vehicles are allowed to pass through the busy side of the junction. This approach significantly reduces traffic congestion, improves overall traffic flow, and enables a faster and smarter traffic management system.

Graph: 3.5.1. Performance Analysis of Proposed Smart Traffic Control System

4. CONCLUSION

The IoT-Based Dynamic Traffic Management System provides a smart and adaptive solution for urban traffic control, effectively addressing the growing challenges of congestion in modern cities. By utilizing real-time vehicle detection, dynamic signal timing, emergency vehicle prioritization, and cloud-based analytics, the system enhances traffic flow, reduces waiting times, and improves overall road safety. Its hybrid design, which includes a fallback fixed-time mode during sensor or network failures, ensures continuous and reliable operation under all conditions.

The project successfully completed all phases, including requirement gathering, system design, module development, prototype testing, and operational feasibility assessment. These stages confirmed that the system is technically feasible, operationally effective, and economically viable for real-world deployment. The use of IoT and smart sensor technologies demonstrates a significant improvement over conventional fixed-time traffic signals, making traffic management more efficient, environmentally friendly, and scalable.

In summary, the system delivers a reliable, user-friendly, and future-ready solution for dynamic traffic management, supporting safer roads, smoother traffic flow, and better resource utilization. It lays the foundation for modern smart city initiatives and provides a framework for further technological enhancements.

5. References

- [1] Mohd. Saifuzzaman; Nazmun Nessa Moon; Fernaz Narin Nur "IoT-Based Intelligent Traffic Management System (2017 - IEEE) ",2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)
- [2]Dr. Shamla Mantri , Swamil Randive Kartik Maski , Dhyani Maharaul "IoT and AI-Driven Dynamic Traffic Signal Manipulation using V2I Communication for Advanced Urban Transportation " ,Proceedings of the International Conference on Intelligent Computing and Control Systems (ICICCS-2025) IEEE Xplore
- [3] Mathew, J. and Xavier, P. M., "A survey on using wireless signals for road traffic detection," International Journal of Research in Engineering and Technology, vol. 3, no. 1, pp. 97–102, 2014.

- [4] Shaheen, Y. S., Alkafrawi, H. M., Al Aga, T. R., Elkafrawi, I. M., and Imaeeg, M. A. O., "Arduino Mega Based Smart Traffic Control System," *Asian Journal of Advanced Research and Reports*, vol. 15, no. 12, pp. 43–52, 2021.
- [5] Nagarjuna, G. R., Shashidhar, R., Puneeth, S. B., & Arunakumari, B. N., "IoT Enabled Smart Traffic System for Public and Emergency Mobility in Smart City," in 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), October 2020, pp. 53–59.
- [6] Divatankar, S., Hivarkar, U. N., and Shaligram, A. D., "Survey and Comparative Study of Various Approaches to Monitor the Road Traffic," *Journal of Emerging Technologies and Innovative Research*, vol. 6, no. 4, pp. 248–253, 2019.
- [7] Hassaballah, M., Kenk, M., Muhammad, K., & Minaee, S., "Vehicle Detection and Tracking in Adverse Weather Using a Deep Learning Framework," *IEEE Transactions on Intelligent Transportation Systems*, vol. 22, pp. 4230–4242, 2021, doi: 10.1109/TITS.2020.3014013.
- [8] H. D. Pham, M. Drieberg, & C. C. Nguyen, "Development of vehicle tracking system using GPS and GSM modem," 2013 IEEE Conference on Open Systems (ICOS), Kuching, Malaysia, pp. 89–94, 2013, doi: 10.1109/ICOS.2013.6735054.
- [9] Mehdipour Ghazi, M., Ramezani, A., Siahi, M., & Mehdipour Ghazi, M., "Learning spatiotemporal features from incomplete data for traffic flow prediction using hybrid deep neural networks," *arXiv*, 2022. [Online]. Available: <https://arxiv.org/abs/2204.10222>
- [10] S. S. R., & L. Rajendran, "Real-Time Adaptive Traffic Control System For Smart Cities," 2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, pp. 1–6, 2021, doi: 10.1109/ICCCI50826.2021.9402597.
- [11] Tigga, A., Hota, L., Patel, S., & Kumar, A., "A Deep Q-Learning-Based Adaptive Traffic Light Control System for Urban Safety," 2022 IEEE ICAC3N, pp. 2430–2435, 2022, doi: 10.1109/ICAC3N56670.2022.10074123.
- [10] Pillai, A. S., "Traffic Management: Implementing AI to Optimize Traffic Flow and Reduce Congestion," *Journal of Emerging Technologies and Innovative Research*, vol. 11, no. 7, 2024. [Online]. Available: <https://ssrn.com/abstract=4916398>
- [11] Zhu, Y., Wu, Q., & Xiao, N., "Research on highway traffic flow prediction model and decision-making method," *Scientific Reports*, vol. 12, 19919, 2022, doi: 10.1038/s41598-022-24469-y.
- [12] Agrawal, R., et al., "AI/ML Driven Decision Making in Business Analytics for Financial Sector," in Proceedings of the International Conference on Intelligent Computing and Control Systems (ICICCS-2025), IEEE, 2024, pp. 49, ISBN: 979-8-3315-1208-8.
- [13] Bhamare, M., et al., "Prediction of Stock Market Closing Rates Using Deep Learning and Machine Learning Algorithms," 2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), IEEE, 2023.
- [14] T. Saito, "Study of CAN-to-3GPP LTE gateway architecture for V2I communication," in IEEE International Conference on Intelligent Transportation Systems, 2015, pp. 2089–2094.