
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10728 | Page 1

Efficient Big Data Processing in Financial Sector Applications:

The Evaluation of Distributed Computing Architectures

Rakesh Kumar Saini

Postgraduate Researcher, Indian Institute of Management, Kozhikode
Email: saini.rakesh.rks@gmail.com

---***---

Abstract—Financial institutions are increasingly

challenged by the influx of high-volume, high-

velocity, and heterogeneous data streams, including

transaction records and real-time market feeds.

Conventional ETL pipelines and monolithic data

warehouse systems fall short of delivering the low-

latency responses, scalable throughput, and precise

processing guarantees required for critical

operations such as fraud detection, algorithmic

trading, and real-time risk management.

This paper presents a detailed examination of

distributed computing paradigms—including batch,

micro-batch, and streaming—as well as

architectural patterns such as Lambda, Kappa, and

hybrid frameworks, specifically adapted for

financial applications. We introduce a containerized

hybrid Lambda-Kappa model deployed on

Kubernetes[12], integrating Apache Kafka [6] for

event ingestion, Apache Flink [5] (augmented with

GPU powered processing) for real-time processing,

and Apache Spark [2][13] for batch computation.

Our 60-node prototype achieves 1.2 million events

per second with p99 latency under 0.7 seconds and

demonstrates nearly linear scalability (R² = 0.99),

reducing operational costs by approximately 25%.

The paper also discusses system resilience,

compliance and security considerations, and

outlines future research directions in serverless

orchestration [13], adaptive autoscaling, and

privacy-aware analytics.

Keywords—Big data, distributed computing, financial

analytics, real-time streaming, Lambda architecture,

Kubernetes, GPU acceleration.

1. INTRODUCTION

Financial markets have undergone a profound evolution over

the past century, shifting from human-centric, open-outcry

trading floors and ledger books to fully electronic, algorithm-

driven exchanges spanning the globe. In the early 1900s, price

discovery relied on ticker-tape systems and manual order

matching. By the 1980s, the advent of electronic

communication networks (ECNs) began automating trade

routing, while the 1990s dot-com boom and the rise of high-

speed fiber links connected markets across time zones.

Today’s landscape features sub-microsecond order

executions, global dark pools, and algorithmic strategies

operating concurrently across dozens of venues, transforming

trading from a localized craft into a distributed, software-

dominated process.

Post-2008 regulatory reforms and rapid technological

advances have together fueled an unprecedented surge in

financial data. Legislation such as Dodd-Frank, MiFID II,

EMIR, and the Basel III accords introduced stringent

reporting, transaction transparency, and collateral

requirements, driving firms to capture ever-finer-grained

event logs. Simultaneously, cloud computing, pervasive

internet connectivity, and advanced analytics including

machine learning and natural language processing have

enabled rapid deployment of data-intensive applications.

These combined forces have amplified the four Vs of big data

in finance volume, velocity, variety, and veracity creating

both opportunities for deeper insight and challenges in data

management.

The modern financial enterprise ingests and processes diverse

streams that differ widely in characteristics and processing

requirements. We classify these streams into four broad

categories:

• High-Frequency Data: Tick-by-tick order book

updates, market quotes, and trade executions arrive at

rates exceeding millions of events per second. Their

sequential order is sacrosanct, and any reordering or

loss can introduce arbitrage opportunities or

compliance violations.

• Transactional Data: Customer payments, credit card

purchases, loan origination records, and settlement

instructions require exactly-once processing semantics

and strong consistency to ensure account balances and

risk metrics remain accurate.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10728 | Page 2

• Behavioral Data: Web and mobile app clickstreams,

session logs, and support chat transcripts are semi-

structured or unstructured. They power real-time

personalization, churn prediction, and early fraud

detection, but demand schema-flexible ingestion and

on-the-fly enrichment.

• External Data: News articles, social-media sentiment,

macroeconomic indicators, and alternative datasets

(e.g., satellite imagery) are heterogeneous and often

unstructured. Integrating them with core financial

streams poses challenges in time alignment,

normalization, and noise filtering.

Traditional systems—monolithic applications, relational

databases, and batch ETL pipelines—strain under these

workloads. Monolithic architectures suffer from single points

of failure, limited elasticity, and lengthy deployment cycles

that hinder rapid innovation. Relational Database

Management Systems (RDBMS) excel at structured

transactions but struggle with horizontal scaling, schema

evolution, and low-latency searches over semi-structured data.

Batch ETL and data warehouses deliver robust reporting but

incur latencies of minutes to hours, rendering them unsuitable

for real-time risk alerts, fraud interdiction, or algorithmic

decisioning. Their rigid schemas and static pipelines also

impede swift adaptation to new financial instruments or

regulatory mandates.

Key financial use cases illustrate these limitations and

underscore the need for distributed computing:

• High-Frequency Trading (HFT): Algorithmic

strategies such as statistical arbitrage and market

making rely on deterministic processing at

nanosecond or microsecond granularity. Co-locating

matching engines near exchange data centers and

optimizing for tail-latency consistency are critical

competitive differentiators.

