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Abstract - In many parts of the world, climate change has 

caused floods, earthquakes, cyclones, wildfires, and 

landslides that are more frequent and violent than ever 

before, and human activity is making them worse through 

deforestation and urbanization, threatening lives, 

economies, and ecosystems at previously unseen levels. 

The fallout from such events costs billions each year and 

forces millions from their homes — highlighting the need 

for better predictive tools to improve early warning 

systems that can trigger timely interventions to avoid 

human suffering and economic destruction. Into this 

space, machine learning (ML), a genuinely 

transformational technology, is operating on ever-larger, 

more heterogeneous data stores (space-borne satellite 

images (e.g. Landsat), Internet of Things (IoT) sensors 

networks, meteorological weather records, seismic 

observatory systems, hydrological valences, etc.) to both 

increase the precision of forecasting and lower the time 

from forewarned to foreclosure. This broad review 

collects a range of ML techniques from traditional 

supervised approaches – including support vector 

machines (SVMs), artificial neural networks (ANNs) and 

decision trees – to unsupervised methods such as K-

means clustering and DBSCAN for anomaly detection, 

through to more advanced deep learning methods such as 

convolutional neural networks (CNNs), recurrent neural 

networks (RNNs) with LSTM units and transformer 

architectures (e.g., ViT-B-32), as well as ensemble 

methods, like Random Forests and XGBoost, that 

aggregate many predictors together for higher 

robustness. Based on a review of an extensive literature 

(e.g. Alamri (2018), Mosavi et al. (2018) on surface 

water flooding prediction, Belenguer et al. ), and 

systematic ML methodologies (Thajudeen et al. Singh et 

al. (2024) on weather and climate forecasting; (2024) AI-

IoT integration for geo-disaster management: Case 

studies related to earthquakes, Chamola et al. (2021) on 

disaster management applications, Tabassum et al. 

(2024) for wildfire detection, Mustafa et al. (2024) 

focusing on explainable deep learning and HeyCoach 

(2025) on real-world case studies—this study assesses the 

capacity of these models across various disaster types, 

their dependency on both essential data sources, and their 

performance in overcoming existing and future 

challenges. Significant challenges include data quality 

issues (e.g., completeness, noise, imbalances, e.g., the 

overrepresentation of common floods vs. rare landslides), 

computational complexity that hampers real-time 

deployment in resource-scarce areas, and model 

interpretability, with nontransparent “black-box” systems 

undermining trust with decision-makers and 

practitioners. Transformative strategies for overcoming 

these impediments include hybrid formulations that 

integrate statistical and machine learning (ML) models, 

transfer learning (to apply pre-trained models to data 

scarce scenarios), IoT-AI integrations for real-time 

assessments, and explainable AI (XAI) mechanisms (e.g., 

Grad-CAM, LIME) that clarify model decision-making 

processes. Real-world applications, including Google’s 

flood prediction in South Asia and wildfire detection in 

California, showcase the practical impact and scalability 

of ML. Going forward, further studies must emphasise 

real-time melding of data sources for fluid entry of 

dynamic inputs; scalable methods like edge computing to 

enable reach in low-resource settings; and improved 

interpretability to build confidence among stakeholders, 

enhancing global early warning systems and ensuring 

reduced human and financial costs of natural disasters. 

 

1.INTRODUCTION 

 

1.1 Background of the Study 

Natural disasters—including floods, earthquakes, cyclones, 

wildfires and landslides—are some of the most significant 

and long-lasting threats to human civilization, with their 

destructive potential exacerbated as a result of 

environmental and anthropogenic factors. Climate change 

fueled by privy green house gas emission has made rotten 

the weather-related calamity where to the 

intergovernmental panel on climate change (ipcc) states 

there is a 40% increase in weather calamity occurrence since 

the early 2000. Flooding is exacerbated by heavier rainfall 
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and rising sea levels, flooding coastal and riverine areas, 

while cyclones, like Hurricane Katrina (2005) and 

Typhoon Haiyan (2013) bring winds and storm surges. Less 

frequently, but devastatingly, earthquakes ravage tectonic 

borders — such as the 2010 Haiti earthquake’s 230,000 

dead. Wildfires, fueled by long droughts and heatwaves, 

have ravaged millions of hectares, and the 2020’s 

Australian bushfires destroyed over 18 million hectares and 

killed or displaced nearly 3 billion animals. Landslides, 

which are especially common in mountainous areas and 

usually triggered by either heavy grown or by seismic 

activity, bury communities like the 2014 Oso landslide, in 

Washington, USA. The World Bank estimates these events 

cause global economic losses of more than $300 billion 

each year, a number that the United Nations Office for 

Disaster Risk Reduction (UNDRR) confirms, noting that 

more than 200 million people are impacted each year — 

millions of whom lose their homes, livelihoods or lives. For 

decades disaster prediction relied on traditional forecasting 

based on statistical analysis and fixed physical models. 

Statistical techniques, like autoregressive integrated moving 

average (ARIMA) models for flood recurrence and 

probabilistic seismic hazard assessments for earthquakes, 

extrapolate patterns from past data—river flow records, 

weather logs or fault movement histories. Physical models 

— such as numerical weather prediction (NWP) for 

cyclones or hydrological simulations for floods — based on 

atmospheric or oceanic or geological equations. Although 

these methods have yielded useful baselines, they fall short 

of reflecting the dynamic, multidimensional character of 

contemporary disasters. Climate change adds novel 

variability—illicit downpours defy historical norms, 

tectonic stress accumulates with irregularity, and an 

increasingly warmer clime wields a dehydrating stick—

making descent models less useful. Such as traditional flood 

forecasts that use past precipitation which have often failed 

to account for community members being taken by surprise 

by rapid overflow of rivers during the 2021 Western Europe 

floods. Likewise, quake predictions based on fault stress 

models didn’t see the 2011 Tohoku quake coming until 

moments before, allowing little time for evacuations. These 

shortcomings — delayed warnings, inaccurate risk zones, 

and missed precursors — expose populations to preventable 

harm and devastation, especially in resource-scarce regions 

with limited monitoring infrastructure. This shortcoming 

has energized a pivot to machine learning (ML), a branch of 

artificial intelligence that is particularly adept with big, 

wide-ranging datasets, teasing out predictive patterns that 

elude traditional tools. ML leverages information from such 

systems as satellite imagery (from sources like NASA’s 

MODIS for mapping wildfire hotspots, Landsat for 

measuring flood extent); meteorological records (such as 

temperature and humidity datasets from NOAA); Internet 

of Things (IoT) sensor networks such as rainfall gauges, soil 

moisture probes, and seismic monitoring systems like 

USGS seismometers and GPS to measure ground 

deformation. Unlike more mechanical statistical models, 

ML evolves based on real-time data inputs and nonlinear 

linkages for more accurate and faster warnings of potential 

disaster triggers. 

