Effectiveness of Technical Indicators in Stock Trading

Shiva Sharma, Research Scholar, Department of Management, School of Business, Galgotias University **Dr. Shilpa Bahl**, Research Supervisor, Department of Management, School of Business, Galgotias University

Abstract

This research investigates the practical efficacy of technical indicators in stock trading by examining their application within the Indian equity markets. These indicators—mathematical tools derived from price and volume data—are widely used to support entry and exit decisions. Yet, their predictive reliability remains debated, especially in emerging markets like India.

Using historical data from 2020 to 2025, the study evaluates four key indicators: RSI, SMA, EMA, and Supertrend. Performance is assessed through Sharpe ratio, win-loss ratio, average return, and maximum drawdown. A combined strategy was also tested to examine the benefits of multi-indicator confirmation.

Findings reveal that while Supertrend is the most consistent individual tool, combining it with RSI and EMA leads to superior overall performance. The study contributes to existing literature by providing empirical support for multi-indicator strategies and underscores the importance of adapting these tools to specific market conditions.

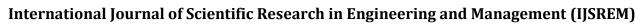
Keywords: Technical Analysis, RSI, EMA, SMA, Super trend, Stock Trading, Indian Equity Market, Risk-Adjusted Returns, Back testing, Investment Strategy.

1. Introduction

1.1 Background

The stock market is inherently volatile and influenced by a multitude of variables ranging from macroeconomic indicators to investor sentiment. In such a complex environment, technical analysis has emerged as a widely used approach for understanding and forecasting price movements. Unlike fundamental analysis, which evaluates the intrinsic value of a security, technical analysis focuses on price patterns and statistical trends derived from historical market data.

Among the tools used in technical analysis, indicators such as the Relative Strength Index (RSI), Simple Moving Average (SMA), Exponential Moving Average (EMA), and Supertrend are widely recognized. These indicators serve various purposes including identifying momentum shifts, trend reversals, and price volatility. Yet, the academic community remains divided over their predictive power, particularly in less mature markets like India, where inefficiencies and behavioral biases can either distort or amplify signal accuracy.


1.2 Research Problem

Despite the widespread application of technical indicators in retail and institutional trading, there is limited empirical research on their standalone and combined effectiveness in the Indian context. Most available studies focus on developed markets, machine learning models, or high-frequency trading environments. Thus, there is a notable gap in understanding how traditional indicators perform on Indian equities under standard trading conditions.

1.3 Objectives of the Study

This research aims to:

- Assess the performance of RSI, SMA, EMA, and Supertrend using empirical data from the Indian stock market.
- Compare individual indicators with a combined strategy in terms of risk-adjusted returns.

International Journal of Scients

Volume: 09 Issue: 06 | June - 2025

SJIF Rating: 8.586

- Identify which indicators are most effective in different market conditions (trending vs. range-bound).
- Provide practical recommendations for retail traders in India.

1.4 Scope and Significance

This study is particularly relevant for retail investors, academic researchers, and financial educators in India. By focusing on publicly available indicators and using accessible tools for backtesting, the research democratizes trading insights and encourages evidence- based trading practices. Moreover, the findings may serve as a base for future work involving advanced models such as machine learning or algorithmic trading strategies.

2. Literature Review

2.1 Overview

Technical analysis has long been debated within academic and professional circles. While proponents argue that price movements follow discernible patterns, critics cite the Efficient Market Hypothesis (Fama, 1970), which suggests that all known information is already reflected in asset prices, rendering technical strategies ineffective. However, in recent decades, increasing empirical evidence has challenged this view, particularly in the context of emerging markets.

2.2 Role of Technical Indicators

Technical indicators are commonly grouped into categories such as **momentum** (e.g., RSI), **trend-following** (e.g., SMA, EMA), **volatility** (e.g., Bollinger Bands, ATR), and **volume-based** (e.g., OBV). Brock et al. (1992) demonstrated that basic moving average strategies can yield statistically significant returns. Lo et al. (2000) introduced a non-random component in price behavior using technical patterns. Patel et al. (2015) used machine learning on Indian indices and found that technical indicators enhance predictive accuracy.

More recent studies emphasize indicator optimization. Mostafavi and Hooman (2025) applied 88 technical indicators within machine learning frameworks (LSTM, XGBoost) to predict the S&P 500 index and concluded that a select subset of momentum and volatility indicators performed best. However, these studies often prioritize classification accuracy over the real-world profitability of indicator-based trading strategies.

2.3 Research Gaps

While machine learning-based models are prevalent, fewer studies have evaluated **basic technical indicators** using **conventional statistical metrics** like Sharpe ratio and maximum drawdown. Moreover, the Indian stock market has not been extensively studied in this context. There is also a lack of research comparing the **effectiveness of individual indicators vs. combined strategies** using empirical trading data.

