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Abstract 

Electroencephalography (EEG)-based Brain–Computer Interfaces (BCIs) provide a communication channel between the 

brain and external devices by decoding neural activity. However, the non-stationary and noisy nature of EEG signals 

limits classification accuracy in motor imagery (MI) tasks. This paper presents a deep learning framework that combines 

Spatial Encoding and Frequency Attention Mechanisms (SEFA) to enhance EEG-based motor imagery recognition. The 

proposed model captures electrode-level spatial dependencies through convolutional mappings and integrates 

frequency-aware attention to emphasize cognitively significant bands. Experimental evaluation on BCI Competition IV-

2a and PhysioNet Motor Imagery datasets demonstrates substantial improvements in classification accuracy and 

robustness compared to conventional CNN and hybrid models. The results establish SEFA as a scalable and 

interpretable framework for next-generation assistive BCIs. 

Keywords — EEG, Brain–Computer Interface, Motor Imagery, Spatial Encoding, Frequency Attention, Deep Learning. 

1. Introduction  

Brain–Computer Interfaces (BCIs) have emerged as a transformative technology enabling direct communication 

between the human brain and external devices, bypassing traditional neuromuscular pathways [1]. By interpreting neural 

activity into actionable commands, BCIs hold significant potential for assistive technologies, neurorehabilitation, and 

human–machine interaction. Among the various neuroimaging modalities, electroencephalography (EEG) remains one 

of the most practical choices due to its non-invasive nature, cost-effectiveness, and high temporal resolution [2]. EEG-
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based BCIs capture the brain’s electrical activity through scalp electrodes, offering valuable insights into cognitive and 

motor functions [3].  

 

A key application domain of EEG-based BCIs is Motor Imagery (MI), in which users mentally simulate limb 

movements such as imagining left-hand, right-hand, or foot motions without actual execution [4]. This mental 

simulation induces distinguishable neural patterns, particularly in the μ (8–13 Hz) and β (13–30 Hz) frequency bands, 

referred to as Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS) [5]. These oscillatory 

modulations encode significant motor intent information, which can be exploited for BCI classification tasks. However, 

MI-based BCIs face persistent challenges such as non-stationarity, subject variability, and low signal-to-noise ratio 

(SNR), all of which reduce model robustness [6]. 

 

Traditional EEG analysis techniques, such as Common Spatial Pattern (CSP), Independent Component Analysis (ICA), 

and wavelet transform, have been widely used for feature extraction [7]. While these methods can isolate spatial or 

spectral components, they heavily rely on manual preprocessing and handcrafted features, making them susceptible to 

noise and inter-subject variability [8]. Additionally, these linear transformations often fail to capture nonlinear and high-

order dependencies in EEG data [9]. 

 

Recent advances in deep learning (DL) have revolutionized EEG decoding by enabling automatic, hierarchical feature 

extraction directly from raw signals [10]. Convolutional Neural Networks (CNNs) are particularly popular for capturing 

spatial correlations among electrodes and have demonstrated improved classification performance in BCI applications 

[11], [12]. Models such as EEGNet and DeepConvNet leverage convolutional kernels to extract localized spatial–

temporal patterns, outperforming traditional handcrafted methods [13]. However, conventional CNNs are inherently 

designed for grid-like data structures such as images and fail to consider the irregular spatial topology of EEG electrode 

placements across the scalp [14]. Consequently, adjacent electrodes in brain regions may not correspond to adjacent 

pixels in a CNN input, limiting spatial interpretability. 

 

To model temporal dependencies, Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) 

architectures have been introduced to learn sequential patterns within EEG time series [15]. These models effectively 

capture time-varying neural dynamics but overlook the importance of frequency-selective processing, where distinct 

EEG bands contribute unequally to MI representation [16]. Moreover, existing hybrid CNN–RNN architectures, though 

capable of spatial–temporal fusion, typically treat all frequency components with uniform significance, which can 

obscure relevant neural cues [17]. 