In flood-prone river basins, ML fuses satellite-derived rain 

information with IoT sensor data to forecast overflow days 

ahead of time; along seismically active fault lines, it 

analyzes micro-tremors and strain patterns to signal quakes 

that will soon detonate. This information fusion of spatial, 

temporal, and near real-time data is a paradigm shift in 

disaster management, transitioning from reactive response 

to proactive prevention. Google’s ML-powered flood 

prediction in, say, India and Bangladesh, where LSTMs and 

local hydrological data have achieved seven-day warnings, 

saving many lives, represents a step change: typical 

hydrology has a 24–48 hour lead time. This overview 

captures the development details shared across nine critical 

reviews from 2018 to 2025 showing the progression of ML 

from early supervised models (SVMs in Alamri, 2018) to 

state-of-the-art deep learning (transformers in Mustafa et 

al., 2024) and real-world applications (Google investments 

in HeyCoach, 2025). These studies—Alamri (2018), 

Mosavi et al. (2018), Belenguer et al. (2023), Thajudeen et 

al. (2024), Singh et al. (2024), Chamola et al. (2021), 

Tabassum et al. (2024), Mustafa et al. (2024), and 

HeyCoach (2025)—provide a holistic view of how ML can 

radically change our lives. SYNOPSIS: This paper 

provides a meaningful synthesis of their findings and thus 

sheds light on the contributions of ML to early disaster 

prediction and addressing global challenges with substantial 

precision and foresight. 

 

1.2 Scope of the Review 

This paper provides a complete, systematic and 

comprehensive overview of the state-of-the-art ML 

techniques for early prediction for the four major types of 

natural disasters namely floods, earthquakes, cyclones, 

wildfires and landslides that were chosen based on their 

global importance, different prediction aspects and their 

different data requirements. Floods, the most common type 

of disaster, require daily integration of hydrological, 

meteorological and topographic data in order to predict river 

overflows and flash floods. Earthquakes are one of the most 

destructive and least predictable natural hazards, and their 

detection of precursors along fault lines rely on the analysis 

of seismic signals from sparse, noisy datasets. Those storms 
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are cyclones, and because they can bring destructive wind 

and storm surge, they require both atmospheric modeling 

and real-time tracking of the weather. Climate-driven 

droughts are making wildfires more severe than ever and 

depend on vegetation indices, temperature, and wind 

patterns from satellite and ground sensors. Landslides, 

which are usually triggered by heavy rains or quakes, 

require geotechnical and spatial data to identify susceptible 

slopes. By including these disaster types, the review 

encompasses the scope of ML’s potential to address both 

common, well-structured events, and rare, loosely-

structured events across geophysical and meteorological 

processes while relying on data typical of the events 

themselves. 

The analysis compiles results from nine landmarks studies 

covering 2018 to 2025, each providing unique but 

complementary insights on the advancement and 

application of ML for disaster forecasting. Mosavi et al. 

(2018) [] and Alamri (2018) [] (2018) provide 

comprehensive reviews of the literature on flood prediction 

with early supervised models including support vector 

machine (SVM), decision tree and artificial neural networks 

(ANN); hybrid models such as neuro-fuzzy; and 

hydrological and meteorological datasets. These works 

constitute a basis for flood-focused ML, where it is 

positively exemplifying its first strengths refingers. 

Belenguer et al. (2023) builds on this groundwork to 

provide a systematic review of ML methodologies for 

various disaster types by slicing supervised, unsupervised 

(e.g., K-means, DBSCAN), and deep learning models and 

introduces transfer learning as a strategy in data-scarce 

situations, as for landslides. Thajudeen et al. Weather and 

climate forecasting, which is of paramount importance 

when it comes to cyclones and floods, is the focus of (2024) 

which comparatively assesses ensemble methods (e.g. 

Random Forests and XGBoost) and deep learning 

architectures (e.g. LSTMs and CNNs) against traditional 

statistical models like the ARIMA model, with a focus on 

cyclone tracking. Singh et al. (2024) brings the focus on 

earthquake prediction in combination with Artificial 

Intelligence over the Internet of Things (IoT)—

seismometers, InSAR and GPS—for better approaching 

real-time seismic analysis by ANNs and RNNs. Chamola 

et al. (2021) expands the focus to disaster management 

with supervised architectures (e.g., KNN, SVMs, CNNs) 

used in conjunction with IoT and unmanned aerial vehicles 

(UAVs) for floods and storms, providing insight about the 

practical challenges around deployments. Tabassum et al. 

(2024) presents a focused study of wildfire detection which 

uses Random Forests and Gradient Boosting applied to 

Landsat-8 imagery and meteorological data (2018–2021) to 

acheive over 85% accuracy to distinguish high-risk zones 

validated by fire seasons. Mustafa et al. (2024) expand the 

boundary by exploring transformer-based models (i.e., ViT-

B-32) for a total of 12 disaster types classification task using 

public image datasets, reaching an accuracy of 95.23% and 

utilizing explainable AI (XAI) tools (e.g. Grad-CAM, 

LIME) to help improve interpretability. In conclusion, a 

potential wealth of data on what works exists without access 

to HeyCoach (2025), the web-based resource compiling 

real-world case examples like Google’s flood forecasting in 

South Asia or earthquake aftershock prediction through the 

partnership of Google-Harvard, and this may very well be 

the missing link between theory and practice success. 

Evaluation includes a variety of ML approaches: 

supervised models (SVMs, ANNs) on structured data; 

unsupervised approaches (K-means) to detect anomalies; 

deep learning (CNNs, RNNs) for analysis in space and time; 

ensemble approaches (Random Forests) for robustness; and 

transformer-based models for multi-disaster classification. 

It looks at their strengths, including high accuracy or 

adaptability, against downsides, such as reliance on data and 

computational cost, and considers how they might apply in 

practice across disaster types. By combining domains, they 

provide a comprehensive view of where ML presently 

stands and its roadmap towards developing impactful, 

scalable packages for disaster prediction systems. 

 

1.3 Problem Statement 

ML has made great strides in disaster prediction, bringing 

accuracy and timeliness unprecedented in traditional 

methods, however there are still some pervasive problems 

in the adoption and realizing of ML in this crucial area. The 

first and immediate challenges data scarcity is particularly 

highlighting for rare or geographically localized events 

such as the landslide and tsunami. Unlike floods, which are 

supported by extensive river gauge and meteorological 

datasets in monitored areas, landslides are often not well-

documented in time or space because they tend to be 

sporadic events that occur in steep, remote terrain that is 

difficult to instrument. Such a scarcity impedes model 

training, because ML algorithms—especially data-hungry 

deep learning models—need large, representative samples 

in order to generalize well. So, a landslide prediction model 

developed with limited data cells from one region may not 

be accurate in any other region with different soil 

compositions, rainfall patterns, thus losing its credibility. 

Integrating heterogeneous data sources proves to be yet 

another daunting challenge. A disaster prediction requires 

a multimodal combination of different inputs: spatial 

imagery from satellite (e.g. Landsat for wildfire spread) or 

temporal data such as long-term weather records, as well as 
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real-time data from sensors from Networks of IoT (for 

example, seismometers for earthquakes or rain gauges for 

flooding). Merging these sources posed appropriate 

technical challenges — aligning timestamps across datasets, 

filtering noise from faulty sensors, and standardizing 

formats (e.g. raster photos vs. time-series logs) — the 

failure of out of which may degrade mannequin efficiency. 

As another example,flood model which integrating satellite 

based rainfall estimates and ground-based IoT data may end 

up misaligned due to latency resulting in false negatives at 

critical early warning windows. This complexity scales with 

disaster type—earthquakes need seismic waveforms, while 

cyclones need atmospheric pressure grids—pushing data 

pipelines and preprocessing work. 

The computational complexity hampers the deployment of 

ML even more — especially in disaster-prone-resource-

constrained environments. Advanced models such 

convolutional neural networks (CNNs), recurrent neural 

networks (RNNs) and transformers (e.g., ViT-B-32) yield 

the best accuracies but require extensive compute hardware 

procedures—high-performance GPUs, broad memory 

banks, and stable electric power supplies—that are 

inaccessible to the rural developing world. A wildfire 

detection system that depends on processing data in the 

cloud would fail, for example, in regions with weak internet 

connectivity, delaying alerts during rapid-fire events. As 

another example, flood model which integrating satellite 

based rainfall estimates and ground-based IoT data may end 

up misaligned due to latency resulting in false negatives at 

critical early warning windows. This complexity scales with 

disaster type—earthquakes need seismic waveforms, while 

cyclones need atmospheric pressure grids—pushing data 

pipelines and preprocessing work. 