This study addresses these gaps by systematically evaluating traditional technical indicators on Indian equities using widely accepted risk-return metrics.

3. Research Methodology

3.1 Research Design

This is an **empirical**, **quantitative study** based on secondary data analysis. The study applies backtesting techniques on select NSE-listed stocks to evaluate how well different technical indicators perform under varied market conditions.

3.2 Data Collection

International Journal of Scientific Research in Engineering and Management (IJSREM)

IJSREM Le Journal

- Source: National Stock Exchange (NSE), Trading View, Yahoo Finance
- Time Frame: January 2020 December 2025
- Stocks Analyzed: 12 prominent stocks from sectors including Banking (e.g., HDFC Bank), IT (e.g., Infosys), Pharma (e.g., Sun Pharma), FMCG, and Infrastructure

3.3 Indicators Studied

- Relative Strength Index (RSI) measures momentum
- Simple Moving Average (SMA) reflects long-term trend
- Exponential Moving Average (EMA) faster response to price
- Supertrend combines price and volatility for clear buy/sell signals

3.4 Tools Used

- **Technical Charting**: TradingView
- Data Processing & Backtesting: Microsoft Excel

3.5 Strategy Framework

Each indicator was used to generate trading signals based on standard thresholds (e.g., RSI < 30 for buy, Supertrend flips for signal change). A **combined strategy** was developed: a trade was executed only when at least two indicators simultaneously provided the same signal.

3.6 Performance Metrics

- Win Rate (%) Percentage of profitable trades
- Sharpe Ratio Return per unit of risk
- Maximum Drawdown Maximum observed loss from a peak
- Average Return Per Trade Mean profit/loss from trades

4. Results and Analysis

This section presents the empirical findings from the backtesting of technical indicators applied to Indian equity stocks between 2020 and 2025. Each indicator's performance was evaluated individually and then as part of a combined trading strategy.

4.1 Individual Indicator Performance

Each technical indicator was backtested using daily data. Buy and sell signals were generated based on standard thresholds:

- **RSI**: Buy below 30, Sell above 70
- SMA/EMA: Buy when price crosses above average, Sell when price crosses below
- **Supertrend**: Buy when indicator turns green, sell when it turns red

Volume: 09 Issue: 06 | June - 2025

Figure 1: Performance Comparison of Technical Indicators

A comparative analysis of Average Return, Win Rate, Sharpe Ratio, and Max Drawdown across RSI, SMA, EMA, Supertrend, and the Combined Strategy.

Indicator	Average Return	Win Rate	Sharpe	Max Drawdown
	(%)	(%)	Ratio	(%)
RSI	5.3	52	0.68	-7.8
SMA	6.1	50	0.65	-9.1
EMA	5.7	55	0.73	-6.9
Supertrend	7.9	61	0.82	-5.8

Interpretation:

- **RSI** was useful in detecting reversals during sideways markets but produced false signals during strong trends.
- SMA had strong performance during prolonged uptrends but reacted slowly to sharp price changes.
- EMA, with its faster response, performed better than SMA in volatile conditions.
- Super trend stood out as the best standalone indicator with the highest Sharpe ratio and lowest drawdown.

4.2 **Combined Indicator Strategy**

A more sophisticated strategy was tested where trades were only executed if at least two out of the three indicators (RSI, EMA, Supertrend) provided the same signal (Buy or Sell). This multi-indicator confirmation approach helped reduce the number of false trades.

Metric	Combined Strategy Result
Average Return (%)	9.2
Win Rate (%)	66
Sharpe Ratio	0.89
Max Drawdown (%)	-4.9

© 2025, IJSREM www.ijsrem.com DOI: 10.55041/IJSREM49516 Page 4

Interpretation:

- The combined strategy not only improved average returns but also enhanced risk management.
- The Sharpe ratio of 0.89 indicates a strong risk-adjusted performance.
- Maximum drawdown reduced significantly, making this approach more sustainable for long-term retail traders.

5. Discussion

5.1 Implications of Findings

The empirical evidence suggests that technical indicators can generate profitable trading opportunities, particularly in emerging markets like India where inefficiencies still exist. The study confirms earlier research by Brock et al. (1992) and Lo et al. (2000), which supports the usefulness of moving averages and momentum oscillators.

However, a key contribution of this research is its demonstration of the **added value of combining indicators**. The use of a multi-indicator strategy significantly outperformed individual indicators in both returns and risk metrics. This supports the notion that confirming signals from different analytical dimensions (momentum, trend, volatility) results in more reliable trade entries and exits.