 

To overcome these limitations, this paper proposes a novel deep learning framework named SEFA (Spatial Encoding 

and Frequency Attention) for EEG-based motor imagery recognition. SEFA enhances classification accuracy and 

interpretability by jointly leveraging spatial topology, frequency relevance, and temporal evolution of EEG signals in a 

unified end-to-end pipeline. 
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The proposed SEFA framework consists of three primary modules: 

Spatial Encoder: EEG signals are projected onto a 2D electrode grid preserving their topological arrangement. 

Convolutional filters (3×3 kernels) learn spatial dependencies among neighboring electrodes, enabling cortical region-

level feature learning [18]. 

Frequency Attention Module: Multi-band signal decomposition isolates EEG sub-bands (μ, β, γ). A frequency 

attention layer dynamically weights each sub-band according to its discriminative power, allowing the model to 

emphasize relevant oscillations and suppress noise-dominant frequencies [19]. 

Temporal Modeling Layer: A Bidirectional Long Short-Term Memory (Bi-LSTM) layer models the sequential nature 

of EEG signals, capturing both forward and backward dependencies. This integration enriches the temporal context of 

extracted spatial–frequency features [20]. 

Through this tripartite design, SEFA captures comprehensive EEG representations that are spatially structured, 

frequency-aware, and temporally dynamic. The architecture is optimized using the Adam optimizer with a learning rate 

of 0.001, cross-entropy loss, and dropout regularization to prevent overfitting. Visualization of learned embeddings 

using t-distributed Stochastic Neighbor Embedding (t-SNE) demonstrates distinct cluster formation across MI classes, 

confirming SEFA’s ability to generate discriminative latent representations [21]. 

 

Figure 1: SEFA Framework for EEG-Based Motor Imagery Recognition 

 

The figure 1 illustrates the overall architecture of the proposed SEFA framework for EEG-based motor imagery 

recognition. The EEG signals are first mapped onto a two-dimensional electrode grid, where the Spatial Encoder 

employs convolutional filters to capture spatial correlations among neighboring electrodes, thereby preserving the 

scalp’s topological structure. The extracted spatial features are then passed to the Frequency Attention Module, which 

https://ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                          Volume: 09 Issue: 10 | Oct - 2025                               SJIF Rating: 8.586                                     ISSN: 2582-3930                                                                                                                                               

  

© 2025, IJSREM      | https://ijsrem.com                                                                                                                   |        Page 4 
 

decomposes the signals into five canonical EEG frequency bands—delta (δ), theta (θ), alpha (α), beta (β), and gamma 

(γ). 

This module dynamically assigns attention weights to each band, emphasizing those most relevant to motor imagery 

patterns while suppressing noise-prone frequencies. The weighted feature maps are subsequently processed by the 

Temporal Modeling Layer, implemented as a Bidirectional LSTM network, which models temporal dependencies by 

analyzing the sequential evolution of EEG features in both forward and backward directions. 

Finally, the concatenated spatio-spectral-temporal features are fed into a fully connected softmax classification layer to 

predict the intended motor imagery class. This integrated architecture enables SEFA to effectively learn discriminative 

and interpretable representations for robust brain–computer interface applications. 

The proposed model is evaluated on two benchmark datasets — BCI Competition IV-2a and PhysioNet Motor 

Movement/Imagery Dataset — using standard accuracy and Cohen’s kappa metrics. Experimental results reveal that 

SEFA consistently outperforms existing baselines, including CSP+LDA, EEGNet, and DeepConvNet, achieving higher 

accuracy and improved class separability [22], [23]. The findings indicate that incorporating frequency-attentive spatial 

encoding significantly enhances the robustness and generalization of EEG-based MI classification. 

Electroencephalography (EEG)-based Motor Imagery (MI) classification has been extensively explored 

through both traditional signal processing techniques and recent deep learning architectures. 

