

Effect of Waste Foundry Sand on the Different Properties of Concrete

NIKHIL ANNASAHEB VIKHE¹

¹Civil Engineering & Pravara Rural Engineering College Loni

of

_____***

Abstract - Used-foundry sand is a by-product of ferrous nonferrous metal casting industries. Foundries and successfully recycle and reusable the sand many times in a foundry. When the sand can no longer be reused in the foundry, it is removed from the foundry and is termed waste foundry sand. In an effort to utilization waste foundry sand in large volume, research is being carried out for its possible large-scale utilization in making concrete as partially replacement of fine aggregate. This paper presents the results of an experimental investigation carried out to evaluate the different properties of concrete mixtures in which fine aggregate (regular sand) was partially replaced with wastefoundry sand (WFS). Fine aggregate was replaced with five percentages (5%, 10%, 15%, 20%, and 25%) of WFS by weight. Tests were performed for the properties of fresh concrete. Compressive strength, splitting- tensile strength, flexural strength and on-destructive test were determined at3, 7and 28 days. Test results indicated a marginal increase in the strength properties of plain concrete by the inclusion of WFS as partial replacement of fine aggregate (natural sand) and that can be effectively used in creating good quality concrete and construction materials.

Key Words: Industrial waste, waste-foundry sand, Compressive strength

1.INTRODUCTION

Over the past several decades an enormous amount of research has been carried on the use of industrial waste as a substitute/replacement material for fine aggregate. Their search findings revealed that the substitution of an alternative material in concrete could improve both the mechanical and durability properties and the practice led to the sustainable concrete development. Foundry Sand (FS) is a by-product from the metal alloys casting industry with high silica content. Silica sand is bonded with clay or chemicals, and is used for the material casting process. Foundries recycle the sand many times and when the sand is no longer recyclable, it is disposed of this is called foundry sand. About 15% of sand used by foundries is ultimately disposed of amounting to millions of tons. In India many foundries dump this waste in nearby vacant areas. Which creates an environmental problem? With increased restrictions on disposal in nearby areas industries are constrained to find alternative ways to reuse waste. Past few decades FS have been utilized in highway applications but the amount of waste re-utilized in this way is still negligible. For this reason there is a need to utilize FS in other ways become very imperative. Recently research has been carried out on the utilization of FS in concrete and concrete related products

2. MATERIALS AND METHODOLOGY

The materials used in this present work are foundry sand, Ordinary Portland cement.

	Table No.	2.1	Observation	table	for	fineness	modulus	
fw	vaste found	rv s	and					

of waste foundry sand						
Sieve	Mass	Cumulative	Cumulative	Cumulative		
Size	Retained	Mass	Percentage	Percentage		
	(gms	Retained	Retained	Passing (%		
		(gms)	(%)			
4.75	77	1.5	1.5	98.5		
mm						
2.36	4	11	2.3	97.7		
mm						
1.18	6	17	3.6	96.4		
mm						
600 µ	15	32	6.4	93.6		
300 µ	235	267	51.8	48.2		
150 μ	201	468	92.8	7.2		

Fineness modulus = sum of cumulative % of mass retained on the sieve/100

=158./100

=1.58

 Table 2.2 - Physical properties of Waste Foundry Sand

Characteristics	value
Colour	Grey (Blackish)
Specific Gravity	2.51
Water Absorption	1.17%
Fineness Modulus	1.58%

Table 2.3 Chemical	properties of	Waste	Foundry	Sand and
fine Aggregate				

Constituents WFS	WFS	Fine Aggregate
	% by Weigh	
Silica (SiO ₂)	78.81-95.10	80.78
Iron Oxide	0.94-5.39	1.75
Alumina (AL2O3)	0.81-10.41	10.52
Calcium Oxide	3.21	3.21
(CaO)		
Magnesium oxide	0.30-1.97	0.77
(MgO)		
Titanium Dioxide	0.04-0.22	Nil
Sodium Oxide	0.19-0.87	1.37
(Na2O)		
Potassium Oxide	0.25-1.14	1.23
(K2O)		

Table No 2.4 Observation for fineness of the cement

Sr.No	Mass of cement (gms)	Mass of residue (gms)	Residue (%)
1	100	2	2
2	100	3	3
3	10	2	2

Volume: 09 Issue: 02 | Feb - 2025

SJIF Rating: 8.448

ISSN: 2582-3930

Table No 2.5 Observation for standard consistency of the cement paste

So.No	Mass of cement (gms)	Mass of water added in (ml)	Percentage measure From the bottom
	100	27 4 100	(mm)
I	400	25 x 4 = 100	29
2	400	30 x 4 = 120	15
3	400	35 x 4 = 140	2
4	400	31 x 4 = 124	9
5	400	32 x 4 = 128	7