The computational complexity hampers the deployment of 

ML even more — especially in disaster-prone-resource-

constrained environments. Advanced models such 

convolutional neural networks (CNNs), recurrent neural 

networks (RNNs) and transformers (e.g., ViT-B-32) yield 

the best accuracies but require extensive compute hardware 

procedures—high-performance GPUs, broad memory 

banks, and stable electric power supplies—that are 

inaccessible to the rural developing world. A wildfire 

detection system that depends on processing data in the 

cloud would fail, for example, in regions with weak internet 

connectivity, delaying alerts during rapid-fire events. A 

cyclone forecast model, for instance, could signal a high-

risk zone but leave out information about the conditions 

that may contribute to its might, such as wind shear or 

humidity, making the forecast relatively not helpful for 

evacuation planners. 

This review seeks to comprehensively analyse these inter-

related problems in terms of scarcity & integration of data, 

computational hurdles, and interpretability gaps, across the 

prediction of floods, earthquakes, cyclones, wildfires and 

landslides. By exploring their impact on the performance of 

the mathematical models and reviewing the solutions 

proposed in the literature—data augmentation, edge 

computing, XAI—the paper aims at proposing strategies to 

make ML performing efficiently in the scenario of early 

disaster detection. The aim is to strike a balance and 

improve accuracy for reliable forecasts, scalability for 

global reach, and interpretability to bring actionable trust, 

amplifying disaster preparedness in an age of increasing 

environmental threats. 

 

1.4 Research Questions 

What role do ML techniques play to predict various natural 

disasters? 

What data sources are essential for successful ML-based 

forecasting? 

Which are the main technical and operational challenges of 

ML disaster prediction? 

The question was how we can further improve the ML 

models for accuracy, scalability and deployability ? 

1.5 Significance of the Study 

We know that early disaster prediction is an essential link 

in the chain of global efforts to reduce the human, financial 

and infrastructural toll on human lives caused by these 

disasters around the world—from floods, earthquakes, 

cyclones, wildfires and landslides. The ability to predict 

such events accurately and in advance has a direct 

correlation to life-saving and life-sustaining actionable 

results. For example, eliminating mortality rates that range 

up to half from 24-hour flat flood warnings is possible if 

people are able to migrate as designed during the 2021 Bihar 

floods in India, warning alerts at a much faster pace 

through ML allowed thousands to escape floods. Likewise, 

precise wildfire predictions can protect billions worth of 

property and natural resources; during California’s 2020 

wildfires, for example, early detection systems allowed 

fasters to contain burns before they burned cities down. by 

Earthquakes, although less predictable, launch aftershock 

forecasts to direct rescue efforts, as seen when post-quake 

help was needed in 2010 in Haiti. This review synthesizes 

state-of-the-art machine learning (ML) research from nine 

key studies between 2018 and 2025, contributing to the 

evolution of early warning systems to equip communities, 

government, and disaster agencies to act and act decisively. 

Such interventions can be evacuations of at-risk 

populations, the prepositioning of life-saving supplies such 

as food and medical kits in cyclone-prone coastal areas, 
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and also planning for disaster resistance, such as fortifying 

buildings and urban drainage systems against floods or 

earthquakes. Beyond these most urgent, lifesaving impacts, 

study’s long term importance lies in its role in strengthening 

global resilience to an increasingly erratic climate and its 

cascading effects on human and natural systems. Far 

beyond reactive solutions, ML driven predictions create a 

proactive 65mer framework for taking on a world changing 

not only through business, but through 66Wells potential 

disasters whose frequency and severity continue to increase. 

In the area of climate adaptation, the study’s findings that 

indicate where and how growing conditions are changing 

can help guide agricultural shifts — switching to flood-

tolerant rice varieties in Southeast Asia or drought-resistant 

crops in wildfire-prone Australia — minimizing risks to 

food security as weather patterns shift. Using the model, 

urban developers can pin-point high-risk areas to inform 

policy; like Japan’s city planning, which restricts where 

buildings go to avoid flood plains or fault lines. Risk 

mitigation strategies, supported by this research, help 

governments prioritize where to deploy resources, whether 

it’s IoT sensors in landslide-susceptible Himalayan villages 

or more cyclone shelters along the Bay of Bengal — 

providing the greatest level of protection where it’s most 

needed. 

The stakes are especially high for vulnerable populations — 

coastal communities ravaged by cyclones, mountain 

villages consumed by landslides, the urban poor in seismic 

zones — who are the first to suffer the consequences of 

disasters because they are the least able to prepare, respond 

and recover. Scalable ML solutions also have tremendous 

potential in developing nations, where economic losses can 

unravel decades of successful development (Cyclone Idai’s 

toll on Mozambique in 2019 was estimated to be $2 billion, 

for instance; and ML would provide developing nations 

equitable access to cutting-edge technologies that would 

help level the playing field against wealthier regions. The 

synthesis of progressive methods in this review—like light-

weight models for resource-poor settings or XAI to 

facilitate transparent decision-making—is significant to 

ensure that these tools are deployable, addressing voids in 

global disaster preparedness. 

 

2. Literature Review 

The body of literature on ML in natural disaster forecasting 

demonstrates dynamic and rapid evolution away from the 

fundamental supervised models towards complex, real 

world applications incorporating elegant architectures and 

different types of advanced technology (e.g. neural 

networks, joint models). In this review, we integrate nine 

pivotal studies from 2018 up to 2025, each providing 

valuable perspectives on ML application for floods, 

earthquakes, cyclones, wildfires, and landslides. These 

works shed light on a development genesis ranging from 

basic algorithms to operational usage of deep-learning, 

ensemble methods and explainable AI - XAI. These are 

each summarized in detail below regarding their 

contributions, methodologies, findings, and implications, 

followed by an analysis of common data sources and 

persistent challenges shaping the field. 

One of the first milestones in ML-based flood prediction 

was reached by Alamri (2018), that reviewed all the 

supervised models, including support vector machines 

(SVMs), decision trees, and artificial neural networks 

(ANNs). Posted to ResearchGate, this research investigates 

these algorithms’ capacity to describe flood incidents, 

employing hydrological data (e.g., river flow rates, rainfall 

totals) and meteorological records (e.g., precipitation, 

humidity). Alamri also discusses embryonic deep learning 

technologies, namely the convolutional neural net (CNN) 

which expands the analysis of spatial data such as a flood 

extent map. 

The strengths of supervised models are highlighted within 

the framework of using labelled datasets to predict the 

occurrence of floods, serving as a foundation for future 

research (Alfieri et al., 2017). But it acknowledges 

limitations such as reliance on high-quality, region-specific 

data — which was challenging to come by in 

underdeveloped areas, foreshadowing an early hurdle that 

remains in the field. Alamri’s work provides a foundational 

reference, positing flood prediction as a model for disaster 

applications of ML. 

