.’,-' ‘..!';h
o
€ ISREM 3| . . . . .
%ﬂ. 2 International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

EEG-Based Motor Imagery Recognition Using Spatial Encoding and

Frequency Attention Mechanisms

1.Mrs.P.Nirmala Priyadharshini,
Assistant Professor/IT,
Adithya Institute of Technology
Coimbtore,India
nimipeter88@gmail.com

ORCID:0009 0008 0025 3565

3.Mrs.V.Janeefer
Assistant Professor/IT,
Adithya Institute of Technology
Coimbtore,India
janeefer v(@adithyatech.com

ORCID: 0009-0003-9730-2952

2.Mrs.A.Jemima
Assistant Professor/AIDS
Adithya Institute of Technology
Coimbtore,India
jemimachristy92(@gmail.com

ORCID :0009-7678-8942

4 Mrs.Afrin Hussain
Assistant Professor/IT
Adithya Institute of Technology
Coimbtore,India
afreenzak@gmail.com

ORCID: 0009-0007-2309-9268

Abstract

Electroencephalography (EEG)-based Brain-Computer Interfaces (BCls) provide a communication channel between the
brain and external devices by decoding neural activity. However, the non-stationary and noisy nature of EEG signals
limits classification accuracy in motor imagery (MI) tasks. This paper presents a deep learning framework that combines
Spatial Encoding and Frequency Attention Mechanisms (SEFA) to enhance EEG-based motor imagery recognition. The
proposed model captures electrode-level spatial dependencies through convolutional mappings and integrates
frequency-aware attention to emphasize cognitively significant bands. Experimental evaluation on BCI Competition IV-
2a and PhysioNet Motor Imagery datasets demonstrates substantial improvements in classification accuracy and
robustness compared to conventional CNN and hybrid models. The results establish SEFA as a scalable and
interpretable framework for next-generation assistive BCls.

Keywords — EEG, Brain—-Computer Interface, Motor Imagery, Spatial Encoding, Frequency Attention, Deep Learning.
1. Introduction

Brain—Computer Interfaces (BCls) have emerged as a transformative technology enabling direct communication
between the human brain and external devices, bypassing traditional neuromuscular pathways [1]. By interpreting neural
activity into actionable commands, BCIs hold significant potential for assistive technologies, neurorehabilitation, and
human—machine interaction. Among the various neuroimaging modalities, electroencephalography (EEG) remains one

of the most practical choices due to its non-invasive nature, cost-effectiveness, and high temporal resolution [2]. EEG-
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based BCls capture the brain’s electrical activity through scalp electrodes, offering valuable insights into cognitive and

motor functions [3].

A key application domain of EEG-based BCIs is Motor Imagery (MI), in which users mentally simulate limb
movements such as imagining left-hand, right-hand, or foot motions without actual execution [4]. This mental
simulation induces distinguishable neural patterns, particularly in the p (8—13 Hz) and B (13-30 Hz) frequency bands,
referred to as Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS) [5]. These oscillatory
modulations encode significant motor intent information, which can be exploited for BCI classification tasks. However,
MiI-based BCIs face persistent challenges such as non-stationarity, subject variability, and low signal-to-noise ratio

(SNR), all of which reduce model robustness [6].

Traditional EEG analysis techniques, such as Common Spatial Pattern (CSP), Independent Component Analysis (ICA),
and wavelet transform, have been widely used for feature extraction [7]. While these methods can isolate spatial or
spectral components, they heavily rely on manual preprocessing and handcrafted features, making them susceptible to
noise and inter-subject variability [8]. Additionally, these linear transformations often fail to capture nonlinear and high-

order dependencies in EEG data [9].

Recent advances in deep learning (DL) have revolutionized EEG decoding by enabling automatic, hierarchical feature
extraction directly from raw signals [10]. Convolutional Neural Networks (CNNs) are particularly popular for capturing
spatial correlations among electrodes and have demonstrated improved classification performance in BCI applications
[11], [12]. Models such as EEGNet and DeepConvNet leverage convolutional kernels to extract localized spatial—
temporal patterns, outperforming traditional handcrafted methods [13]. However, conventional CNNs are inherently
designed for grid-like data structures such as images and fail to consider the irregular spatial topology of EEG electrode
placements across the scalp [14]. Consequently, adjacent electrodes in brain regions may not correspond to adjacent

pixels in a CNN input, limiting spatial interpretability.