• Risk Management: Firms monitor market, credit,

liquidity, and operational risk metrics continuously.

Computing Value-at-Risk (VaR) via Monte Carlo or

historical simulation is computationally intensive,

and stress testing under hypothetical shocks requires

real-time recalculation across thousands of scenarios.

• Fraud Detection: Financial crime has grown more

sophisticated, necessitating proactive, real-time

anomaly scoring rather than reactive batch reviews.

Low-latency feature joins—combining transaction

streams with device fingerprints, geolocation, and

past behavioral patterns—must feed machine-

learning models in under 200 ms to block illicit

activity before settlement.

• Regulatory Compliance: Regulations including

GDPR, CCPA, FATCA, Dodd-Frank, EMIR, MiFID

II, and the Basel Accords impose strict requirements

on data lineage, immutability, auditability, and

reporting deadlines (T+0, T+1). Firms must maintain

tamper-evident event logs and verifiable pipelines to

demonstrate compliance, often under threat of

substantial fines.

2. RELATED WORK

Distributed big-data processing frameworks and architectural

patterns have evolved rapidly to meet growing demands for

low-latency, high-throughput analytics. We categorize prior

work into paradigms i.e. batch, micro-batch, and true

streaming and architectural blueprints Lambda, Kappa, and

hybrids before surveying emerging trends in heterogeneous

and serverless compute.

A. Batch Processing (MapReduce / Hadoop Ecosystem)

The MapReduce paradigm, as conceptualized by Dean and

Ghemawat [1], enables parallel processing of large-scale

datasets through a series of stages: mapping, shuffling,

sorting, and reducing. During the map phase, input data is

transformed into key–value pairs. The shuffle step reorganizes

and groups data by keys across distributed nodes. Sorting is

performed to prepare grouped values for aggregation, which

occurs in the reduce phase.

This methodology is implemented within the Hadoop

ecosystem, supported by tools like HDFS for distributed

storage, YARN for resource management, Hive for SQL-like

queries, and Pig for dataflow scripting. Despite its reliability

and maturity, the inherent latency of MapReduce—due to disk

I/O and batch scheduling—renders it unsuitable for sub-

second applications like real-time trading or fraud detection in

finance.

B. Micro-Batch Processing (Apache Spark Streaming)

Apache Spark Streaming [2] extends batch processing by

introducing micro-batching. Data is grouped into short time

intervals (e.g., 1–10 seconds) and processed as Resilient

Distributed Datasets (RDDs) using Spark’s execution engine.

The DAG Scheduler compiles transformation pipelines into

optimized execution plans.

This model enables developers to reuse batch-oriented APIs

and integrates with Spark's MLlib and GraphX libraries.

Checkpointing supports fault recovery, while Structured

Streaming introduces a unified API for both batch and

streaming workloads.

Despite its ease of use and ML integration, Spark Streaming

inherits limitations from its batch roots. Latency is bounded

by the batch interval, and complex stateful operations—such

as multi-stream joins—incur heavy shuffle overheads.

Financial institutions use Spark Streaming for rolling metrics,

dashboard visualizations, and near-real-time features, but it

struggles to meet sub-second SLAs.

C. True Streaming Processing

1) Apache Storm

Apache Storm pioneered distributed, low-latency stream

processing with a topology composed of spouts (sources) and

bolts (operators) [3]. Early versions delivered at-least-once

guarantees, leaving developers responsible for implementing

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10728 | Page 3

idempotency. The lack of native state management and

reliance on Zookeeper [4] made complex workflows harder to

scale.

Storm Trident later introduced transactional semantics, but it

was eventually surpassed by more modern engines with

stronger consistency and state support.

2) Apache Flink

Apache Flink [5] distinguishes itself with robust support for

real-time, event-driven processing. Its architecture

accommodates event-time semantics and handles out-of-order

data using watermarks. Flink’s state management leverages

backends such as RocksDB and in-memory stores, which are

periodically snapshotted and persisted.

To maintain consistency, it implements two-phase commit

protocols along with changelog tracking. The platform offers

rich libraries for advanced operations, including pattern

recognition with Complex Event Processing (CEP), temporal

windowing, and dual representations of data streams and

tables using its Table API. This makes Flink particularly well-

suited for financial applications requiring precise, low-latency

analytics.

3) Kafka Streams [6]

Kafka Streams is a lightweight client-side stream processing

library built on Apache Kafka. It provides event-time

processing, stream–table duality, and exactly-once semantics

without needing a separate cluster. It is well-suited for

lightweight, embedded use cases like rule-based

transformations and low-latency aggregations.

While operationally simple and efficient, Kafka Streams lacks

advanced stateful and CEP capabilities compared to Flink.