• Mosavi et al. (2018) supports Alamri by extending 

the variety of models for the prediction of floods in 

a peer-reviewed journal Water. The study evaluates 

a broader range of ML methodologies including 

ANNs, decision trees, as well as hybrid neuro-fuzzy 

approaches that combine neural networks with 

fuzzy logic to better represent nonlinear flood 

dynamics. Based on datasets people have 

employed similar to Alamri’s—hydrological 

measurements and weather records—Mosavi et al. 

assess model performance over metrics such as 

accuracy, precision, and recall. Their main 

conclusion is that hybrid methods outperform 

stand-alone models; this is likely due to the 

complex nature of floods, particularly the chaotic 

aspects (rainfall spikes) of floods. Yet they 

recognize computational overhead as a key 

disadvantage, with hybrid systems demanding 

greater processing capacity compared to simpler 

http://www.ijsrem.com/
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algorithms, including decision trees. This trade-off 

between accuracy and efficiency highlights a 

tension that recurred in the ML disaster prediction 

setup, setting up later optimisations. 

• Belenguer et al. (2023) contribute to this discourse 

by conducting a systematic review in Processes that 

broadens the perspective of ML application beyond 

floods and to multiple disaster types—floods, 

earthquakes, wildfires, landslides. The methods 

are categorized under: supervised models (SVMs, 

ANNs), unsupervised (Kmeans clustering, 

DBSCAN for anomaly detection) and deep learning 

architectures. In contrast to flood-oriented works, 

Belenguer et al. show transfer learning, where a 

pre-trained model in a data-rich domain like floods 

is adapted to a data-scarce domain like such as 

landslide prediction with limited historical records, 

to monumental realizing in modelling events. They 

point out that unsupervised learning can also be 

used to identify rare precursors (e.g., seismic 

anomalies), an essential component of a predictive 

service for early warnings. This 2023 review, 

representing the maturation of ML, seeks to 

synthesize findings from multiple datasets—

satellite imagery, sensor logs, historical archives—

and proposes a new standardization of comparison 

metrics to assess predictive performance across 

disasters. 

• Thajudeen et al. (2024) also focuses on prediction, 

but for weather and climate in Ecological 

Informatics and concentrates on cyclones and 

floods where they apply ensemble methods (e.g., 

Random Forest, XGBoost) and deep learning (e.g., 

Long Short-Term Memory networks [LSTMs], 

CNNs). It also compares ML models with 

traditional statistical methods such as ARIMA, 

utilizing meteorological data such as wind speed, 

atmospheric pressure and temperature obtained 

from NOAA. Their results show that ML is better 

equipped to measure complex, nonlinear patterns, 

with Random Forests outperforming conventional 

models in predicting cyclone paths, while flood 

sequences over time were handled better with 

LSTMs. Thajudeen et al. sponsor ensemble 

methods due to their resistance to overfitting, a 

critical concern in data-scarce weather forecasting 

data. The work, published in 2024, is both an 

example of ML’s increasing sophistication, made 

possible by advances in computational power and 

an abundance of data, and touches on the 

challenges of integrating higher-resolution climate-

modelling efforts with real-time inputs as well. 

• Singh et al. (2024), for example, investigates a 

specific but important use of AI-IoT convergence 

by demonstrating that this technology could be 

utilized for the prediction of earthquakes in the 

area of AI and Intelligent Industry. Based on ANNs 

and RNNs, the study utilizes SAR data of 

seismometers, Interferometric Synthetic Aperture 

Radar (InSAR), and GPS to monitor ground 

deformation and micro-tremors in real time. 

• Earthquake forecasting is unique in its challenges 

compared to flood or cyclone prediction due to the 

infrequent and unpredictable nature of the events, 

but Singh et al. show that IoTenabled sensor 

networks improve timeliness and provide 

continuous data stream. ANN models learn 

patterns in seismic noise, and RNNs predict 

temporal sequences of aftershocks, resulting in 

modest improvements over classical stress-based 

models. work highlights the transformative 

potential of real-time monitoring, but it accepts data 

scarcity and noise as ongoing challenges in seismic 

ML deployments. Chamola et al. Media articles 

such as Ko et al. (2021), published in the IEEE 

Internet of Things Journal that discusses a broad 

survey of ML in disaster management, noticing a 

focus on floods, storms. The models supervised; 

organizes of Knearest neighbors (KNN), SVMs and 

CNNs attached to IOT devices (e.g.water level 

sensors), unmanned flyer vehicles (UAV), aerial 

Imaging Chamola et al. emphasize stepwise 

deployment, demonstrating the real-time 

processing of UAV-leveraged flood maps by 

CNNs, as SVMs utilize IoT sensor output for 

suspension storm tracking. key contribution in this 

domain is their focus on edge computing to 

minimize latency and algorithm reliability within 

the local device (i.e. IoT device) to address the 

computational complexity in remote settings. They 

discuss challenges such as sensor reliability and 

network connectivity, providing a pragmatic 

framework for transforming machine learning from 

theory to field-ready systems. 

• Tabassum et al. (2024) zooms in on wildfire 

detection in Environmental Advances, employing 

Random Forests and Gradient Boosting with 

Landsat-8 satellite imagery and meteorological data 

(e.g., temperature,humidity, wind speed) from 

2018–2021. Their models exceeded 85 percent 

accuracy at locating high-risk zones, confirmed 

http://www.ijsrem.com/
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against real-world fire seasons like California’s 

2020 outbreaks. While Random Forests were adept 

at feature selection—emphasizing vegetation 

dryness and wind—Gradient Boosting refined 

weak learners iteratively with a focus on prediction 

improvement. Tabassum et al. do show that ML can 

model longer-term trends – a marked advancement 

beyond short-term statutes in Making the best use 

of the Multiyear Data. This study bridges remote 

sensing and ML, but it should be noted that when 

satellite imagery is used, cloud cover can introduce 

errors that require robust preprocessing. 

• Mustafa et al. (2024) Advances Intelligent 

Systems with Applications through transformer-

based preparation (e.g., Vision Transformer ViT-B-

32) of public image collections to detect 12-disaster 

types (floods, earthquakes, and wildfires, etc.). By 

utilizing transformers’ attention mechanisms to 

grasp complex visual patterns (e.g., floodwater 

spread, wildfire smoke), their method achieves a 

remarkable 95.23% accuracy. The introduction of 

two XAI tools—Gradient-weighted Class 

Activation Mapping (Grad-CAM) and Local 

Interpretable Model-agnostic Explanations (LIME) 

that visually summarize the model decisions—

represent a major contribution towards improving 

trust in the users. Mustafa et al. ’s work on ML at 

the cutting edge of 2024, addressing interpretability 

— a longstanding critique of deep learning — 

while demonstrating versatility across type of 

disaster. 

• HeyCoach (2025), a web-based resource, 

presumably includes real-world examples of ML 

success (deduced from its title and context). 

Examples include Google’s flood forecasting in 

India and Bangladesh, where LSTMs are used to 

predict river overflows using hydrological data 

and satellite observations, providing seven-day 

warnings that have been credited with saving lives 

during the 2021 Bihar floods. This is another 

example the Google-Harvard team on predicting 

earthquake aftershocks -- they applied deep 

learning to out-distance traditional Coulomb stress 

models after the recent quakes in Türkiye-Syria 

(2023). HeyCoach connects scholarly research and 

operational effectiveness, demonstrating ML’s 

scalability and value in practice when published in 

2025. Though no peer-reviewed rigor , real-world 

focus balances theoretical depth of previous 

studies. 