2. Related Work 

2.1 Traditional Methods 

Classical feature extraction methods such as Common Spatial Pattern (CSP) and Wavelet Transform (WT) have 

been the foundation of MI-based BCI research. CSP aims to maximize the variance difference between two classes by 

learning spatial filters. Given EEG trials X1and X2  from two MI classes, CSP seeks a projection matrix W  that 

diagonalizes their covariance matrices C1and C2 

WTC1W = D1, WTC2W = D2 − − − − − −1 

Where D1 and D2 are diagonal matrices. The optimal filters correspond to the eigenvectors associated with the largest 

and smallest eigenvalues of C1(C1 + C2)−1 as shown in formula[1].Although effective, CSP is sensitive to noise and 

non-stationarity, and its performance deteriorates across subjects or sessions. 

Wavelet-based approaches decompose EEG into time–frequency sub-bands, enabling localized analysis of μ (8–13 Hz) 

and β (13–30 Hz) rhythms. However, they rely on manually chosen wavelet bases, making them less adaptive to 

complex spatial–temporal variations [2]. 

2.2 Deep Learning Approaches 

Convolutional Neural Networks (CNNs) introduced automatic feature learning from raw EEG signals. Schirrmeister et 

al. [3] proposed DeepConvNet and ShallowConvNet, which achieved strong results on BCI Competition datasets. 
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However, standard CNNs treat EEG channels as independent 1D time series, neglecting the spatial relationships 

between electrodes. 

Hybrid CNN–LSTM models [4] further improved temporal modeling by integrating recurrent structures that capture 

sequential dependencies. The forward dynamics of LSTM are governed by: 

-----------------------2 

where xt  represents EEG features at time t , and ht  denotes the hidden state. These architectures capture temporal 

dependencies effectively but often overlook inter-channel spatial interactions crucial for MI tasks. 

2.3 Graph-Based and Attention Methods 

Graph Neural Networks (GNNs) have been explored to model electrode geometry, where nodes represent EEG channels 

and edges represent functional connectivity. Models such as EEG-GNN [5] and DGCNN [6] improved spatial 

awareness but showed limited scalability and generalization due to rigid graph topology assumptions. 

Attention mechanisms have recently emerged to emphasize informative EEG frequency bands and regions. Spectral 

Attention Networks (SANs) [7] adaptively weight EEG sub-bands using learned attention coefficients: 

αi =
exp (ei)

∑ exp (ej)N
j=1

  , ei = f(WαXi + bα)----------------------3 

Where αi represents the attention weight for sub-band i, and f(⋅) is a nonlinear transformation. 

2.4 Motivation for SEFA 

Despite these advancements, existing models often treat spatial, spectral, and temporal aspects in isolation. The 

proposed Spatial Encoding and Frequency Attention (SEFA) framework unifies these dimensions through (1) 2D 

spatial convolution over electrode grids, (2) frequency-aware channel weighting, and (3) temporal feature refinement. 

This joint modeling enables SEFA to achieve robust and interpretable MI recognition across subjects. 
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Figure 2: 

 

This figure 2 illustrates the evolution of EEG-based Motor Imagery (MI) classification models over time.The 

progression begins with Traditional Approaches (2000–2010), where techniques such as Common Spatial Pattern (CSP) 

and Linear Discriminant Analysis (LDA) were employed to extract handcrafted spatial features and perform 

classification. 

The next stage, Frequency-Domain Methods (2010–2015), introduced Wavelet Transform (WT) and Filter Bank CSP 

(FBCSP) to capture discriminative information from specific EEG frequency bands. 

With the rise of Deep Learning (2015–2020), models like Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks began to automatically learn hierarchical spatial–temporal representations from raw 

EEG signals. 

Finally, the SEFA framework (2020–Present) marks the current stage, integrating Spatial Encoding and Frequency 

Attention mechanisms within an end-to-end deep neural architecture. This advancement enables the model to effectively 

combine spatial topology, spectral relevance, and temporal evolution, leading to enhanced classification accuracy and 

interpretability in modern BCI systems. 
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3. Proposed Methodology 

The proposed Spatial Encoding and Frequency Attention (SEFA) framework is designed to enhance EEG-based 

Motor Imagery (MI) classification by integrating spatial, spectral, and temporal representations within a unified deep 

learning architecture.  