To model temporal dependencies, Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
architectures have been introduced to learn sequential patterns within EEG time series [15]. These models effectively
capture time-varying neural dynamics but overlook the importance of frequency-selective processing, where distinct
EEG bands contribute unequally to MI representation [16]. Moreover, existing hybrid CNN—RNN architectures, though
capable of spatial-temporal fusion, typically treat all frequency components with uniform significance, which can

obscure relevant neural cues [17].

To overcome these limitations, this paper proposes a novel deep learning framework named SEFA (Spatial Encoding
and Frequency Attention) for EEG-based motor imagery recognition. SEFA enhances classification accuracy and
interpretability by jointly leveraging spatial topology, frequency relevance, and temporal evolution of EEG signals in a

unified end-to-end pipeline.

© 2025, IJSREM | https://ijsrem.com | Page 2


https://ijsrem.com/

s
¢ IISREM . s . . .
ng International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

The proposed SEFA framework consists of three primary modules:

Spatial Encoder: EEG signals are projected onto a 2D electrode grid preserving their topological arrangement.
Convolutional filters (3%3 kernels) learn spatial dependencies among neighboring electrodes, enabling cortical region-
level feature learning [18].

Frequency Attention Module: Multi-band signal decomposition isolates EEG sub-bands (u, B, y). A frequency
attention layer dynamically weights each sub-band according to its discriminative power, allowing the model to
emphasize relevant oscillations and suppress noise-dominant frequencies [19].

Temporal Modeling Layer: A Bidirectional Long Short-Term Memory (Bi-LSTM) layer models the sequential nature
of EEG signals, capturing both forward and backward dependencies. This integration enriches the temporal context of
extracted spatial-frequency features [20].

Through this tripartite design, SEFA captures comprehensive EEG representations that are spatially structured,
frequency-aware, and temporally dynamic. The architecture is optimized using the Adam optimizer with a learning rate
of 0.001, cross-entropy loss, and dropout regularization to prevent overfitting. Visualization of learned embeddings
using t-distributed Stochastic Neighbor Embedding (t-SNE) demonstrates distinct cluster formation across MI classes,

confirming SEFA’s ability to generate discriminative latent representations [21].

Figure 1: SEFA Framework for EEG-Based Motor Imagery Recognition
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The figure 1 illustrates the overall architecture of the proposed SEFA framework for EEG-based motor imagery
recognition. The EEG signals are first mapped onto a two-dimensional electrode grid, where the Spatial Encoder
employs convolutional filters to capture spatial correlations among neighboring electrodes, thereby preserving the

scalp’s topological structure. The extracted spatial features are then passed to the Frequency Attention Module, which
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decomposes the signals into five canonical EEG frequency bands—delta (3), theta (0), alpha (), beta (), and gamma
-

This module dynamically assigns attention weights to each band, emphasizing those most relevant to motor imagery
patterns while suppressing noise-prone frequencies. The weighted feature maps are subsequently processed by the
Temporal Modeling Layer, implemented as a Bidirectional LSTM network, which models temporal dependencies by

analyzing the sequential evolution of EEG features in both forward and backward directions.

Finally, the concatenated spatio-spectral-temporal features are fed into a fully connected softmax classification layer to
predict the intended motor imagery class. This integrated architecture enables SEFA to effectively learn discriminative
and interpretable representations for robust brain—computer interface applications.

The proposed model is evaluated on two benchmark datasets — BCI Competition 1V-2a and PhysioNet Motor
Movement/Imagery Dataset — using standard accuracy and Cohen’s kappa metrics. Experimental results reveal that
SEFA consistently outperforms existing baselines, including CSP+LDA, EEGNet, and DeepConvNet, achieving higher
accuracy and improved class separability [22], [23]. The findings indicate that incorporating frequency-attentive spatial

encoding significantly enhances the robustness and generalization of EEG-based MI classification.

Electroencephalography (EEG)-based Motor Imagery (MI) classification has been extensively explored

through both traditional signal processing techniques and recent deep learning architectures.