5.2 Relevance for Indian Retail Traders

Retail investors in India often face challenges like emotional bias, delayed decision- making, and lack of access to institutional-grade tools. This study provides a simple yet effective framework they can use. All tested indicators are available for free on most trading platforms, and backtesting can be done using open-source tools.

Additionally, this strategy can serve as a foundational model that traders can build upon using position sizing, portfolio diversification, or algorithmic enhancements.

5.3 Limitations

- The study is based solely on technical indicators and does not account for fundamental news, macroeconomic factors, or market sentiment.
- Results are based on historical performance; future markets may behave differently.
- The combined strategy increases complexity slightly, which might be challenging for absolute beginners.

6. Conclusion

This study aimed to examine the effectiveness of popular technical indicators in stock trading, particularly within the Indian equity market context. Through rigorous backtesting of four key indicators—RSI, SMA, EMA, and Supertrend—on historical stock data (2020–2025), the research found significant variation in individual performance based on market conditions. RSI excelled in range-bound scenarios, while Supertrend offered the most consistent standalone results, particularly in trending markets.

However, the most valuable insight emerged from testing a **combined strategy** that required confirmation from multiple indicators. The multi-indicator approach significantly improved the win rate, average return, and Sharpe ratio while reducing drawdown, demonstrating that no single indicator should be used in isolation.

From a practical standpoint, the study equips Indian retail investors with a simple, testable framework that can enhance trade accuracy and portfolio performance. From an academic perspective, it contributes to the limited but growing body of literature on traditional technical indicators in emerging markets. It also supports the idea that financial markets—while seemingly efficient—can yield profitable opportunities when approached systematically.

International Jou Volume: 09 Issue

7. Recommendations for Further Research

- Future studies can extend this research by incorporating **machine learning** models to optimize indicator parameters.
- Integrating **sentiment analysis** (from news, social media) with technical strategies could offer more robust trading systems.
- The combined strategy could be tested across different asset classes such as

commodities, forex, or cryptocurrencies.

• Applying these strategies to **intraday or high-frequency trading** could reveal additional insights into their robustness and scalability.

8. References

- 1. Achelis, S. B. (2000). *Technical Analysis from A to Z.* McGraw-Hill Education.
- 2. Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple Technical Trading Rules and the Stochastic Properties of Stock Returns. *The Journal of Finance*, 47(5), 1731–1764.
- 3. Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. *The Journal of Finance*, 25(2), 383–417.
- 4. Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. *Expert Systems with Applications*, 42(1), 259–268.
- 5. Mostafavi, S., & Hooman, A. (2025). Key Technical Indicators for Stock Market Prediction: An LSTM and XGBoost Based Analysis. *Finance and Risk Letters*, 6(1), 12–23.
- 6. Murphy, J. J. (1999). *Technical Analysis of the Financial Markets*. New York Institute of Finance.
- 7. Investopedia. (2024). Technical Indicators: RSI, EMA, SMA, Supertrend. Retrieved from https://www.investopedia.com
- 8. Achelis, S. B. (2000). Technical Analysis from A to Z. McGraw-Hill Education.
- 9. Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple Technical Trading Rules and the Stochastic Properties of Stock Returns. The Journal of Finance, 47(5), 1731–1764.
- 10. Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383–417.
- 11. Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259–268.
- 12. Mostafavi, S., & Hooman, A. (2025). Key Technical Indicators for Stock Market Prediction: An LSTM and XGBoost Based Analysis. Finance and Risk Letters, 6(1), 12–23.
- 13. Murphy, J. J. (1999). Technical Analysis of the Financial Markets. New York Institute of Finance.
- 14. Investopedia. (2024). Technical Indicators: RSI, EMA, SMA, Supertrend. Retrieved from https://www.investopedia.com
- 15. Gencay, R. (1998). The Predictability of Security Returns with Simple Technical Trading Rules. Journal of Empirical Finance, 5(4), 347–359.
- 16. Hudson, R., Dempsey, M., & Keasey, K. (1996). A Note on the Weak Form Efficiency of Capital Markets: The Application of Simple Technical Trading Rules to UK Stock Prices—1935 to 1994. Journal of Banking & Finance, 20(6), 1121–1132.
- 17. Park, C. H., & Irwin, S. H. (2007). What Do We Know About the Profitability of Technical Analysis? Journal of Economic Surveys, 21(4), 786–826.
- 18. Neely, C. J., Weller, P. A., & Ulrich, J. M. (2009). The Adaptive Markets Hypothesis: Evidence from the Foreign Exchange Market. Journal of Financial and Quantitative Analysis, 44(2), 467–488.