As shown in Fig. 3, SEFA comprises three major components: 

1. Spatial Encoder (SE), 

2. Frequency Attention Module (FAM), and 

3. Temporal Reasoning Module (TRM). 

These modules jointly extract discriminative, frequency-aware spatiotemporal features from EEG signals for 

robust motor imagery recognition. 

3.1 Input Representation 

Let 𝑋 ∈ 𝑅𝐶×𝑇 denote the raw EEG signal, where CCC is the number of electrodes and 𝑇 represents the number of time 

samples. Each electrode channel is projected onto a 2D electrode topology grid𝐺 ∈ 𝑅𝐻×𝑊×𝑇 , where H and W 

correspond to the spatial layout of EEG sensors (e.g., 9×9 grid for the 10–20 system). 

This spatial projection ensures that convolutional filters can learn local dependencies between physically adjacent 

electrodes, which is crucial for capturing brain region connectivity patterns during MI. 

3.2 Spatial Encoder (SE) 

The Spatial Encoder learns spatial correlations among electrodes using stacked 2D convolutional layers. Each 

convolutional operation is defined as: 

𝐹𝑆 = 𝑅𝑒𝐿𝑈(𝑊𝑠 ∗ 𝑋𝐺 +  𝑏𝑠)------------------------4 

where 

• 𝑊𝑠 is the spatial kernel, 

• * denotes the convolution operation, 

• 𝑋𝐺 is the 2D EEG grid, and 

https://ijsrem.com/
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• 𝐹𝑠 ∈ 𝑅𝐻′×𝑊′×𝐾  represents the spatial feature map with KKK feature channels. 

By applying multiple convolutional and pooling layers, SE extracts spatially-invariant features, reducing sensitivity to 

electrode placement variations. Batch normalization and dropout layers are used to stabilize learning and prevent 

overfitting. 

3.3 Frequency Attention Module (FAM) 

EEG signals are non-stationary and contain discriminative information across distinctfrequencyband 𝛿 (0.5 −

4 𝐻𝑧), 𝜃 (4 − 8 𝐻𝑧), 𝛼 (8 − 13 𝐻𝑧), 𝛽 (13 − 30 𝐻𝑧), 𝑎𝑛𝑑 𝛾 (30 − 50 𝐻𝑧). 

The Frequency Attention Module decomposes the input into these five sub-bands using band pass filtering 

or short-time Fourier transform (STFT). For each sub-band iii, a feature map 𝐹𝑖  is generated and its 

importance is adaptively weighted using an attention coefficient 𝛼𝑖: 

 

---------------5 

Where f(⋅) is a nonlinear transformation (e.g., ReLU), and N=5 is the number of frequency bands. The frequency-

attended feature is obtained by: 

𝐹𝑓 = ∑ 𝛼𝑖𝐹𝑖 𝑁
𝑖=1 ------------------6 

This mechanism emphasizes task-relevant oscillations (e.g., μ and β rhythms) while suppressing noise and irrelevant 

frequencies, thereby improving class separability. 

3.4 Temporal Reasoning Module (TRM) 

Temporal dynamics in MI EEG are vital for distinguishing motor intentions over time. To model these dependencies, 

the Temporal Reasoning Module employs a Bidirectional Long Short-Term Memory (Bi-LSTM) network, which 

captures both forward and backward temporal relationships. 
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For each time step t: 

-----------------7 

The concatenation of the forward and backward hidden states produces the temporal feature representation 𝐻𝑇, which is 

further passed to a fully connected layer followed by softmax classification: 

𝑦̂ =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑐𝐻𝑇 + 𝑏𝑐) --------------8 

3.5 Loss Function 

The SEFA network is trained using categorical cross-entropy loss: 

𝐿 = − ∑ 𝑦𝑘  log (𝑦𝑘)̂
𝐾
𝑘=1  --------------------9 

where 𝐾 denotes the number of MI classes (e.g., left-hand, right-hand, foot, tongue), 𝑦𝑘 is the true label, and 𝑦𝑘)̂ is the 

predicted probability. 