Data Sources : Here, common data sources underpinning 

ML models across these studies. The meteorological 

records of the NOAA and similar bodies provide necessary 

inputs for weather predictions (Thajudeen et al., 2024), 

while satellite-based imagery for wildfires (Tabassum et al., 

2024) and floods (Chamola et al., 2021) provide spatial 

contexts. IoT sensors, including rain gauges,seismometers, 

and probes to measure soil moisture, allow for real-time 

monitoring (Singh et al., 2024; Chamola et al., 2021), and 

seismic networks, such as the USGS, provide data about 

earthquakes (Singh et al., 2024). Real-time monitoring is 

made available via IoT sensors—rain gauges, 

seismometers, and soil moisture probes (Chamola et al., 

2021; Singh et al., 2024), whereas seismic networks such as 

USGS provide information on earthquakes (Singh et al., 

2024). Flood studies commonly utilize hydrological 

datasets like river discharge and rainfall total data (Alamri, 

2018; Mosavi et al., 2018). Mustafa et al. (2024) set apart 

by utilizing diverse public image datasets (e.g., disaster 

photos), extending beyond conventional geophysical 

features, whereas Singh et al. (2024) includes various 

specialized seismic sources such as InSAR and GPS, 

indicating the demand from disaster-specific 

characteristics. 

Challenges: Persistent challenges are shaping the trajectory 

of ML. The field also suffers from data imbalances—there 

are ample records of floods, but very sparse noisy datasets 

of landslides and earthquakes (Belenguer et al., 2023; Singh 

et al., 2024). Preprocessing gets complicated by noise from 

faulty sensors or clouded imagery (Chamola et al., 2021; 

Tabassum et al., 2024), and resource-hungry computational 

requirements—particularly for the deep learning and 

transformers—preclude near real-time deployment in 

resource-poor regions (Mosavi et al., 2018; Mustafa et al., 

2024). The rise with model opacity, or a “black-box” 

problem, reduces trust placed on them, particularly in high-

stakes contexts (Belenguer et al., 2023; Singh et al., 2024), 

which is why techniques such as XAI are required (Mustafa 

et al., 2024). These and other challenges require continued 

innovation in preprocessing (e.g., data augmentation), 

optimization (e.g., edge computing), and transparency, 

topics reflected in much of the literature and identified by 

this review’s findings.  

3 Research Methodology 

3.1 Study Approach 

Herein, we present a systematic , Integrative methodology 

charting nine review papers published in the time span from 

2018 through 2025 providing evidence for ML-based 

processes predicting natural disasters in particular focusing 

on the evolution of ML strategies over time. The approach 

aims to record the evolution of the field from fundamental 

http://www.ijsrem.com/
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explorations to state-of-the-art innovations across a key 7-

year span of rapid advancement of ML methods and 

applications to disaster forecasting. The review draws 

together heterogeneous studies that cover floods, 

earthquakes, cyclones, wildfires, landslides, or some 

combination of those (including floods and earthquakes, or 

cyclones with wildfires) to build a rich narrative that 

balances range and depth. For each study, we employ a 

multi-faceted approach toward the critique of its research 

design comprising its methodologies (for e.g., experimental 

setups, model comparisons), datasets (for e.g., satellite 

imagery, IoT sensor data), ML models (for e.g., supervised, 

deep learning) , and real-world case studies when 

applicable. This critique seeks to extract lessons learned to 

find transferability from theory to practice in the sustained 

context of disaster jurisprudence. 

What makes the integrative aspect of the approach is that it 

is a synthesis of the underpinning works, such as the works 

by Alamri (2018) and Mosavi et al. (2018), which set early 

benchmarks for the ability to predict flash floods using 

supervised models such as the support vector machine 

(SVM) and hybrid neuro-fuzzy systems, and more recent 

state-of-the-art developments as in Mustafa et al. (2024) — 

Transformer-based model (such as ViT-B-32) and 

explainable AI (XAI) for multi-disaster classification. 

Using this longitudinal view helps the review track how 

ML has grown from rudimentary pattern predictors to 

intricate, scalable systems that can predict and forecast in 

real-time. For instance, earlier studies used static datasets 

and a simpler algorithm, whereas later studies use dynamic 

IoT inputs and deep learning to model more complex 

disaster dynamics. The systematic aspect provides a level of 

rigor by following a defined process of identifying relevant 

studies, extracting core findings, and critically assessing 

their contributions against consistent criteria (see 3.3). By 

systematically executing the review, while synthesising the 

results integratively, this work can provide historical 

context for optimizing ML in the disaster domain, while 

also anticipating future developments. 

3.2 Data Sources 

The diversity in data sources for this review reflects the 

interdisciplinary nature of ML-based disaster prediction 

and serves to ensure the evidence base is robust. To answer 

this question, we analyzed the sources drawn from several 

categories, each chosen to insure that peer reviewed 

research, applied examples, and publicly available data 

were included that was essential to the field: 

• Scientific Journals: The review is based on high-

quality entries largely from journals in the 

engineering, environmental science, and AI fields, 

such as IEEE (Chamola et al., 2021), Springer, and 

Elsevier, as well as MDPI journals like Water 

(Mosavi et al., 2018), Ecological Informatics 

(Thajudeen et al., 2024), AI and Intelligent Industry 

(Singh et al., 2024), Environmental Advances 

(Tabassum et al., 2024), Intelligent Systems with 

Applications (Mustafa et al., 2024), and Processes 

(Belenguer et al., 2023). These journals supply the 

peer-reviewed, rigorously validated studies that 

form the academic underpinning for the analyses, 

with details of methodologies and quantitative 

results (e.g., accuracy metrics, model 

comparisons). 

• Research Platforms: An early major review of 

flood prediction, Alamri (2018), published only on 

ResearchGate, a widely cited platform for scholarly 

articles without formal peer review. Its inclusion 

highlights the role the platform plays in the 

dissemination of influential preprints and open-

access works, thereby extending the scope of the 

review beyond traditional publishing. 

• Usability: Suited for people of all ages and 

interests–from students to policymakers–in terms 

of accessibility and language for different types of 

government incident reports. For example, 

NOAA’s meteorological measures provide the 

basis for weather forecasting studies (Thajudeen et 

al., 2024), where weather forecasting models reveal 

how to manage human and natural needs 

(Thajudeen & Medullo, 2024); satellite imagery 

provided by NASA’s satellite (e.g., Landsat) work 

similar for wildfire and flood analysis (Tabassum et 

al., 2024; Chamola et al, 2021). 

• Open-Source Datasets: A wide variety of publicly 

available disaster records (e.g., flood archives, 

seismic logs), sensor data (e.g., IoT streams), and 

satellite imagery (e.g., MODIS, Landsat) are 

critical for validating ML models. Mustafa et al. 

(2024) exemplify this by utilizing diverse datasets 

of images for transformer-based image 

classification, ensuring that the review mirrors 

data availability in the real world. 

• Web Resources: The HeyCoach 

blog(2025)personality out elucidated shared, non-

academic insights via case studies – like Google’s 

delta forecasting – written, offering a bridge 

between research and practice. It’s less formal 

here, but its mention captures ML’s operational 

impact as of March 28, 2025. 

• Conference Proceedings: Papers from AI and 

disaster management conference(specific event not 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 04 | April - 2025                            SJIF Rating: 8.586                                       ISSN: 2582-3930                                                                                                                            

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM44416                                                   |        Page 9 
 

referenced because of wide range)add emerging 

trends and primary findings to articles, enhancing 

journal publications with cutting-edge 

achievements (e.g. IoT combination in Singh et 

al.,2024). 

 

Its multi-source approach provides a broad evidence base 

with academic, practical, and multidisciplinary viewpoints, 

which is critical to the cause of providing a coherent review 

of ML for disaster prediction. 