2. Related Work

2.1 Traditional Methods

Classical feature extraction methods such as Common Spatial Pattern (CSP) and Wavelet Transform (WT) have
been the foundation of MI-based BCI research. CSP aims to maximize the variance difference between two classes by
learning spatial filters. Given EEG trials X;and X, from two MI classes, CSP seeks a projection matrix W that

diagonalizes their covariance matrices C;and C,

WTCIW = Dl, WTCZW = D2 ______ 1

Where D, and D, are diagonal matrices. The optimal filters correspond to the eigenvectors associated with the largest
and smallest eigenvalues of C;(C; + C,)~ ! as shown in formula[1].Although effective, CSP is sensitive to noise and

non-stationarity, and its performance deteriorates across subjects or sessions.

Wavelet-based approaches decompose EEG into time—frequency sub-bands, enabling localized analysis of p (8—13 Hz)
and B (13-30 Hz) rhythms. However, they rely on manually chosen wavelet bases, making them less adaptive to

complex spatial-temporal variations [2].

2.2 Deep Learning Approaches
Convolutional Neural Networks (CNNs) introduced automatic feature learning from raw EEG signals. Schirrmeister et

al. [3] proposed DeepConvINet and ShallowConvNet, which achieved strong results on BCI Competition datasets.
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However, standard CNNs treat EEG channels as independent 1D time series, neglecting the spatial relationships

between electrodes.

Hybrid CNN-LSTM models [4] further improved temporal modeling by integrating recurrent structures that capture

sequential dependencies. The forward dynamics of LSTM are governed by:
it = o(Wizs + Uihi_y + b;)
= U(I'Vf:l:f 4 []fhrf_l =2 bf)
oy = o(Wyxy + Uyhi—1 + b,)

¢; — tanh(W.z; + U.hy— + b,)

¢t = fi @ci_1 + 1 @ ¢

hi = oy @ tanh(c;)

where x; represents EEG features at time t, and h; denotes the hidden state. These architectures capture temporal

dependencies effectively but often overlook inter-channel spatial interactions crucial for MI tasks.

2.3 Graph-Based and Attention Methods

Graph Neural Networks (GNNs) have been explored to model electrode geometry, where nodes represent EEG channels
and edges represent functional connectivity. Models such as EEG-GNN [5] and DGCNN [6] improved spatial

awareness but showed limited scalability and generalization due to rigid graph topology assumptions.

Attention mechanisms have recently emerged to emphasize informative EEG frequency bands and regions. Spectral

Attention Networks (SANs) [7] adaptively weight EEG sub-bands using learned attention coefficients:

=) .
o = S, exp (o e = f(WeX; + bg) 3

Where a; represents the attention weight for sub-band i, and () is a nonlinear transformation.

2.4 Motivation for SEFA

Despite these advancements, existing models often treat spatial, spectral, and temporal aspects in isolation. The
proposed Spatial Encoding and Frequency Attention (SEFA) framework unifies these dimensions through (1) 2D
spatial convolution over electrode grids, (2) frequency-aware channel weighting, and (3) temporal feature refinement.

This joint modeling enables SEFA to achieve robust and interpretable MI recognition across subjects.
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This figure 2 illustrates the evolution of EEG-based Motor Imagery (MI) classification models over time.The
progression begins with Traditional Approaches (2000-2010), where techniques such as Common Spatial Pattern (CSP)
and Linear Discriminant Analysis (LDA) were employed to extract handcrafted spatial features and perform

classification.

The next stage, Frequency-Domain Methods (2010-2015), introduced Wavelet Transform (WT) and Filter Bank CSP

(FBCSP) to capture discriminative information from specific EEG frequency bands.

With the rise of Deep Learning (2015-2020), models like Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks began to automatically learn hierarchical spatial-temporal representations from raw

EEG signals.

Finally, the SEFA framework (2020—Present) marks the current stage, integrating Spatial Encoding and Frequency
Attention mechanisms within an end-to-end deep neural architecture. This advancement enables the model to effectively
combine spatial topology, spectral relevance, and temporal evolution, leading to enhanced classification accuracy and

interpretability in modern BCI systems.
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3. Proposed Methodology
The proposed Spatial Encoding and Frequency Attention (SEFA) framework is designed to enhance EEG-based

Motor Imagery (MI) classification by integrating spatial, spectral, and temporal representations within a unified deep

Frequency
Attention Tempo!' al
Input Module Reasoning | Output
(FAM) Module
M (TRM)

Fig. 3. SEFA comprises three major components:

learning architecture.

As shown in Fig. 3, SEFA comprises three major components:

1. Spatial Encoder (SE),
2. Frequency Attention Module (FAM), and
3. Temporal Reasoning Module (TRM).

These modules jointly extract discriminative, frequency-aware spatiotemporal features from EEG signals for

robust motor imagery recognition.