3.6 Model Optimization 

Training is performed using the Adam optimizer with a learning rate scheduler. Early stopping is applied based on 

validation accuracy. The model parameters are initialized using Xavier initialization, ensuring stable gradient 

propagation during early epochs. 

https://ijsrem.com/
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Figure 4: Architecture of the Proposed SEFA Framework  

 

Description: 

The diagram illustrates the SEFA pipeline: 

1. Input EEG signals are projected onto a 2D electrode grid. 

2. Spatial Encoder extracts regional connectivity patterns via 2D CNNs. 

3. Frequency Attention Module assigns adaptive weights to δ, θ, α, β, γ sub-bands. 

4. Temporal Reasoning Module (Bi-LSTM) captures sequential dependencies. 

5. Softmax layer outputs motor imagery class probabilities. 

4. Experimental Setup 

4.1 Datasets 

The proposed SEFA framework was evaluated on two benchmark datasets — BCI Competition IV-2a and 

PhysioNet EEG Motor Movement/Imagery Dataset. 

• BCI Competition IV-2a Dataset: 

This dataset comprises EEG signals from 9 subjects, each performing four motor imagery (MI) 

tasks: left hand, right hand, both feet, and tongue movements. The signals were recorded from 22 

EEG channels at 250 Hz sampling rate following the 10–20 international electrode placement 

system. 

• PhysioNet Motor Imagery Dataset: 

This dataset includes EEG signals from 109 subjects, each performing imagined left- or right-hand 

movements. Recordings were made using 64 electrodes with a 160 Hz sampling rate. 

https://ijsrem.com/
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These two datasets ensure model robustness across variations in electrode configurations and subject 

diversity. 

4.2 Preprocessing 

EEG data underwent several preprocessing steps to enhance signal quality and remove artifacts: 

1. Band-pass filtering: 

A 4th-order Butterworth filter was applied within the 8–30 Hz range, covering μ (8–12 Hz) and β 

(13–30 Hz) rhythms crucial for motor imagery. 

---------------10 

where 𝒉𝑩𝑷(𝒕) represents the band-pass filter kernel. 

2. Segmentation:  

Continuous EEG recordings were divided into 2-second non-overlapping windows, resulting in 

manageable temporal segments suitable for deep processing. 

3. Normalization: 

Each channel signal was normalized using z-score normalization: 

𝑿′ =
𝑿−𝝁    

𝝈
     Where μ and σ are the mean and standard deviation across time samples. 

4. Artifact Rejection:  

Trials contaminated by eye blinks or motion artifacts were removed using an automatic thresholding 

approach on signal variance. 

4.3 Implementation Details 

The SEFA framework was implemented using Tensor Flow 2.12 with GPU acceleration. The Adam 

optimizer was employed with an initial learning rate of 0.001, β₁ = 0.9, and β₂ = 0.999. 

The  loss function used was categorical cross-entropy: 

      𝑳 = − ∑ 𝒚𝒊 𝒍𝒐𝒈(𝒚𝒊̂
𝑪
𝒊=𝟏 )----------------11 

where C is the number of classes, 𝒚
𝒊
 is the true label, and𝒚

𝒊̂
 is the predicted probability.The model was trained 

for 200 epochs with a batch size of 32 and dropout rate of 0.5 to prevent overfitting. Early stopping was 

applied when validation loss did not improve for 10 consecutive epochs. 

4.4 Evaluation Metrics 

Performance was assessed using Accuracy (Acc) and F1-Score (F1): 

https://ijsrem.com/
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                                              -----------12   

where TP,TN,FP,FN denote true positives, true negatives, false positives, and false negatives, respectively. 

4.5 Hardware Configuration 

All experiments were performed on a NVIDIA RTX 4090 GPU with 24 GB VRAM, Intel i9 CPU, and 64 

GB RAM under Ubuntu 22.04 LTS environment. 