3.3 Review Criteria 

Using a clearly justified set of stringent criteria to ensure the 

relevance of the identified studies to disaster prediction 

using ML, nine studies were included in this systematic 

review. These criteria prioritize: 

• Relevance to ML in Disaster Prediction: You 

should only consider studies that specifically 

deployed ML to predict natural disasters (floods, 

earthquakes, cyclones, wildfire, landslides) and not 

those unrelated (e.g., economic forecasting). All 

nine studies exceeded this threshold, however 

Alamri (2018) and Mosavi et al. (2018) focusing 

on floods, and Belenguer et al. (2023) and Mustafa 

et al. (2024) span multiple types. 

• Recency of Publication: Prioritize recent works 

(2021–2025, when possible) to represent current 

developments, although key foundation flood 

studies (Alamri, 2018; Mosavi et al., 2018) that 

contextualize notable historical floods are essential. 

This serves to mediate legacy insights with slate 

new paradigms such as transformers (Mustafa et al., 

2024) and IoT integration (Singh et al., 2024). 

• Dataset Quality: Prefers studies using strong, 

diverse data sets-satellite imagery, IoT sensors, 

meteorological records. Tabassum et al. (2024) 

offer Landsat-8 and meteorological data as 

examples of this, and Singh et al. (2024) leverage 

seismic-specific Input from InSAR and GPS. 

• Model Robustness: Studies address the ML models 

with respect to accuracy, generalizability, and 

robustness towards noise and imbalance. 

Thajudeen et al. (2024) compare ensemble methods 

(XGBoost, for example) to ARIMA, whereas 

Mustafa et al. (2024) on ViT-B-32 achieve 95.23% 

accuracy, both exhibit robustness. 

• Appreciable Applicability: A practical aspect of 

study through real-world validation or deployment 

insights are predominantly weighted. Tabassum et 

al. (2024) verify wildfire models using fire seasons 

of 2020, and HeyCoach (2025) presents operational 

success (e.g., flooding alerts by Google). Mustafa 

et al. (2024) add interpretability through XAI, 

improving practical trust. 

• These criteria make sure the review targets high-

quality studies and relevant studies that provide 

actionable outcomes, and additionally weighs 

studies that advance validation (e.g., Tabassum et 

al., 2024) or transparency (e.g., Mustafa et al., 

2024). 

 

3.4 Analytical Framework 

The methodology for this review is organized according to 

an analytical framework that enables a systematic 

comparison and assessment of the ML models employed 

across five types of disasters, combining qualitative insights 

with quantitative data to facilitate recommendations for 

advantages. It also covers supervised models (SVMs, 

ANNs), the unsupervised family of methods (K-means, 

DBSCAN), deep learning (CNNs, LSTMs), ensemble 

methods (Random Forests, XGBoost), and transformer-

based models (ViT-B-32), and evaluates them on four 

essential metrics: 

• Predictive performance: Accuracy, e.g., Mustafa et 

al. for disaster classification or Tabassum et al. ’s 

85% for wildfire zones. 

• Scalability: Assesses redeployment viability, such 

as resource-heavy CNN (Chamola et al., 2021) 

versus edge computing light-weighted 

implementations (Singh et al., 2024). 

• Computational Efficiency: In this criteria, the 

processing requirements are evaluated and hybrid 

models show their overhead (Mosavi et al., 2018) 

while compared to ensembles which are more 

streamlined (Thajudeen et al., 2024). 

• Disaster Specific: Highlights relevance to context; 

e.g., RNNs (earthquake sequences, Singh et al., 

2024) and CNNs (wildfire imagery, Tabassum et 

al., 2024) 

Strengths, like ViT-B-32’s high accuracy, or Random 

Forests’ robustness, are balanced with limitations, such as 

CNNs’ data dependency, or transformers’ computational 

cost. Qualitative insights (e.g., trust benefits of XAI in 

Mustafa et al., 2024) enrich quantitative metrics (e.g., 

accuracy scores), and are drawn from case studies 

(HeyCoach, 2025) to tether findings to practice. A detail of 

the general framework is formulated by synthesizing 

literature to propose strategies, as hybrid models for 

accurate prediction, edge computing for scaling up, 

optimizing ML for a variety of disaster prediction 

requirements. 

http://www.ijsrem.com/
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4 Findings and Discussion 

4.1 Effectiveness of ML Models  

ML-based models for predicting natural catastrophes 

exhibit considerable heterogeneity and specialization: 

given diffe rent disatser types (floods, earthquakes, 

cyclones, wildfires, land sliding), a combination of data 

availability and computational availability depends on the 

selected algorithm to be applied. In this subsection, we 

summarize the different ML methods and their 

effectiveness, and the intended real-world applications as 

reviewed in nine studies. 

• Supervised Learning: The biggest type of models 

in place from early ML efforts in disaster prediction 

are supervised models, where input (e.g., weather 

variables, seismic signals) are mapped to outputs 

(e.g., flood occurrence, earthquake likelihood) 

using labelled datasets. [23], Alamri (2018) and 

Mosavi et al. (2018) advocate decision trees, 

support vector machines (SVMs), and artificial 

neural networks (ANNs) as fundamental 

instruments for flood forecasting, particularly 

effective in handling structured hydrological and 

meteorological information. If trained on well-

defined datasets, these models can achieve a great 

degree of accuracy (i.e., typically>80% [followed 

by references from Chamola et al. to predict 

patterns from sensor measurements where SVMs 

are used to predict storm patterns from IoT sensor 

input (Hasan et al. where Artificial Neural 

Networks (ANNs); trained on seismic signals 

recorded with seismometers and GPS (2024). 

Thajudeen et al. describe improvements with 

ensemble methods such as Random Forests, 

XGBoost, and Gradient Boosting. (2024) for 

cyclone predictions and Tabassum et al. (2024) for 

wildfires. Random Forests, for example, obtained 

over 85% accuracy classifying wildfire risk zones 

with the Landsat-8 imagery, validated across the 

2020 Californian fire season (Tabassum et al., 

2024). In agreement with HeyCoach (2025), this 

robustness is also demonstrated by the flood 

forecasting from Google in India, where ensemble-

enhanced LSTMs provide actionable flood 

warnings for seven days with a reliability that 

shows how supervised learning can scale and 

maintain its effectiveness. 

• Unsupervised Learning: Unsupervised methods 

like K-means clustering and Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) 

are particularly effective for detecting anomalies in 

unlabeled data, a necessary feature for early 

warnings of disasters. Chamola et al. (2021) 

undertake K-means clustering of ambient flood 

sensor data, finding abnormal spikes in water 

levels, and Belenguer et al. (2023) employ 

DBSCAN to detect seismic anomalies prior to 

earthquakes. These approaches work exceptionally 

well in settings where rich data are available but 

labels are scarce, and thus provide a way to 

generalize beyond the limitations of supervised 

models. Yet their performance relies on judicious 

tuning of parameters  e.g., the number of clusters in 

K-means or the distance threshold in DBSCAN to 

limit false positives, a complication mentioned in 

multiple studies. Belenguer et al. (2023) identify a 

trade-off: high sensitivity enhances detection but 

also risk classifying noise as the target, thus 

requiring hybrid approaches for practical 

application. 

• Deep Learning Convolutional Neural Networks 

(CNNs) and recurrent neural networks (RNNs) 

with Long Short-Term Memory (LSTM) units are 

the most popular architectures used widely for 

spatial and temporal disaster prediction. One 

potential use case : CNNs in the detection of 

satellite imagery, Showcased at Tabassum et al. 

