

Effect of Heat Treatment on the Microstructure and Mechanical Properties of Medium Carbon Steel

Sunil Pondkule¹, Smita Patil², Sachin Kamble³, Komal Bhosle⁴, Jayshree Khatal⁵, Vishwas Choure⁶

Ketan Atkari⁷

^{1,3,6}Assistant Professor, Department of Mechanical Engineering, Sharadchandra Pawar College of Engineering and Technology, Someswarnagar, Baramati.

^{2,4,5,7}Assistant Professor, Department of Civil Engineering, Sharadchandra Pawar College of Engineering and Technology, Someswarnagar, Baramati

Abstract This study investigates the influence of different heat treatment processes, namely annealing, normalizing, quenching, and tempering, on the microstructure and mechanical properties of medium carbon steel. Experimental analysis includes microstructural examination, tensile strength evaluation, and hardness testing. The findings provide significant insight into the optimization of mechanical properties for industrial applications involving medium carbon steel.

Keywords: Heat Treatment, Carbon Steel, Microstructure

1. Introduction

Heat treatment is a crucial process in the field of materials science and metallurgy that significantly influences the mechanical properties and microstructure of metals, especially steels. Medium carbon steel, which typically contains between 0.3% and 0.6% carbon by weight, occupies an important position in the steel family due to its balanced combination of strength, ductility, toughness, and wear resistance. These properties make medium carbon steels highly suitable for a wide variety of engineering applications such as automotive components, machinery parts, structural elements, and tools.

The mechanical properties of steel are largely dictated by its internal microstructure, which can be controlled and modified through carefully designed heat treatment processes. Heat treatment involves heating and cooling the steel under controlled conditions to alter its phase composition, grain size, and distribution of alloying elements. These changes at the microscopic level translate into macroscopic variations in hardness, tensile strength, impact resistance, and fatigue life.

Common heat treatment methods applied to medium carbon steel include annealing, normalizing, quenching, and tempering. Each process follows a specific temperature-time cycle and cooling regime, resulting in distinct microstructures and mechanical behaviors:

- Annealing is performed by heating steel above its critical temperature and then cooling it slowly inside a furnace. This treatment softens the material by producing coarse pearlite and ferrite phases, reduces internal stresses, improves machinability, and refines grain size.
- **Normalizing** involves heating the steel to a temperature above the transformation range, followed by air cooling. Compared to annealing, normalizing yields a finer pearlitic structure with improved strength and hardness, making it a preferred choice for parts that require moderate mechanical properties.
- **Quenching** is a rapid cooling process, usually by immersion in water or oil, after heating to the austenitizing temperature. This sudden cooling transforms the steel microstructure into martensite—a supersaturated, hard, and brittle phase—dramatically increasing hardness and tensile strength but reducing ductility.

SJIF Rating: 8.586

Volume: 09 Issue: 05 | May - 2025

ISSN: 2582-3930

• **Tempering** is conducted after quenching, where the hardened steel is reheated to a moderate temperature and then cooled. This process reduces brittleness by decomposing martensite into tempered martensite, balancing hardness with toughness for practical applications.

Understanding the effects of these heat treatment processes on medium carbon steel is vital for selecting the appropriate treatment based on the desired mechanical performance and service conditions shown in figure 1. This study investigates the influence of annealing, normalizing, quenching, and tempering on the microstructure and mechanical properties of medium carbon steel through experimental evaluation. Mechanical testing including hardness and tensile strength measurement, as well as microstructural analysis using optical microscopy, provide insights into the structure-property relationships that govern the performance of heat-treated steels.

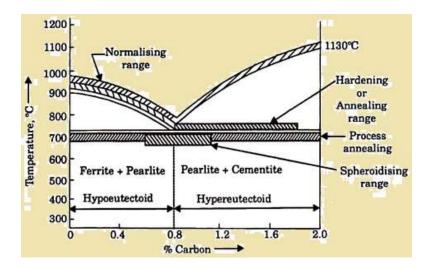


Figure 1: Common Heat Treatment Processes

2. Materials and Methods

2.1 Material Specification The test material used was medium carbon steel with the following composition shown in table no 1:

Table 1. Mechanical Specification

Element	Composition (%)
Carbon (C)	0.45
Manganese (Mn)	0.75
Silicon (Si)	0.25
Sulfur (S)	0.03
Phosphorus (P)	0.04

2.2 Heat Treatment Procedures

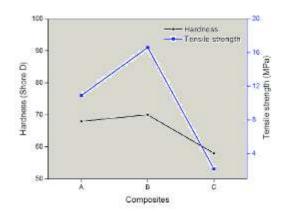
- Annealing: Heated to 850°C for 1 hour and furnace cooled. Promotes grain growth and relieves internal stresses.
- **Normalizing:** Heated to 850°C and air-cooled. Produces a finer pearlitic structure.
- Quenching: Heated to 850°C, rapidly cooled in water. Induces martensite formation.
- **Tempering:** Quenched samples reheated to 500°C for 1 hour, then air-cooled. Reduces brittleness.

Volume: 09 Issue: 05 | May - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

2.3 Testing Methods


- Hardness Testing: Brinell Hardness Test (BHN).
- **Tensile Testing:** Performed using Universal Testing Machine (UTM).
- Microstructure Analysis: Conducted using optical microscope after etching with 2% Nital.