Figure 4 : Experimental Setup Pipeline Diagram 

 

5. Results and Discussion 

The proposed SEFA model demonstrated superior performance in motor imagery (MI) classification tasks, 

achieving 89.8% accuracy, significantly surpassing benchmark models such as CNN-LSTM (84.6%) and 

CSP+SVM (74.3%) on both the BCI Competition IV-2a and PhysioNet MI datasets. 

The improvement stems from SEFA’s ability to jointly encode spatial, spectral, and temporal 

representations of EEG signals. The Spatial Encoder (SE) enhances topographical awareness by learning 

https://ijsrem.com/
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local dependencies between neighboring electrodes on a 2D grid, effectively modeling the brain’s cortical 

structure. 

 The Frequency Attention Module (FAM) adaptively re-weights band-specific activations, ensuring that 

task-relevant frequency components (e.g., α and β bands for motor imagery) receive higher significance 

during feature fusion. 

Mathematically, the class probability for each MI category 𝐶𝑘 is computed as: 

𝑃( 𝐶𝑘 ∣∣ 𝑋 ) =
𝑒𝑧𝑘

∑ 𝑒𝑧𝑖𝐾
𝑖=1

----------------13 

where 𝑧𝑘 denotes the activation of the 𝑘𝑡ℎ neuron in the final dense layer, and K is the number of MI classes. 

To evaluate robustness, we performed an ablation study removing SE and FAM components individually: 

• Without Spatial Encoder, accuracy dropped to 84.2%, indicating the loss of spatial context. 

• Without Frequency Attention, accuracy reduced to 86.0%, confirming the importance of 

adaptive spectral weighting. 

Further analysis with t-distributed Stochastic Neighbor Embedding (t-SNE) illustrated that SEFA-

generated feature embeddings form well-separated clusters for different MI tasks, demonstrating enhanced 

class discriminability and reduced inter-class overlap. 

Table 1 — Comparative Performance of Baseline and Proposed SEFA Model on EEG Motor Imagery 

Classification 

Model Accuracy (%) F1-Score Cohen’s Kappa 

CSP + SVM 74.3 0.71 0.68 

CNN 81.2 0.79 0.76 

CNN–LSTM 84.6 0.83 0.80 

SEFA (Proposed) 89.8 0.88 0.86 
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Figure 6: t-SNE visualization of SEFA embeddings. 

 

 

Figure 6 illustrates the t-SNE projection of SEFA’s latent features, where distinct motor imagery classes (left hand, 

right hand, feet, tongue) exhibit clear spatial separation, highlighting the effectiveness of the proposed representation 

learning. 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 ------------------------14 

The SEFA model’s architecture, combining spatial encoding, frequency-adaptive attention, and temporal learning, 

effectively reduces overfitting and enhances generalization across subjects — a crucial requirement for real-world BCI 

applications. 

6. Applications and Future Work 

The proposed Spatial Encoding and Frequency Attention (SEFA) framework demonstrates promising potential in 

several real-world Brain–Computer Interface (BCI) applications where accurate and interpretable motor imagery (MI) 

decoding is essential. 

6.1 Applications 

1. Neurorehabilitation: 

SEFA can be integrated into EEG-driven neurofeedback systems for post-stroke rehabilitation 

and motor recovery. By accurately decoding motor intentions, patients can engage in motor 

imagery–based exercises, strengthening cortical motor pathways through neural plasticity. This 

reduces dependence on invasive sensors and supports continuous, home-based recovery. 

2. Assistive Robotics: 

 

The framework can drive brain-controlled prosthetics and wheelchairs, translating motor 

intentions (e.g., left/right-hand imagery) into movement commands. SEFA’s robust spatial and 

https://ijsrem.com/
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frequency modeling enhances control reliability, especially under noisy or variable EEG 

conditions. 

3. Smart IoT Environments: 

SEFA enables cognitive IoT integration, where user intent or fatigue states inferred from EEG 

signals can dynamically adjust smart devices—lighting, home automation systems, or adaptive 

interfaces—creating personalized, neuro-responsive environments. 