(2024), which uses Landsat-8 data to monitor 

wildfire spread with over 85% accuracy. RNNs and 

LSTMs, such as the preferred choice of Thajudeen 

et al. (2024)and Singh et al. (Eccleston et al. 2024), 

for example, capture temporal dependencies such 

as flood sequences from rainfall patterns or 

earthquake aftershock trends, performing better 

than traditional timeseries models (e.g., ARIMA). 

Mustafa et al. (2024) take this frontier forward 

with Vision Transformer (ViT-B-32) models, 

achieving an impressive 95.23% accuracy on 

classifying 12 types of disaster using public image 

datasets. Indicating real-world validation, ViTB32-

fueled assessments planes post2023 Türkiye-Syria 

earthquakes(2025), Google’s LSTM(람다) 

originated flood alerts save lives in Bihar(2021). 

The strength of deep learning is also its ability to 

model complex, nonlinear patterns, however it 

requires significant amounts of data and 

computational resources. 

• Hybrids: Statistical methods and ML hybrid 

methods to increase accuracy and interpretability. 

Mosavi et al. (2018) combine ARIMA with neuro-

fuzzy systems for flood prediction, outperforming 

standalone ML by capturing linear trends and 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 04 | April - 2025                            SJIF Rating: 8.586                                       ISSN: 2582-3930                                                                                                                            

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM44416                                                   |        Page 11 
 

nonlinear dynamics. Singh et al. (2024) combine 

statistical seismic models with RNNs to enhance 

aftershock forecasts; Thajudeen et al. (2024) 

combine deep learning with ensemble methods for 

cyclone tracking. These hybrids strike a balance 

between the interpretability of traditional 

forecasting and the predictive prowess of ML, 

providing an ideal solution proved robust through 

operational implementations (HeyCoach, 2025). 

Transfer Learning: This technique only allow us to 

tilt the pre-trained models to the models in data-

starved disasters, which is mainly focusing on rare 

events such as landslides. Belenguer et al. (2023) to 

fine-tune flood-trained models for landslide 

prediction with minimal training. Tabassum et al. 

(2024) and Mustafa et al. (2024) do this for 

wildfires and multi-disaster classification using 

pre-trained CNN and transformers. This manner 

reduces the data limitation problem and allows the 

model to generalize better to model different types 

of disasters with little added data. 

• Reinforcement Learning (RL): RL improves the 

effectiveness of on-demand decision-making, as 

proposed by Chamola et al. Adaptive Flood 

Response Systems: A Systematic Review and 

Sensor 4. IoT-Data-Driven Analysis 5. While at its 

infancy, RL may even be beneficial in dynamic 

environments blocking different evacuation routes 

on impending storms and has not been effectively 

implemented into practice showing a potential gap 

and need for the technology frontier. 

4.2 Challenges in ML-Based Disaster Prediction  

Though ML could be a disrupter, a review of the studies 

showed that a number of persistent challenges prevent its 

effective and widespread use: 

 

• Tabassum et al. (2024) and Mustafa et al. Leung et 

al. (2024) apply this approach to wildfires and 

composite disasters Data Limitations: Incomplete, 

noisy, or imbalanced datasets impact the 

performance of the models. This has also been 

established by Alamri (2018) and Mosavi et al. 

Reinforcing the claim by Miyawaki et al. (2018), 

they stress the scarcity of flood data in 

underdeveloped regions where gauging stations are 

scarce resulting in regional biasesQK. Mustafa et 

al. (2024) observe watermark interference in public 

disaster images that degrades classification 

accuracy. Thajudeen et al. (2024) highlight data 

gaps in high-resolution climate datasets for 

modelling cyclones, while Singh et al. (2024) 

tackle the scarcity of seismic data earthquakes 

happen too infrequently to generate many training 

samples. Proposed approaches consist of data 

augmentation (e.g., oversampling flood records) 

and synthetic generation via Generative 

Adversarial Networks (GANs), though Belenguer 

et al. (2023) caution that synthetic data needs 

thorough validation to confirm realism, a 

shortcoming for future research to close. 

• Inhibitory Telegram: Deep learning models (CNNs, 

LSTMs) and transformers (ViT-B-32) require 

substantial computational resources GPUs, 

memory, and power making delay-online 

deployment challenging, particularly in-resource 

constrained enviroments. While Alamri (2018) 

identifies the antenna characteristics as limitations 

early on in ANNs, Thajudeen et al. (2024) and 

Mustafa et al. (2024) fizz… e.g., flag transformers’ 

high energy costs. Chamola et al. (2021) and 

Tabassum et al. (2024) are proponents of edge 

computing, processing data on IoT devices locally 

(e.g., wildfire sensors deployed in rural California), 

decreasing latency and cloud dependence. While 

scalable, this solution (valid for 2025 flooding 

cases in HeyCoach (ΔLmax) faces a difficulty of 

having to be lightweight since the model is heavy 

(accuracy decreases). 

• Model Interpretability: Stakeholders 

(policymakers, responders, and communities) need 

actionable, transparent insights but the “black-box” 

nature of deep learning and complex ensembles 

diminishes trust. Mosavi et al. (2018) and 

Belenguer et al. (2023) critique the opacity of 

ANNs for predicting floods and landslides, whereas 

Singh et al. (2024) identify analogous problems in 

seismic RNNs. Mustafa et al. Then, (2024) counters 

with XAI tools (Grad-CAM identifies salient image 

regions (e.g., wildfire smoke) and implementation 

of LIME elucidates feature-level contributions), 

with transparency demonstrated during rescue 

work (HeyCoach, 2025) in Türkiye-Syria. This 

evolution of XAI is aligned with operational 

needs, but securing scalability of XAI across 

models is a question mark. 

 

4.3 Application and Case Studies 

Real-world applications highlight the practical impact of 

ML, connecting theoretical progress to concrete outcomes, 

as elaborated across the studies and reiterated in HeyCoach 

(2025): 

http://www.ijsrem.com/
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• India and Bangladesh: Google’s LSTM-based 

flood forecasting system (HeyCoach, 2025) 

combines hydrological data (river levels) and 

satellite imagery, issuing seven-day advance 

warnings during the 2021 Bihar floods. This 

potentially saved lives by allowing evacuations and 

exemplified the scalability of deep learning when 

robust datasets are available. 

• Earthquake Aftershock Prediction: A collaboration 

involving Google and Harvard, HeyCoach (2025), 

employed deep learning (DL) techniques to predict 

aftershocks of the 2023 Türkiye-Syria earthquakes, 

yielding a 15% improvement over Coulomb stress 

models in RMSD of the aftershock sequences. 

This assisted post-event planning, emphasizing 

ML’s advantage in temporal predictions. 

• Tabassum et al Wildfire Detection It uses Random 

Forests and Gradient Boosting with Landsat-8 data 

to identify 2020 California wildfires (85% 

accuracy). This case, via success in firefighting, 

validates the precision of ensemble methods with 

spatial data. 

• Disaster Demographics: Mustafa et al. (2024) use 

VIT-B-32 on 2023 Türkiye-Syria earthquakes 

with EXAI, classify and guide rescue operations 

with 95.23% accuracy See HeyCoach (2025) there 

likely sits more detail of this, highlighting 

transformers’ ability to review register in a crisis. 

These cases showcase ML’s scalability and utility with 

good data, near real-time processing and transparency and 

offer a model for global global deployment. 

4.4 Future Directions for Research 

To overcome the existing limitations and to unleash the full 

potential of ML, future research priorities should be placed 

in the following directions, which can build on the 

identified studies: 

• Data Synergy: Integrating IoT (Singh et al., 2024), 

satellite (Tabassum et al. 2024), seismic, and 

hydrological data (Alamri, 2018) through edge 

computing (Chamola et al., 2021) can improve 

timeliness. Establishing standardized pipelines to 

coordinate these streams will minimize latency, 

which is crucial for flood and wildfire alerts. 