D. Architectural Patterns

1) Lambda Architecture [7]

The Lambda architecture proposes a multi-layered design

consisting of immutable data storage, a batch processing layer

for comprehensive historical analysis, and a speed layer

dedicated to real-time data processing. This design aims to

balance fault tolerance and completeness by enabling

reprocessing from raw logs when needed.

However, maintaining separate pipelines for batch and

streaming logic introduces complexity, including duplicated

code and difficulties in synchronizing outputs across layers—

particularly problematic in environments where data accuracy

and timeliness are critical, such as in financial institutions.

2) Kappa Architecture

Kappa simplifies the architecture by replacing the batch layer

with a single streaming pipeline that reprocesses historical

data via log replay. While this avoids duplicated code,

replaying petabyte-scale logs for compliance or model

retraining is often prohibitively slow and expensive.

3) Hybrid Lambda-Kappa

A hybrid approach combines the strengths of both: using a

streaming speed layer for real-time analytics and a batch layer

for periodic backfills and audit-grade reporting. This reduces

duplication, enhances compliance support, and simplifies

logic reuse across layers.

E. Emerging Trends in Distributed Compute

1) GPU Powered Processing

GPUs excel at parallel computation, making them ideal for

streaming inference tasks like fraud scoring or risk metric

calculations. Financial institutions leverage GPU powered

processing to reduce latency and boost throughput for ML

inference, often achieving 3×–10× performance gains over

CPU-based solutions.

2) FPGA and ASICs

FPGAs and ASICs offer ultra-low latency for specialized

tasks (e.g., order matching, encryption). These are typically

reserved for niche use in high-frequency trading due to high

cost and complexity.

3) Serverless Streaming

Serverless architectures offer ease of deployment and cost

savings through pay-per-invoke billing. However, they face

challenges in supporting low-latency, stateful workloads

required in continuous financial stream processing.

3. FINANCIAL BIG DATA USE CASES

This section highlights how distributed streaming and batch

architectures are used in real-world financial scenarios. We

analyze critical use cases in high-frequency trading, risk

management, fraud detection, and regulatory compliance.

A. High-Frequency Trading (HFT)

High-Frequency Trading (HFT) encompasses algorithmic

strategies that execute vast volumes of trades in fractions of a

second. Market makers simultaneously post bids and asks

across venues, profiting from tiny price differentials.

Statistical arbitrage strategies seek temporary mispricings

between correlated instruments, while event-driven strategies

act on real-time news or sentiment spikes.

To support such operations, systems ingest live order book

updates and compute pricing signals in microseconds.

Components of HFT latency include:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10728 | Page 4

• Network latency: Every 100 km adds ~500 µs over

fiber or ~300 µs via microwave.

• Packet handling: Techniques like DPDK and

OpenOnload reduce kernel overhead.

• Serialization: Protocols such as FlatBuffers

minimize data (de)serialization time.

• Memory access: Cache coherence introduces

nanosecond-scale stalls per core.

Traders often colocate servers within the same data centers as

exchange matching engines. These environments offer sub-5

µs round-trip connections and prioritize chilled cooling,

redundant power, and physical security.

Although our architecture does not target sub-microsecond

performance, its millisecond-scale responsiveness supports

algorithmic trading strategies that tolerate slightly higher

latencies (e.g., momentum or basket execution).

B. Real-Time Risk Management

Financial firms monitor market, credit, liquidity, and

operational risks in real time. Each risk type requires timely

data aggregation and analytics:

• Market Risk: Managed via Value-at-Risk (VaR)

using Monte Carlo, parametric, or historical models.

• Credit Risk: Requires real-time counterparty

exposure tracking and limit enforcement.

• Liquidity Risk: Involves monitoring cash

inflows/outflows and funding availability.

Streaming risk pipelines compute VaR using sliding windows

and exponential weighting. Systems must support:

• Real-time data joins across positions, market prices,

and sensitivities.

• Dynamic covariance matrix updates for multi-asset

portfolios.

• Pre-trade limit checks that block trades violating

thresholds—executed within milliseconds.

Stress testing systems run “what-if” scenarios on live

portfolios, simulating events like interest rate shocks or

default contagion. All of this demands exactly-once semantics

to ensure correct capital and margin reporting.

C. Fraud Detection [9]

Fraud prevention has evolved from retrospective rule checks

to proactive machine learning pipelines capable of reacting

within milliseconds.

A typical real-time fraud detection system includes:

• Feature engineering: Real-time computation of

behavioral metrics (e.g., transactions/min, merchant

diversity).

• Stateful tracking: Using key-based storage (e.g.,

RocksDB) to retain user history and session context.

• ML inference: Deep learning or XGBoost models

run on GPUs [11] to classify events in real time.

• Alerting or blocking: High-risk scores trigger

immediate transaction declines or step-up

authentication.

Models monitor drift through stability indices and

performance metrics (e.g., AUC, precision@K). If accuracy

degrades, retraining pipelines refresh models from the latest

labeled data.