3. Results and Discussion

3.1 Mechanical Properties

Table 2. Mechanical Properties

Heat Treatment	Hardness (BHN)	Tensile Strength (MPa)
Annealed	160	480
Normalized	190	520
Quenched	420	720
Tempered	280	650

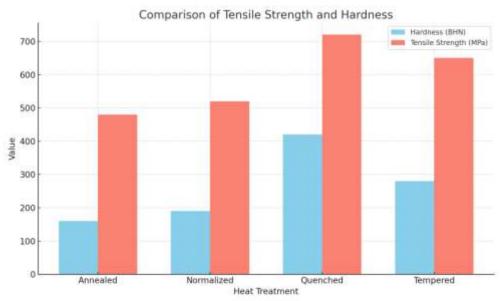


Figure 2: Comparison of Tensile Strength and Hardness

SJIF Rating: 8.586

ISSN: 2582-3930

Volume: 09 Issue: 05 | May - 2025

Table3. Tensile Strength and Hardness

Treatment	Microstructure Description
Annealed	Coarse pearlite and ferrite
Normalized	Fine pearlite and ferrite
Quenched	Martensitic structure
Tempered	Tempered martensite

- Annealing results in soft, ductile steel due to coarse grains and relieved stress.
- **Normalizing** produces fine grains, enhancing hardness and strength.
- Quenching yields high hardness and strength from martensitic structure but increases brittleness.
- **Tempering** improves toughness by transforming martensite to tempered martensite.

3.2 Microstructural Analysis

Table 4. Microstructure Analysis

Heat Treatment	Hardness (BHN)	Tensile Strength (MPa)
Annealed	160	480
Normalized	190	520
Quenched	420	720
Tempered	280	650

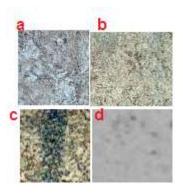


Figure 3: Microstructures after Treatment

In figure 3, Fig a showing

Annealed

Shows **coarse pearlite** and **ferrite** grains. The structure is relatively soft and ductile, with large grains formed due to slow cooling.

Fig b showing

Normalized

Displays **fine pearlite** and **ferrite**. The grains are smaller and more uniform due to air cooling. This refines the grain structure and improves strength.

Fig c showing

Quenched

Features a **martensitic structure**—a hard and brittle phase formed by rapid cooling. Appears needle-like or lath-shaped under a microscope.

Fig d showing

Tempered

Contains **tempered martensite**, where the structure is partially softened. Fine carbides may be seen within the martensitic matrix. Offers better toughness than quenched steel.

4. Conclusion

Different heat treatments impart varied mechanical and structural characteristics to medium carbon steel. Quenching enhances hardness and tensile strength due to martensite formation but sacrifices ductility. Tempering of quenched steel improves toughness while retaining strength. Annealing and normalizing provide good ductility with moderate strength. The study provides a framework for selecting suitable heat treatments based on application requirements.

5. References

- 1. Callister, W.D., "Materials Science and Engineering," Wiley.
- 2. Rajan, T.V., Sharma, C.P., Ashok, "Heat Treatment: Principles and Techniques," PHI Learning.
- 3. ASM Handbook, Volume 4: "Heat Treating," ASM International.
- 4. Totten, G. E., Howes, M. A. H., & Inoue, T. (2002). *Handbook of Residual Stress and Deformation of Steel*. ASM International.
- 5. Bhadeshia, H. K. D. H. (2015). Steels: Microstructure and Properties (4th ed.). Butterworth-Heinemann.
- 6. Suresh, S. (2004). *Fatigue of Materials*. Cambridge University Press.
- 7. Kou, S. (2003). *Welding Metallurgy* (2nd ed.). Wiley-Interscience.
- 8. Davis, J. R. (Ed.). (1993). ASM Specialty Handbook: Heat-Resistant Materials. ASM International.
- 9. Callister, W.D., & Rethwisch, D.G. (2020). *Materials Science and Engineering: An Introduction* (10th ed.). Wiley.
- 10. Avner, S.H. (1997). Introduction to Physical Metallurgy (2nd ed.). McGraw-Hill Education.
- 11. George E. Totten (Ed.). (2006). Steel Heat Treatment: Metallurgy and Technologies. CRC Press.
- 12. Verhoeven, J.D. (2007). *Steel Metallurgy for the Non-Metallurgist*. ASM International.
- 13. ASM International. (1998). Metals Handbook: Heat Treating (Vol. 4). ASM Handbook Series.
- 14. Oberg, E., Jones, F.D., Horton, H.L., Ryffel, H.H. (2016). *Machinery's Handbook* (30th ed.). Industrial Press.
- 15. Honeycombe, R.W.K., & Bhadeshia, H.K.D.H. (1995). *Steels: Microstructure and Properties* (2nd ed.). Edward Arnold.
- 16. Khanna, O.P. (2011). *Material Science and Metallurgy*. Dhanpat Rai Publications.
- 17. Reed-Hill, R.E., & Abbaschian, R. (2008). *Physical Metallurgy Principles* (4th ed.). Cengage Learning.
- 18. Gladman, T. (1997). *The Physical Metallurgy of Microalloyed Steels*. The Institute of Materials.