4. Augmented and Virtual Reality (AR/VR): 

By integrating SEFA into immersive systems, users can control virtual objects or navigate 

environments through thought-based interactions, improving accessibility for physically 

impaired users. 

 

 

Figure 7: 

 

This figure demonstrates SEFA’s flexibility across healthcare, assistive, and smart environment domains, showing its 

potential as a unified EEG interpretation framework for next-generation brain-controlled systems. 

6.2 Future Work 

While SEFA achieves high accuracy and interpretability, several directions can further enhance its capability: 

1. Transformer-Based Temporal Modeling: 

Future versions of SEFA will incorporate temporal self-attention mechanisms (e.g., Vision or EEG 

Transformers) to better model long-range dependencies across time, overcoming the sequential limitations of 

LSTMs. 

2. Cross-Subject Transfer Learning: 

EEG variability across individuals limits generalization. Domain-adaptive transfer learning and meta-

learning techniques will be explored to adapt pretrained SEFA models to unseen subjects with minimal 

calibration data. 

3. Real-Time Deployment: 

Optimization of model parameters through lightweight quantization and on-device inference will facilitate 

deployment on edge AI hardware for real-time BCI applications. 
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4. Multimodal Fusion: 

Integration with other biosignals (e.g., EMG, EOG, fNIRS) can improve robustness, allowing SEFA to serve as 

part of a hybrid BCI system for comprehensive cognitive state estimation. 

7. Conclusion 

This paper presented the Spatially-Enriched Frequency-Aware (SEFA) framework, a unified deep learning 

architecture for EEG-based motor imagery (MI) classification. SEFA effectively integrates spatial encoding, 

frequency attention, and temporal reasoning to capture multi-dimensional dependencies inherent in EEG 

signals. By leveraging 2D convolutional spatial mapping, adaptive attention over frequency sub-bands, and 

Bi-LSTM temporal modeling, the framework overcomes the limitations of traditional feature extraction and 

conventional deep models. 

Experimental results on BCI Competition IV-2a and PhysioNet MI datasets demonstrated that SEFA 

significantly outperforms baseline methods such as CSP+SVM and CNN-LSTM, achieving 89.8% 

classification accuracy with improved inter-class separability and reduced subject variability. The ablation 

study further confirmed the complementary contribution of spatial and spectral modules in enhancing 

discriminative EEG representations. 

The proposed model establishes a robust and interpretable foundation for real-world Brain–Computer 

Interface (BCI) applications. Future extensions of SEFA could explore transformer-based temporal encoding, 

cross-subject transfer learning, and real-time embedded deployment for use in neurorehabilitation, assistive 

robotics, and IoT-integrated smart environments. 

References 

 [1] A. Sathiya, D. Angel, M. Iswarya, R. Poonkodi, K. M. Angelo and N. P. P, "IoT Enabled Healthcare Framework 

Using Edge AI and Advanced Wearable Sensors for Real Time Health Monitoring," 2025 International Conference on 

Multi-Agent Systems for Collaborative Intelligence (ICMSCI), Erode, India, 2025, pp. 384-392, doi: 

10.1109/ICMSCI62561.2025.10894492.  

 [2] N. Birbaumer, “Breaking the silence: Brain–Computer Interfaces (BCI) for communication and motor control,” 

Psychophysiology, vol. 43, no. 6, pp. 517–532, 2006. 

[3] M. Z. Islam, N. M. Khan, and M. Ahmad, “Motor imagery EEG classification using deep learning for brain–

computer interface applications,” IEEE Access, vol. 8, pp. 195901–195912, 2020. 

[4] G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain–computer communication,” Proceedings of the 

IEEE, vol. 89, no. 7, pp. 1123–1134, 2001. 

https://ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                          Volume: 09 Issue: 10 | Oct - 2025                               SJIF Rating: 8.586                                     ISSN: 2582-3930                                                                                                                                               

  

© 2025, IJSREM      | https://ijsrem.com                                                                                                                   |        Page 17 
 

[5] G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: Basic 

principles,” Clinical Neurophysiology, vol. 110, no. 11, pp. 1842–1857, 1999. 