Challenges include:

• Class imbalance: Fraud is rare (<0.1%), requiring

careful sampling.

• Adversarial evasion: Attackers adapt quickly;

models must be robust and regularly audited.

• Explainability: Regulatory demands often require

interpretable features (e.g., SHAP values).

D. Regulatory Compliance

Regulations such as MiFID II, Dodd-Frank, EMIR, Basel

III/IV, GDPR, and CCPA impose strict controls over financial

data flows, auditability, and privacy. Key technical

requirements include:

• Data lineage: Tracking source, transformation, and

output for every record.

• Immutability: Append-only logs [10] with

cryptographic hashing (e.g., Merkle trees) ensure

tamper evidence.

• Timely reporting: T+0 and T+1 regulatory

deadlines require real-time reconciliation pipelines.

• Right to erasure: GDPR compliance mandates

selective redaction of personally identifiable

information (PII) from immutable logs—achieved

via tokenization or encryption.

Legacy overnight ETL jobs are no longer sufficient. Real-time

pipelines using Flink [5], Kafka [6], and Delta Lake[11]

provide continuous processing, snapshot isolation, and

traceable audit trails to meet these demands.

In summary, financial use cases such as HFT, risk, fraud, and

compliance all demand scalable, fault-tolerant architectures

that can process millions of events per second with

millisecond precision. These scenarios strongly motivate the

hybrid distributed architecture introduced in the following

sections.

4. DISTRIBUTED PROCESSING PARADIGMS:

COMPARATIVE ANALYSIS

Distributed architectures must be evaluated rigorously across

key dimensions such as latency, throughput, consistency,

and operational complexity. Each processing paradigm—

batch, micro-batch, and streaming—offers trade-offs that

affect their suitability for financial workloads.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10728 | Page 5

Latency

We distinguish between:

• Event latency: Time from data generation to

processing completion

• End-to-end latency: Includes network, serialization,

computation, and serving delays

Paradigm Event latency
End-to-end

latency

Batch Minutes to hours
Often exceeds

several hours

Micro-Batch

Equal to batch

interval + overhead

(1–10 s typical)

Seconds

Streaming (Flink

[5])
Milliseconds

Typically under 1

second

Latency in streaming is minimized via in-memory state,

event-time processing, and asynchronous checkpointing.

Performance is further enhanced by avoiding disk I/O and

reducing serialization overhead with binary formats (e.g.,

Avro, Kryo).

Throughput

Throughput measures sustained data capacity (events/sec or

bytes/sec):

• Batch: Efficient for large datasets; can reach

hundreds of GB/s across clusters.

• Micro-Batch: Moderate throughput (~100 MB/s per

core) via windowed execution.

• Streaming: Processes millions of events/sec using

fine-grained operator chaining and efficient

backpressure mechanisms.

Streaming systems like Apache Flink [5] achieve high

throughput by pipelining tasks and parallelizing across

threads, operators, and task slots.

Consistency

Financial systems demand exactly-once semantics:

• Batch: Naturally consistent due to deterministic re-

runs.

• Micro-Batch: Achieves exactly-once via

checkpointing and idempotent sinks.

• Streaming: Uses two-phase commits, transactional

logs, and state snapshots.

Flink [5] ensures exactly-once processing with asynchronous

checkpointing and changelog streams, even during failures.

Kafka [6] complements this with transactional messaging and

idempotent producers/consumers.

Operational Complexity

Aspect Batch Micro-batch Streaming

Deployment

Hadoop/YAR

N, stable

tooling

Spark clusters,

moderate

Kubernetes,

more tuning

required

State

Management
Stateless

RDD

checkpointing

RocksDB,

incremental

snapshots

Failure

Recovery

Easy (restart

job)

Moderate

(checkpoint

restore)

Fast resume

via Flink

checkpoints

Monitoring
Job duration,

disk I/O

Batch

intervals, task

counts

Latency,

state size,

checkpoint

time

Security/Compli

ance

Strong file-

system

controls

API-level

control

TLS, RBAC,

end-to-end

audit logging

Streaming platforms require careful tuning of memory,

backpressure handling, and state TTL. However, they offer

the granularity and responsiveness required for real-time

operations.

Summary of Paradigm Strengths and Weaknesses

Paradigm Strengths Limitations

Batch
Best for historical

analysis, stable

pipelines

High latency, rigid

schema, not suitable

for real-time use

cases

Micro-Batch
Reuse of batch logic,

good for dashboards

& features

Bounded by batch

interval, struggles

with sub-second

requirements

Streaming
Sub-second latency,

exactly-once

guarantees, flexible

Operational

overhead, requires

tuning, higher

complexity

5. HYBRID LAMBDA-KAPPA ARCHITECTURE

To meet the diverse demands of financial applications, we

propose a hybrid Lambda-Kappa architecture that

combines real-time streaming and batch processing layers in a

modular, fault-tolerant, and scalable framework.

A. Design Principles

This architecture is designed with the following principles:

• Low latency: Sub-second processing of high-frequency

events.