3.1 Input Representation
Let X € R“*T denote the raw EEG signal, where CCC is the number of electrodes and T represents the number of time
samples. Each electrode channel is projected onto a 2D electrode topology gridG € RT*W*T ' where H and W

correspond to the spatial layout of EEG sensors (e.g., 9x9 grid for the 10-20 system).

This spatial projection ensures that convolutional filters can learn local dependencies between physically adjacent

electrodes, which is crucial for capturing brain region connectivity patterns during ML

3.2 Spatial Encoder (SE)
The Spatial Encoder learns spatial correlations among electrodes using stacked 2D convolutional layers. Each

convolutional operation is defined as:

Fs = ReLUW; * X; + by) 4
where
o W is the spatial kernel,
. * denotes the convolution operation,
. X¢ is the 2D EEG grid, and
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F, € RH™W'XK represents the spatial feature map with KKK feature channels.

By applying multiple convolutional and pooling layers, SE extracts spatially-invariant features, reducing sensitivity to
electrode placement variations. Batch normalization and dropout layers are used to stabilize learning and prevent

overfitting.

3.3 Frequency Attention Module (FAM)

EEG signals are non-stationary and contain discriminative information across distinctfrequencyband § (0.5 —
4Hz),0 (4—8Hz),a (8—13Hz),$ (13 —30Hz),and y (30 — 50 Hz).

The Frequency Attention Module decomposes the input into these five sub-bands using band pass filtering
or short-time Fourier transform (STFT). For each sub-band iii, a feature map F; is generated and its

importance is adaptively weighted using an attention coefficient «;:

exp(ei)
N
Zj 1 €xple;)

; =

, 6= f(HaF, 1" b(,)

Where f(-) is a nonlinear transformation (e.g., ReLU), and N=5 is the number of frequency bands. The frequency-

attended feature is obtained by:
D 2 6

This mechanism emphasizes task-relevant oscillations (e.g., p and B rhythms) while suppressing noise and irrelevant

frequencies, thereby improving class separability.

3.4 Temporal Reasoning Module (TRM)
Temporal dynamics in MI EEG are vital for distinguishing motor intentions over time. To model these dependencies,
the Temporal Reasoning Module employs a Bidirectional Long Short-Term Memory (Bi-LSTM) network, which

captures both forward and backward temporal relationships.
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For each time step t:

it = o(WiFf + Uihy_y + b;)

fi = o(WsF} + Ughy_y + by)
of = o(WoFf + Ught_1 + by)

& — tanh(W.F} + Uchs_y + be)
G¢=fi@c1+140c¢

hs = oy @ tanh(¢;)

The concatenation of the forward and backward hidden states produces the temporal feature representation Hr, which is

further passed to a fully connected layer followed by softmax classification:

y = softmax (W Hry + b) -------------- 8

3.5 Loss Function

The SEFA network is trained using categorical cross-entropy loss:

L =—Yk_1yrlog 7 9

where K denotes the number of MI classes (e.g., left-hand, right-hand, foot, tongue), yy is the true label, and y is the

predicted probability.

3.6 Model Optimization
Training is performed using the Adam optimizer with a learning rate scheduler. Early stopping is applied based on
validation accuracy. The model parameters are initialized using Xavier initialization, ensuring stable gradient

propagation during early epochs.
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Figure 4: Architecture of the Proposed SEFA Framework
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The diagram illustrates the SEFA pipeline:

A S e

Input EEG signals are projected onto a 2D electrode grid.

Spatial Encoder extracts regional connectivity patterns via 2D CNNs.
Frequency Attention Module assigns adaptive weights to 9, 0, a, B, y sub-bands.
Temporal Reasoning Module (Bi-LSTM) captures sequential dependencies.

Softmax layer outputs motor imagery class probabilities.

4. Experimental Setup

4.1 Datasets

The proposed SEFA framework was evaluated on two benchmark datasets — BCI Competition IV-2a and

PhysioNet EEG Motor Movement/Imagery Dataset.

BCI Competition IV-2a Dataset:

This dataset comprises EEG signals from 9 subjects, each performing four motor imagery (MI)

tasks: left hand, right hand, both feet, and tongue movements. The signals were recorded from 22

EEG channels at 250 Hz sampling rate following the 10-20 international electrode placement

system.