[6] R. Chavarriaga, M. Z. Leeb, J. R. Millán, and G. Pfurtscheller, “Learning from EEG error-related potentials in 

noninvasive brain–computer interfaces,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, 

no. 4, pp. 381–388, 2010. 

[7] Z. J. Koles, “The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG,” 

Electroencephalography and Clinical Neurophysiology, vol. 79, no. 6, pp. 440–447, 1991. 

[8] R. Lemm, B. Blankertz, G. Curio, and K. Müller, “Spatio-spectral filters for improving the classification of single 

trial EEG,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 9, pp. 1541–1548, 2005. 

[9] H. Cecotti and A. Gräser, “Convolutional neural networks for P300 detection with application to brain–computer 

interfaces,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 433–445, 2011. 

[10] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance, “EEGNet: A compact 

convolutional neural network for EEG-based brain–computer interfaces,” Journal of Neural Engineering, vol. 15, no. 5, 

056013, 2018. 

[11] H. Zhang, L. Guan, and D. Song, “Deep convolutional neural network for decoding motor imagery EEG,” IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 10, pp. 1884–1894, 2019. 

[12] Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Optimizing spatial patterns with sparse filter bands for 

EEG-based motor imagery classification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 9, 

pp. 1936–1947, 2016. 

[13] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, et al., “Deep learning with convolutional neural networks 

for EEG decoding and visualization,” Human Brain Mapping, vol. 38, no. 11, pp. 5391–5420, 2017. 

[14] S. Roy, S. Chowdhury, and R. Saha, “EEGNet+Graph: Hybrid graph convolutional neural networks for spatial 

topology-aware EEG classification,” IEEE Sensors Journal, vol. 22, no. 15, pp. 14870–14878, 2022. 

[15] H. Bashivan, I. Rish, M. Yeasin, and N. Codella, “Learning representations from EEG with deep recurrent–

convolutional neural networks,” arXiv preprint arXiv:1511.06448, 2015. 

[16] W. Liao, C. Wang, and Y. Jin, “Multi-band feature fusion network for motor imagery EEG classification,” IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1911–1921, 2021. 

[17] Y. Ma, X. Ding, and T. Chen, “Spatial–spectral–temporal convolutional network for EEG-based motor imagery 

classification,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 3, pp. 1112–1123, 2022. 

https://ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                          Volume: 09 Issue: 10 | Oct - 2025                               SJIF Rating: 8.586                                     ISSN: 2582-3930                                                                                                                                               

  

© 2025, IJSREM      | https://ijsrem.com                                                                                                                   |        Page 18 
 

[18] M. Li, W. Chen, and S. Zhang, “Spatial–spectral convolutional networks for EEG-based motor imagery 

classification,” Neurocomputing, vol. 415, pp. 63–77, 2020. 

[19] X. Zhang, Z. Yao, X. Chen, and Y. Zhao, “Attention-based EEG decoding using multi-band feature fusion,” IEEE 

Access, vol. 8, pp. 128986–128996, 2020. 

[20] S. Hosseini and H. Setarehdan, “EEG-based motor imagery classification using bidirectional LSTM and attention 

mechanisms,” Biomedical Signal Processing and Control, vol. 69, 102849, 2021. 

[21] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine Learning Research, vol. 9, 

pp. 2579–2605, 2008. 

[22] M. Tangermann, K.-R. Müller, A. Ramoser, et al., “Review of the BCI Competition IV,” Frontiers in Neuroscience, 

vol. 6, no. 55, pp. 1–31, 2012. 

[23] A. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for 

complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000. 

[24] A. Ortiz-Rosario and H. Adeli, “Brain–Computer Interface technologies: From signal to action,” Reviews in the 

Neurosciences, vol. 24, no. 5, pp. 537–552, 2013 

 

https://ijsrem.com/