Percentage of water required to produce a paste of standard consistency = 128 ml

Standard consistency of cement paste= (Qty. of water / wt. of cement) x 100 $\,$

Standard consistency of cement paste =(128/400) x 100=32% Table No.2.6 Initial and final setting time of the cement

Sr.No	Description	Value
1	Quantity of the cement	300 gms
2	Standard consistency of	32%
	cement paste	
3	Qty of the water	$0.85 \times 128 = 108.8$
		ml
4	Initial setting time	92 min
5	Final setting time	376 min

Table No. 2.7	Observation	table for	fineness	modulus
fine aggregate				

Sieve	Mass	Cumulative	Cumulative	Mass
size	retained	mass	mass	passing
	(gms)	Retained	Retained	(%
		(gms)	(%)	
4.75	0	0	0	100
mm				
2.36	74	74	7.4	92.2
mm				
1.18	268	342	34.2	65.8
mm				
600 µ	194	536	53.6	46.4
300 µ	266	802	80.2	19.8
150 µ	140	942	94.2	5.8

 Table No. 2.8 Observation table for fineness modulus

 of fine aggregate

	~~ · · · · · · · · · · · · · · · · · ·					
IS sieve	Mass	Cumulative	Cumulative	Cumulative		
	retained	mass	mass	mass		
		retained	retained	passing		
			%	(%)		
25	00	00	00	100		
20	2064	2064	41.28	58.72		
12.5	1175	3239	64.78	35.22		

10	1289	4528	90.56	9.44
4.75	389	4917	98.34	1.66
2.36	83	5000	100.00	00
1.18		5000	100.00	00

Table2.9 Allowable limits of Aggregates as per I.R.C

Sr.No	Aggregate Impact value	Comment
1	<10	Exceptionally strong
2	10-20	Strong
3	20-30	Satisfactory
4	>35	Weak

Table No.2.10 Observation table for the aggregate impact value

Sr.No	Sample 1	Sample 2	Sample 3
1	400 gms	400 gms	400 gms
2	37 gms	38 gms	39.5 gms

Impact value of aggregate for sample 1 = $37/400 \times 100 = 9.25\%$

Impact value of aggregate for sample $1 = 38/400 \ge 100 = 9.5\%$ Impact value of aggregate for sample $1 = 39.5/400 \ge 100 = 9.87\%$

Average aggregate impact value=9.54%

As Average aggregate Impact value less than 10% the sample exceptionally strong

Table No.2.11 Observation table for aggregate crushing

Sr.No	observations	Sample	Sample 2	Sample 3
		1		
1	Wt. of sample	3000	3000	3000
		gms	gms	gms
2	Wt. of sample	605	608 gms	606 gms
	passing through	gms		
	2.36 mm in sieve			
	after impact			

aggregate crushing value for the sample $1 = 605/3000 \times 100 = 20.16$

Aggregate crushing value for the sample 1 = 608/3000 x 100 = 20.26

Aggregate crushing value for the sample $1 = 606/3000 \times 100 = 20.20$

Average aggregate crushing value = 20.21%

Crushing value is less than 30% value used for the wearing and non-wearing surfaces

Table No2.12 Properties of the coarse and fine aggregate

Sr.No	Test	Result
1	Specific gravity for coarse agg	2.75
2	Specific gravity for Fine agg	2.60
3	Water absorption for coarse	1.35%
	agg	
4	Water absorption for fine agg	0.7%
5	Crushing value	20.21%

© 2025, IJSREM | <u>www.ijsrem.com</u>

of

T

Volume: 09 Issue: 02 | Feb - 2025

SJIF Rating: 8.448

ISSN: 2582-3930

6	Impact value	9.54%
7	Fineness modulus for coarse	4.92%
	agg	
8	Fineness modulus for fine agg	2.9%
9	Elongation Index	9.45%
10	Flakiness Index	9.60%

Table No.2.13Summary of Concrete Mix DesignObservation and Calculation

Design proportion for M25 grade of concrete = 1 : 1 .52 : 2.64(W / C = 0.45)

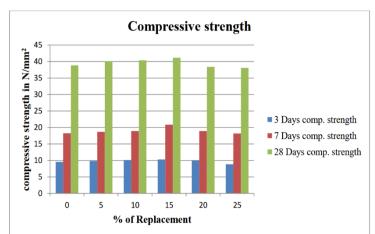
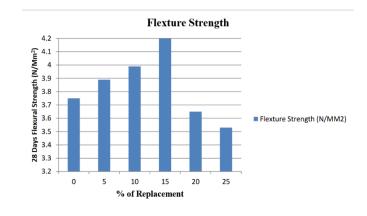