PhysioNet Motor Imagery Dataset:

This dataset includes EEG signals from 109 subjects, each performing imagined left- or right-hand

movements. Recordings were made using 64 electrodes with a 160 Hz sampling rate.
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These two datasets ensure model robustness across variations in electrode configurations and subject

diversity.

4.2 Preprocessing

EEG data underwent several preprocessing steps to enhance signal quality and remove artifacts:

1. Band-pass filtering:
A 4th-order Butterworth filter was applied within the 8-30 Hz range, covering p (8—12 Hz) and 3
(13-30 Hz) rhythms crucial for motor imagery.

Xfiltered(t) = X(2) * h‘BP(t)

where hgp(t) represents the band-pass filter kernel.
2. Segmentation:
Continuous EEG recordings were divided into 2-second non-overlapping windows, resulting in
manageable temporal segments suitable for deep processing.
3. Normalization:

Each channel signal was normalized using z-score normalization:

XI — X—p

Where p and ¢ are the mean and standard deviation across time samples.

4. Artifact Rejection:
Trials contaminated by eye blinks or motion artifacts were removed using an automatic thresholding

approach on signal variance.

4.3 Implementation Details
The SEFA framework was implemented using Tensor Flow 2.12 with GPU acceleration. The Adam
optimizer was employed with an initial learning rate of 0.001, . = 0.9, and B2 = 0.999.

The loss function used was categorical cross-entropy:

L= -3,y log(F)-—---mmmmr 11

where C is the number of classes, y, is the true label, andy; is the predicted probability. The model was trained
for 200 epochs with a batch size of 32 and dropout rate of 0.5 to prevent overfitting. Early stopping was

applied when validation loss did not improve for 10 consecutive epochs.

4.4 Evaluation Metrics

Performance was assessed using Accuracy (Acc) and F1-Score (F1):
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TP + TN
TP +TN + FP + FN

Accuracy —

Precision x Recall

F1=2x

Precision 4+ Recall

where TP, TN,FP,FN denote true positives, true negatives, false positives, and false negatives, respectively.

4.5 Hardware Configuration
All experiments were performed on a NVIDIA RTX 4090 GPU with 24 GB VRAM, Intel i9 CPU, and 64
GB RAM under Ubuntu 22.04 LTS environment.

Figure 4 : Experimental Setup Pipeline Diagram
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5. Results and Discussion

The proposed SEFA model demonstrated superior performance in motor imagery (MI) classification tasks,
achieving 89.8% accuracy, significantly surpassing benchmark models such as CNN-LSTM (84.6%) and
CSP+SVM (74.3%) on both the BCI Competition IV-2a and PhysioNet MI datasets.

The improvement stems from SEFA’s ability to jointly encode spatial, spectral, and temporal

representations of EEG signals. The Spatial Encoder (SE) enhances topographical awareness by learning
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local dependencies between neighboring electrodes on a 2D grid, effectively modeling the brain’s cortical
structure.

The Frequency Attention Module (FAM) adaptively re-weights band-specific activations, ensuring that
task-relevant frequency components (e.g., o and P bands for motor imagery) receive higher significance
during feature fusion.

Mathematically, the class probability for each MI category Cj, is computed as:

P(CplX) = o 13

2{{:1 e’

where z,, denotes the activation of the k*" neuron in the final dense layer, and K is the number of MI classes.
To evaluate robustness, we performed an ablation study removing SE and FAM components individually:
. Without Spatial Encoder, accuracy dropped to 84.2%, indicating the loss of spatial context.
. Without Frequency Attention, accuracy reduced to 86.0%, confirming the importance of
adaptive spectral weighting.
Further analysis with t-distributed Stochastic Neighbor Embedding (t-SNE) illustrated that SEFA-
generated feature embeddings form well-separated clusters for different MI tasks, demonstrating enhanced
class discriminability and reduced inter-class overlap.

Table 1 — Comparative Performance of Baseline and Proposed SEFA Model on EEG Motor Imagery

Classification
Model Accuracy (%)|F1-Score|(Cohen’s Kappa
CSP + SVM 74.3 0.71 0.68
CNN 81.2 0.79 0.76
CNN-LSTM 84.6 0.83 0.80
SEFA (Proposed)||89.8 0.88 0.86
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Figure 6: t-SNE visualization of SEFA embeddings.
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Figure 6 illustrates the t-SNE projection of SEFA’s latent features, where distinct motor imagery classes (left hand,
right hand, feet, tongue) exhibit clear spatial separation, highlighting the effectiveness of the proposed representation

learning.