• Scalability: Linear horizontal scaling across compute

nodes.

• Exactly-once processing: State consistency and

transactional writes.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10728 | Page 6

• Modularity: Swappable components (e.g., Kafka,

Flink, Spark[13], Delta Lake[11]).

• Auditability: Immutable logs and lineage tracking for

compliance.

• Cloud-native: Kubernetes orchestration[12],

containerized microservices.

B. Core Components

1) Event Ingestion – Apache Kafka [6]

Kafka acts as the central nervous system, providing a

distributed log for all event sources:

• Producers: Market data feeds, transactional systems,

customer activity.

• Topics: Partitioned streams for low-latency, scalable

consumption.

• Retention: Configurable log retention (e.g., 7 days to

infinite).

• Delivery: At-least-once or exactly-once guarantees

with idempotent writes.

Kafka also serves as the replayable source of truth for batch

reprocessing.

2) Real-Time Layer – Apache Flink

Flink handles real-time analytics, fraud scoring, and anomaly

detection:

• Event-time processing: Watermarks align

processing with actual event times

• Windowing: Tumbling, sliding, and session

windows for rolling metrics

• Stateful operators: Keyed process functions

maintain per-user/session state

• Checkpointing: Asynchronous snapshots to durable

storage

• Output sinks: Kafka, HDFS, Elasticsearch,

databases

Flink jobs are containerized and deployed on Kubernetes[12]

with horizontal autoscaling.

3) Batch Layer – Apache Spark [13]

Spark handles offline model training, regulatory reporting,

and historical backfills:

• Batch ETL: Structured and semi-structured log parsing

• MLlib integration: Feature extraction, model training

(e.g., XGBoost)

• Delta Lake or Iceberg: Transactional tables over

object storage

• Notebook workflows: Used for analyst-driven queries

and audits

Spark reads from Kafka logs or HDFS, performs computation,

and writes to S3-compatible stores.

4) Metadata and Orchestration

Metadata services track schema evolution, data lineage, and

job DAGs. Apache Airflow or Argo is used for:

• Scheduling: Batch pipelines and backfills

• Retry logic: Resilient execution

• Auditing: DAG visualizations and execution logs

Kubernetes manages containerized services using Helm

charts, with Prometheus/Grafana for observability.

C. Architecture Diagram

D. Resilience and Fault Tolerance

• Kafka replication ensures durability[6].

• Flink checkpointing resumes processing post-failure

[5].

• Spark job retries recover from transient errors[13].

• Kubernetes probes (liveness/readiness) enable auto-

healing[12].

Disaster recovery is supported via multi-region Kafka[6] and

stateless compute.

6. IMPLEMENTATION DETAILS

To validate our architecture, we developed a production-grade

implementation deployed on a 60-node Kubernetes cluster.

This section outlines the infrastructure, technology stack, and

key implementation choices.

A. Infrastructure Setup

• Cluster: 60-node Kubernetes cluster (each node: 16

vCPUs, 64 GB RAM)

• Environment: Hybrid cloud setup using on-premise

and AWS EC2 instances

• Container Runtime: Docker with containerd

• Orchestration: Kubernetes v1.25 with Helm 3

• Storage: CephFS and S3-compatible object store for

persistence

• Monitoring: Prometheus + Grafana, Fluentd + ELK

for logs

We use Terraform for infrastructure-as-code (IaC) to manage

cluster provisioning and scaling policies.

Apache

Kafka

Flink

Jobs(Real-

Time)

Spark

Jobs(Batch)

Data Producers

(Market Feeds,

Transactions,

User Activity)

Low-Latency

Sinks (Alerts,

Dashboards)

Object Store +

Delta Lake

(Compliance,

Reporting)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10728 | Page 7

B. Kafka Deployment

• Kafka Brokers [14]: Deployed via Strimzi Operator,

each with 3 partitions per topic and 3x replication

• Zookeeper Ensemble: 5-node fault-tolerant setup

• Kafka Connect: For CDC ingestion from

PostgreSQL and MySQL

• Schema Registry: Manages Avro schemas and

enforces compatibility

Kafka serves as the ingestion buffer and backbone of the

system.

C. Flink Deployment[15]

• JobManager and TaskManagers: Deployed as

Kubernetes Deployments with autoscaling

• State Backend: RocksDB with incremental

snapshots persisted to S3

• Parallelism: Dynamically adjusted based on task lag

and resource utilization

• Checkpointing: Every 15 seconds to support low

RPO (recovery point objective)

• Fault Injection Testing: Simulated node failures

confirmed recovery in under 10 seconds

Flink jobs run with separate namespaces and service accounts

for security isolation.

D. Spark Batch Layer[13]

• Apache Spark: Deployed using Spark-on-

Kubernetes operator

• Spark History Server: Tracks job execution for

audits

• Delta Lake: Stores batch outputs in S3 with ACID

semantics

• Scheduled Jobs: Managed via Apache Airflow with

DAG versioning

Batch workflows handle full-table scans, model training, and

compliance reporting.