(/ 0	= 0.45)	
1	Characteristic Compressive	25N/mm2
	Strengt	
2	Degree of quality control	Good
3	Standard deviation(S)	5
4	Target mean compressive	31.60 N/mm
	strength, $Ft = Fck + 1.65 \times S$	
5	W/C ratio	0.45
6	Type of cement	OPC
7	Nominal size of coarse	20mm
	aggregate	
8	Specific gravity of cement, Sc	3.15
9	Specific gravity of fine	2.60
	aggregate. Sfa	
10	Specific gravity of coarse	2.75
	aggregate, Sca	
11	Water content per m3 of	192 kg/m3
	concrete	
12	Cement content for W/C=0.45	426 kg/m3
13	Total fine aggregate per m3 of	648 kg/m3
	concrete, Fa	
14	Total coarse aggregate per m3	1124 kg/m3
	of concrete, Ca	

 Table No. 2.14 Concrete Mix Proportions With and


 Without Waste Foundry Sand

Mixture	P1	P2	P3	P4	P5	P6
no.						
Cement	426	426	426	426	426	426
(kg/m3)						
Natural	648	616	583	551	518	586
sand						
(kg/m3)						
WFS (%)	0	5	10	15	20	25
WFS	0	32	62	97	130	162
(kg/m3)						
Coarse	1124	1124	1124	1124	1124	1124
aggregate						
(kg/m3)						
W/C ratio	0.45	0.45	0.45	0.45	0.45	0.45
Water	192	192	192	192	192	192
(kg/m3)						

Graph No 2.1 Conventional concrete using waste foundry sand compressive strength after 3, 7 & 28 Days of Curing

Graph no.2.2 Conventional concrete using waste foundry sand Flexural Strength after 28 Day

3.CONCLUSION:

1) Natural sand can be possibly replaced partially waste foundry sand in concrete.

2) It has been observed that the workability of slump value of concrete decreases with the addition of waste foundry sand.

3) In workability of compaction factor test. compaction factor increases with the addition of WES

4) In workability of vee bee consistency time required for conical shape are increases with addition of WFS.

5) The compressive strength of concrete from 0% to 15% replacement of sand by waste foundry sand is satisfactory.

6) The maximum compressive strength of concrete is observed at natural sand replacement by 15% of waste foundry sand at 28 days.

7) Replacement of natural sand with waste foundry sand showed increases in the split tensile strength and flexural strength up to the 15% replacement then after split tensile strength reduced.

8) Water absorption of concrete reduces as the percentage of waste foundry sand in concrete increases. As voids in the concrete reduce water absorption goes on reducing Also unit

weight of concrete goes on reducing with the replacement of cement due to lower specific gravity of WFS,

9) Use of Phenolphthalein indicator changed the colour of hardened concrete to pink which indicates that concrete was not affected by the atmospheric carbon dioxide.

4.REFERENCES:

1. Basar HM. Aksoy ND, The effect of waste foundry sand (WFS) as partial replacement of sand on the mechanical, teaching and micro-structural characteristics of ready-mixed

concrete. Constr Build Mater 2012,35: 508-15.

2. Etxeberria M. Pacheco C, Meneses JM, Beerridi L Properties of concrete using metallurgical industrial by-product as aggregate. Constr Build Mater 2010:24:1594-600.

3. Guney Y. Sari YD. Yalcin M. Tuncan A, Donmez S. Re-usage of spent foundry sand in high strength concrete. Spent Manage 2010,30:1705-13.

4. Gurpreet Singh, Rafat Siddique, "Effect of waste foundry sand (WFS) as partial replacement of sand on thestrength, ultrasonic pulse velocity and permeability of concrete", Elsevier, Construction and Building Materials26 (2012) 416-422

5. Gurpreet Singh, Rafat Siddique, "Abrasion resistance and strength properties of concrete containing waste foundry sand (WFS)". Elsevier, Construction and Building Materials 28 (2012) 426

(2012) 421-426

6. IS 2770:1997, "Methods of Testing Bond Strength in Reinforced Concrete Part I."Bureau of Indian Standards. New Delhi, India.

7. IS 456:2000. "Code of Practice for Plain and Reinforced Concrete," Bureau of Indian Standards. New Delhi, India.

8. IS 10262: 2009, "Indian Standard, recommended guidelines for concrete mix designs", Bureau of Indian Standard, New Delhi.

9. IS.383-1970, "Specifications for Coarse and Fine Aggregates from Natural sources for Concrete", Bureau of Indian Standards, New Delhi.

10. IS 516:1959, "Method of Tests for Strength of concrete", Bureau of Indian Standard, New Delhi.

11. IS 516:1959, "Method of tests for strength of concrete", Bureau of Indian Standards, New Delhi.

12. IS 5816:1999, "Splitting tensile strength of concrete", Bureau of Indian Standards, New Delhi.

13. Khatib JM. Herki BA. Kenai S. Capillarity of concrete incorporating waste foundry sand. Constr Build Mater 2013:47:867-71.

15. Kumbhar P. D. and Usharani S. Sangar, "Experimental study of mechanical properties of concrete blended with used foundry sand", Global Journal Engineering and Applied Sciences, ISSN 2249-2631, Pg. 122-126, 2011.

T