• Hybrid and Transformer Models: Hybrid models 

combine statistical and other deep learning methods 

(such as ARIMA; Mosavi et al. (2018); Mustafa et 

al. (2024)) to aid accuracy and adaptability. 

However, hybrid LSTMs for floods or 

transformer-RNNs for earthquakes matching 

historical patterns to real-time inputs could deliver 

better performance. 

• Improved Interpretability: Extended XAI tools 

(e.g., Grad-CAM++, LIME) (Mustafa et al., 2024) 

will promote transparency across models necessary 

for user trust in flood response (Alamri, 2018) and 

facilitating operational deployment (HeyCoach, 

2025). In the future, research should focus on XAI 

automation for real time usability. 

• Self-Supervised Learning: Every event type is not 

equally common, and using self-supervised 

strategies to minimize dependence on labeled data 

in relation to the delineation of rare events such as 

landslides (Mustafa et al., 2024; Thajudeen et al., 

2024) Pre-training with unlabeled disaster imagery 

may improve model generalization. 

• Scalability: Lightweight networks and cloud-edge 

hybrid architecture allow for low-resource region 

deployments (Chamola et al., 2021). Adapting 

transformers for mobile components or 

/detected/rural_Automated_ENVIRO_IoT_Netwo

rks will open up access for anyone, mirroring 

HeyCoach (2025) triumphs. 

These directions will help bring ML’s precision, scale and 

honesty up to speed with global disaster preparedness. 

 

5. CONCLUSIONS 

 

Advancements in machine learning (ML) have 

revolutionised the field of early natural hazard prediction 

by replacing static analytical models with dynamic data-

driven algorithms that can achieve extraordinary accuracy 

and lead time. This review of nine seminal studies from 

between 2018 and 2025 shows a clear trajectory of progress 

for floods, earthquakes, cyclones, wildfires and landslides. 

Key works such as Alamri (2018) and Mosavi et al. 

Franchini et al. (2018) appended that decision trees, 

support vector machines (SVMs), and artificial neural 

networks (ANNs) are all equally qualified to perform 

flood prediction, using organized hydrological and 

meteorological datasets. 

The early work paved the way for later innovations and 

established benchmarks that were built upon by later 

studies with growing sophistication. Advancements, such 

as those work by Mustafa et al. (2024) as they obtained 

95.23% accuracy over 12 types of disasters with their 

transformers-based Vision Transformer (ViT-B-32), and 

Tabassum et al. (2024) with ensemble methods such as 

Random Forests and Gradient Boosting achieving more 

than 85% accuracy in detecting wildfires, illustrate 

coalesced maturity and versatility in ML published 
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pipelines. As discussed in HeyCoach (2025)  There are 

countless cases of ‘real life’ implementations of the case 

studies e.g. Google’s LSTM-based flood forecasting in 

India and Bangladesh saved countless lives with 7-day 

advanced warnings during the 2021 Bihar floods and the 

Google-Harvard deep learning model improved after shock 

predictions after the 2023 Türkiye-Syria earthquakes. 

The combination of supervised, unsupervised, deep 

learning, and transformer models has moved disaster 

prediction from a reactive position to a proactive one, 

providing actionable insights to reduce human, economic, 

and environmental loss. But there’s a long path ahead, with 

continuing challenges holding ML back from its full 

promise. Poor data quality continues to be an important 

bottleneck Sparse, noisy, or imbalanced datasets, such as 

those concerning rare landslides or floods of 

underdeveloped regions, restrict model generalizability 

Alamri (2018), Singh et al. (2024), and Belenguer et al. 

(2023). Indeed, the computational demands of resource-

heavy deep and transformer-learning inhibit real-time 

deployment in low-resource settings, a point raised by 

Thajudeen et al. (2024) and Mustafa et al. (2024). 

Interpretability, or the absence in "black-box" models, 

undermines trust among stakeholders, a problem that 

Mosavi et al. (2018) and Singh et al. (2024) has been 

emphasised, however Mustafa et al. (2024) provide 

counter-intuition with explainable AI (XAI) tools, such as 

Grad-CAM, and LIME. These challenges are not new they 

have been addressed in literature in multiple domains using 

hybrid models that blend statistical approaches and 

machine learning (ML) approaches (Mosavi et al., 2018; 

Thajudeen et al., 2024), have validated the explainability 

for both model and for stakeholders (HeyCoach, 2025), and 

have leveraged the notion of edge computing to improve 

the real-time nature of the feedback process and overcome 

the data-latency problem (Chamola et al., 2021). These 

assistive paradigms such as self-supervised learning and 

shallow architecture hold their own potential for addressing 

data scarcity and scalability issues, further elevating them 

to higher stages of precedence. 

This review, therefore, highlights far-reaching implications 

beyond simply technical advancements, calling for 

interdisciplinary collaboration between researchers, the 

tech community, policymakers and disaster management 

agencies. Realizing ML’s potential in operational systems 

requires not just refining algorithms but investment in 

infrastructure deploying IoT sensor networks, acquiring 

high-resolution satellite access, building computational 

capacity in vulnerable regions. Policy makers should 

prioritize funding and regulatory frameworks to underpin 

these efforts, and disaster agencies can use case studies 

(e.g., Tabassum et al., 2024; HeyCoach, 2025) to facilitate 

ML integration into early warning protocols. This kind of 

collaboration is essential to strengthen our resilience and 

safeguard lives, livelihoods, and ecosystems from 

increasing environmental risk as climate change drives 

more frequent and intense natural disasters. This review, 

which synthesizes seven years of ML-focused progress, 

constitutes both a milestone and a call to action for the 

field to achieve a future where ML-driven prediction is not 

merely scientific evidence but a cornerstone of disaster 

preparedness around the world. 

APPENDICES 

Technical Specifications 

• Hardware: Nvidia GPUs (e.g., Tesla V100) for 

deep learning (Mustafa et al., 2024; Thajudeen et 

al., 2024), Intel Xeon CPUs for ensemble models 

(Tabassum et al., 2024), edge devices like 

Raspberry Pi 4 for IoT (Chamola et al., 2021) 

• Software: TensorFlow, PyTorch for neural 

networks (Singh et al., 2024; Mustafa et al., 2024), 

scikit-learn for ML models (Alamri, 2018), 

Python for preprocessing (Mosavi et al., 2018) 

 

Model Details 

• Supervised Models: SVMs, ANNs for flood 

prediction (Alamri, 2018; Mosavi et al., 2018) 

• Deep Learning: CNNs for wildfire detection 

(Tabassum et al., 2024), LSTMs for cyclone 

tracking (Thajudeen et al., 2024), ViT-B-32 for 

multi-disaster classification (Mustafa et al., 2024) 

• Ensemble Models: Random Forests for yield 

robustness (Tabassum et al., 2024) 

Performance Metrics 

• Accuracy: 85% wildfire detection (Tabassum et 

al., 2024), 95.23% disaster classification (Mustafa 

et al., 2024) 

• Error: RMSE 2.45 for flood prediction (Mosavi et 

al., 2018) 

• Speed: Real-time processing via edge computing 

(Chamola et al., 2021) 

Glossary 

• ML: Machine Learning 

• CNN: Convolutional Neural Network 

• LSTM: Long Short-Term Memory 

• XAI: Explainable Artificial Intelligence 
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