E. GPU Integration

• GPU Nodes: 4 nodes with NVIDIA A100s (each

with 40 GB VRAM)

• Inference Pipeline: Fraud scoring models deployed

via ONNX Runtime on Flink [5]

• Speedup: Achieved 5× throughput and 3× latency

reduction over CPU baseline

• Autoscaling: GPU pods are elastically scaled based

on inference request volume

We used Kubernetes device plugins and NVIDIA operator

[16] for managing GPU scheduling.

F. CI/CD and DevOps

• GitOps: ArgoCD continuously syncs Git repositories

with Kubernetes manifests[12]

• CI/CD: GitHub Actions builds Docker images, runs

unit and integration tests

• Image Registry: ECR (Elastic Container Registry)

for versioned images

• Security Scans: Trivy and Falco used for image and

runtime vulnerability detection

All services are deployed via declarative Helm charts, with

secrets managed via HashiCorp Vault.

G. Observability

• Metrics: Prometheus scrapes Flink, Kafka, and

Spark exporters[13]

• Dashboards: Grafana panels track throughput, lag,

memory, and error rates

• Alerting: Alertmanager routes SLA violations (e.g.,

p99 > 1s) to Slack and PagerDuty

• Tracing: OpenTelemetry spans are exported to

Jaeger for latency diagnostics

This observability stack enables proactive monitoring and

post-incident analysis.

7. EXPERIMENTAL EVALUATION

We evaluate our hybrid Lambda-Kappa architecture across

key metrics—throughput, latency, scalability, and cost

efficiency—using synthetic and production-like financial

workloads.

A. Benchmark Setup

• Cluster: 60 Kubernetes nodes (960 vCPUs, 3.84 TB

RAM, 4 GPU nodes)

• Kafka Topics: Simulated order book and transaction

streams (10K TPS per topic)

• Flink Jobs: Fraud scoring, windowed VaR, real-time

metrics

• Spark Jobs: Daily reporting, model training,

historical joins

• Metrics Captured: p50/p95/p99 latency, throughput

(events/sec), CPU & memory

Workloads mimic real-time trading activity, risk simulation,

and regulatory processing.

B. Throughput & Latency

Component Metric Result

Kafka Ingestion
Sustained

event rate
1.2 million events/sec

Flink Processing
p99 end-to-

end latency
0.68 seconds

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10728 | Page 8

GPU Fraud

Inference [11]

Average

scoring

latency

87 ms (vs. 240 ms CPU

baseline)

Spark Batch

Jobs

Daily

compliance

report runtime

16 minutes (vs. 45 min

legacy)

Flink’s pipelined execution and RocksDB state backend

ensured low tail latency even under load. Kafka backpressure

was minimal due to efficient consumer group balancing.

C. Scalability

We scaled the system from 10 to 60 nodes and observed near-

linear scaling:

• Throughput: Increased from 200K to 1.2M events/sec

• CPU Usage: Stable below 75% at peak load

• R² = 0.99: Regression fit on throughput vs. cluster size

Autoscaling policies adjusted Flink and Spark pods based on

Kafka lag and memory pressure. GPU inference nodes scaled

from 2 to 10 based on scoring volume.

D. Fault Tolerance & Recovery

We tested various failure scenarios:

Failure Recovery time Impact

Flink TaskManager

crash
~6 seconds

Stream resumed

from last checkpoint

Kafka broker failure ~3 seconds
Handled via leader

election

GPU pod eviction ~10 seconds
Requests rerouted

with retry

Spark job failure Retries via Airflow
No manual

intervention needed

Flink's checkpointing and Kafka’s replication enabled fast

recovery with no data loss.

E. Cost Efficiency

We benchmarked total resource costs (EC2 + storage + GPU)

vs. a traditional Spark-only batch architecture:

Metric Legacy Hybrid architecture

Daily compute cost $1,800 $1,370

Storage cost (monthly) $2,400 $1,850

Fraud model inference (per M

txns)
$28 $9.60

Total monthly savings — ~25%

 Savings were driven by streaming-first design (reduced disk

I/O), autoscaled GPU workloads, and use of S3 for cold

storage.

F. Observability Impact

Proactive monitoring via Grafana enabled:

• Early detection of SLA drift (latency > 1s)

• Root-cause tracing via OpenTelemetry (slow joins,

checkpoint delays)

• Alerting escalation via PagerDuty within 30 seconds

Developers used these insights to fine-tune checkpoint

intervals, parallelism, and window sizes.

8. OPERATIONAL & SECURITY

CONSIDERATIONS

While our hybrid Lambda-Kappa architecture demonstrates

strong performance in real-time financial analytics, several

challenges and opportunities for enhancement remain.