PrecisionXRecall
F1=2X 14

Precision+Recall

The SEFA model’s architecture, combining spatial encoding, frequency-adaptive attention, and temporal learning,
effectively reduces overfitting and enhances generalization across subjects — a crucial requirement for real-world BCI

applications.

6. Applications and Future Work
The proposed Spatial Encoding and Frequency Attention (SEFA) framework demonstrates promising potential in
several real-world Brain—Computer Interface (BCI) applications where accurate and interpretable motor imagery (MI)
decoding is essential.
6.1 Applications
1. Neurorehabilitation:
SEFA can be integrated into EEG-driven neurofeedback systems for post-stroke rehabilitation
and motor recovery. By accurately decoding motor intentions, patients can engage in motor
imagery—based exercises, strengthening cortical motor pathways through neural plasticity. This
reduces dependence on invasive sensors and supports continuous, home-based recovery.

2. Assistive Robotics:

The framework can drive brain-controlled prosthetics and wheelchairs, translating motor

intentions (e.g., left/right-hand imagery) into movement commands. SEFA’s robust spatial and
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frequency modeling enhances control reliability, especially under noisy or variable EEG
conditions.

3. Smart loT Environments:

SEFA enables cognitive IoT integration, where user intent or fatigue states inferred from EEG
signals can dynamically adjust smart devices—Ilighting, home automation systems, or adaptive
interfaces—creating personalized, neuro-responsive environments.

4. Augmented and Virtual Reality (AR/VR):

By integrating SEFA into immersive systems, users can control virtual objects or navigate
environments through thought-based interactions, improving accessibility for physically

impaired users.

Figure 7:
Application Scenarios of SEFA in BCI Systems
4 Neurorehabilitation \ 4 Assistive Robotics g
- =
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e Smart En.ing \ 4 Temporal Apponing\

&
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This figure demonstrates SEFA’s flexibility across healthcare, assistive, and smart environment domains, showing its
potential as a unified EEG interpretation framework for next-generation brain-controlled systems.
6.2 Future Work
While SEFA achieves high accuracy and interpretability, several directions can further enhance its capability:
1. Transformer-Based Temporal Modeling:
Future versions of SEFA will incorporate temporal self-attention mechanisms (e.g., Vision or EEG
Transformers) to better model long-range dependencies across time, overcoming the sequential limitations of
LSTMs.
2. Cross-Subject Transfer Learning:
EEG variability across individuals limits generalization. Domain-adaptive transfer learning and meta-
learning techniques will be explored to adapt pretrained SEFA models to unseen subjects with minimal
calibration data.
3. Real-Time Deployment:
Optimization of model parameters through lightweight quantization and on-device inference will facilitate

deployment on edge Al hardware for real-time BCI applications.
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4. Multimodal Fusion:
Integration with other biosignals (e.g., EMG, EOG, fNIRS) can improve robustness, allowing SEFA to serve as

part of a hybrid BCI system for comprehensive cognitive state estimation.

7. Conclusion

This paper presented the Spatially-Enriched Frequency-Aware (SEFA) framework, a unified deep learning
architecture for EEG-based motor imagery (MI) classification. SEFA effectively integrates spatial encoding,
frequency attention, and temporal reasoning to capture multi-dimensional dependencies inherent in EEG
signals. By leveraging 2D convolutional spatial mapping, adaptive attention over frequency sub-bands, and
Bi-LSTM temporal modeling, the framework overcomes the limitations of traditional feature extraction and

conventional deep models.

Experimental results on BCI Competition IV-2a and PhysioNet MI datasets demonstrated that SEFA
significantly outperforms baseline methods such as CSP+SVM and CNN-LSTM, achieving 89.8%
classification accuracy with improved inter-class separability and reduced subject variability. The ablation
study further confirmed the complementary contribution of spatial and spectral modules in enhancing

discriminative EEG representations.

The proposed model establishes a robust and interpretable foundation for real-world Brain—Computer
Interface (BCI) applications. Future extensions of SEFA could explore transformer-based temporal encoding,
cross-subject transfer learning, and real-time embedded deployment for use in neurorehabilitation, assistive

robotics, and loT-integrated smart environments.
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