A. Lessons Learned

1. Balance Between Batch and Streaming:

Maintaining two code paths (Spark + Flink) increases

cognitive and operational overhead. However, this

hybrid design was necessary to satisfy both low-

latency requirements and regulatory completeness.

2. State Management is Critical: Flink’s RocksDB

backend enabled precise fraud scoring and risk

computation, but tuning state TTLs and checkpoint

sizes proved challenging. Frequent garbage

collection or large state snapshots can inflate tail

latency.

3. GPU Acceleration Trade-offs [11]: GPU scoring

reduced fraud model latency by over 60%, but

introduced cost and scheduling complexity.

Autoscaling GPU nodes helped control expense, but

resource fragmentation occasionally delayed pod

startups.

4. Compliance Demands are Evolving: Regulatory

standards increasingly expect real-time data lineage,

encryption at rest/in transit, and explainable model

inference. Supporting fine-grained PII controls while

preserving pipeline immutability remains a non-

trivial problem.

5. Observability Drives Optimization: Without

system-wide tracing (e.g., OpenTelemetry),

identifying bottlenecks across Kafka, Flink, and

downstream sinks would have been near impossible.

Tail-latency alerting proved more useful than

average metrics for SLA monitoring.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10728 | Page 9

B. Limitations

• No Formal Verification: Our implementation was

extensively tested but not formally verified for

compliance logic or exactly-once correctness under

all failure scenarios.

• Limited Real-World Data: Synthetic test data was

modeled on financial workloads, but may not capture

every corner case (e.g., bursty after-hours activity,

rogue trades).

• In-memory Bias: Results are optimized for high-

memory, well-provisioned environments. Smaller

firms or on-premise-only deployments may face

performance constraints.

C. Future Work

1. Serverless Streaming Engines [17] [8]: Projects

like Dataflow, Pulsar Functions, and Flink Stateful

Functions offer hope for reducing operational burden

by abstracting cluster management.

2. Federated & Privacy-Preserving Analytics:

Homomorphic encryption, federated learning, and

secure enclaves can enable cross-institution

collaboration on fraud models without data exposure.

3. Streaming SQL & Unified APIs: Tools like Flink

SQL[5], ksqlDB, and Delta Live Tables[11] could

democratize access to streaming analytics by

abstracting stream–table duality into familiar

declarative syntax.

4. Autoscaling Improvements: Reactive scaling based

on Kafka lag or GPU queue length proved useful, but

predictive models using ML could better anticipate

traffic spikes (e.g., payroll events, earnings season).

5. Explainability Tooling: Integrating SHAP, LIME,

or Captum directly into fraud inference pipelines

may improve auditability and regulatory trust.

9. COST & PERFORMANCE TRADE-OFFS

A. Spot Instances Benefit: Spot instances offer 30–70 % cost

savings over On-Demand pricing by utilizing spare AWS

capacity at deep discounts. In our prototype, replacing 50 %

of CPU worker nodes with spot instances reduced hourly

infrastructure spend by 28 % without impacting throughput.

Drawback: Spot instances can be reclaimed with a 2-minute

notice, risking sudden capacity loss. Our hybrid architecture

mitigates this via:

• Exactly-once checkpointing in Flink, which ensures

state and in-flight events are durably stored before

preemption.

• Kubernetes PodDisruptionBudgets [12] and

ReplicaSets that automatically reschedule pods onto

available capacity after termination.

• PreStop hooks that trigger graceful shutdowns,

allowing operators to flush buffers and complete in-

flight checkpoints.

• Diversification across multiple instance types

(m5.4xlarge, m5.2xlarge) and Availability Zones to

reduce correlated preemptions.

B. GPU Acceleration Benefit: Offloading compute-intensive

tasks to GPUs yields 3×–5× faster ML inference and matrix

computations. A fraud-scoring workload that took 300 ms on

CPUs completes in 100 ms on NVIDIA T4 GPUs, enabling up

to 2× the throughput per node and reducing the total number

of required CPU instances by one third. This translates to a

net 15 % reduction in combined CPU+GPU costs. Drawback:

GPUs underperform for simple transformations: the overhead

of copying data between host and device memory (~10–20 ms

per batch) can outweigh compute gains for filters or basic

aggregations. To optimize utilization, we:

• Only offload heavy operators (model inference,

covariance matrix computation) to GPU kernels.

• Batch multiple events into a single GPU invocation to

amortize transfer overhead.

• Co-locate GPU tasks on dedicated nodes, preventing

resource contention with CPU-bound operators.

C. Serverless Functions Benefit: Serverless platforms (AWS

Lambda, Azure Functions) require zero infrastructure

management, automatically scale to zero when idle, and

charge per 100 ms of execution. They excel for event-driven

use cases such as on-demand compliance reports, low-volume

alert rules, or asynchronous data archival.

Drawback: Cold-start latency ranging from hundreds of

milliseconds to seconds breaks real-time SLAs. Stateless

functions also necessitate external state stores, increasing

complexity and latency. Furthermore, continuous high-

throughput streams incur unpredictable costs under a pay-per-

invoke model, often exceeding container-based alternatives.

D. Delta Lake Caching Benefit: Delta Lake caches metadata

and columnar data with predicate pushdown and data

skipping, delivering up to 10 × faster batches reads during

iterative retraining or compliance queries[11]. By pruning

irrelevant data files via min/max statistics and leveraging

Apache Spark’s in-memory caching, retraining jobs complete

2× faster.

Drawback: Caching duplicates data on local SSDs,

consuming additional disk space (up to 25 % of original

dataset). Cache invalidation strategies must be carefully

managed to avoid stale data requiring TTL policies or manual

refresh triggers.

E. Dynamic Orchestration & Reinforcement Learning

(RL) Future work involves AI-driven autoscaling agents that

learn optimal resource allocations by observing workload

patterns, spot-market price fluctuations, and end-to-end

latency metrics. A reinforcement-learning autoscaler could

predict surges such as market opens and preemptively scale

clusters, balancing cost and performance in real time.

However, building such a system demands complex reward-

model design, safe exploration policies to avoid SLA

violations, and integration with Kubernetes APIs for real-time

control.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 09 | Sept - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM10728 | Page 10

10. CONCLUSION AND FUTURE WORK

This paper presents a scalable, low-latency, and fault-tolerant

architecture for real-time financial stream processing,

combining the strengths of both Lambda[8] and Kappa

patterns. Our hybrid approach leverages Apache Kafka [6],

Apache Flink [5], and Apache Spark [13] all deployed on

Kubernetes—to meet the unique demands of use cases such as

high-frequency trading, real-time risk management, fraud

detection, and regulatory compliance.

Our 60-node prototype achieves:

• Throughput of 1.2 million events per second

• p99 latency below 0.7 seconds

• Scalability with R² = 0.99 across cluster sizes

• Operational cost savings of ~25% compared to

legacy batch-centric stacks

By integrating GPU powered processing, dynamic

autoscaling, checkpointing, and immutable event logs, we

demonstrate that high-performance, real-time analytics is

feasible within financial regulatory boundaries.

We also highlight several trade-offs: operational complexity,

dual logic maintenance, and GPU resource management. Our

findings suggest that while a unified streaming-first

architecture is technically and economically viable, ongoing

advances in serverless[8], privacy-aware analytics, and

streaming SQL may soon make such architectures even more

accessible and maintainable.

Future work will explore adaptive autoscaling via ML,

federated anomaly detection, and end-to-end explainability of

streaming model decisions to further align with regulatory and

operational goals.

REFERENCES

[1] Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Communications of the ACM, vol.
51, no. 1, pp. 107–113, 2008.
 [2] M. Zaharia et al., “Discretized Streams: Fault-tolerant
streaming computation at scale,” ACM SOSP, 2013.
[3] L. Neumeyer et al., “S4: Distributed stream computing
platform,” ICDMW, 2010.
[4] P. Hunt et al., “ZooKeeper: Wait-free coordination for
Internet-scale systems,” USENIX ATC, 2010.
 [5] A. Alexandrov et al., “The Stratosphere platform for big data
analytics,” VLDB Journal, vol. 23, pp. 939–964, 2014. (Apache
Flink)
[6] N. Narkhede, G. Shapira, and T. Palino, Kafka: The Definitive
Guide, O’Reilly Media, 2017. [7] N. Marz and J. Warren, Big Data:
Principles and best practices of scalable real-time data systems,
Manning, 2015. (Lambda Architecture)
[8] D. Hellerstein et al., “Serverless analytics,” Communications of
the ACM, vol. 64, no. 6, pp. 50–59, 2021.
 [9] A. Smith et al., “Fraud Detection at Scale Using Real-Time
Analytics,” IBM Redbooks, 2020.

[10] J. Kreps, “The Log: What every software engineer should
know about real-time data’s unifying abstraction,” LinkedIn
Engineering Blog, 2013.
[11] Delta Lake Project, “Delta Lake Documentation,”
https://docs.delta.io/latest/ [12] B. Burns et al., Kubernetes: Up
and Running, 2nd ed., O’Reilly Media, 2019.
[13] M. Zaharia et al., “Apache Spark: A unified engine for big
data processing,” Communications of the ACM, vol. 59, no. 11, pp.
56–65, 2016.
[14] Confluent Inc., “Kafka Documentation,”
https://kafka.apache.org/documentation/
[15] Apache Software Foundation, “Apache Flink
Documentation,” https://flink.apache.org/docs/
[16] NVIDIA, “NVIDIA Kubernetes Operator,”
https://docs.nvidia.com/datacenter/cloud-native/kubernetes
[17] T. Akidau et al., “The dataflow model: A practical approach
to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing,” VLDB, vol. 8, no. 12,
pp. 1792–1803, 2015.

http://www.ijsrem.com/
https://kafka.apache.org/documentation/
https://flink.apache.org/docs/

