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Abstract—Financial institutions are increasingly 

challenged by the influx of high-volume, high-

velocity, and heterogeneous data streams, including 

transaction records and real-time market feeds. 

Conventional ETL pipelines and monolithic data 

warehouse systems fall short of delivering the low-

latency responses, scalable throughput, and precise 

processing guarantees required for critical 

operations such as fraud detection, algorithmic 

trading, and real-time risk management. 

This paper presents a detailed examination of 

distributed computing paradigms—including batch, 

micro-batch, and streaming—as well as 

architectural patterns such as Lambda, Kappa, and 

hybrid frameworks, specifically adapted for 

financial applications. We introduce a containerized 

hybrid Lambda-Kappa model deployed on 

Kubernetes[12], integrating Apache Kafka [6] for 

event ingestion, Apache Flink [5] (augmented with 

GPU powered processing) for real-time processing, 

and Apache Spark [2][13] for batch computation. 

Our 60-node prototype achieves 1.2 million events 

per second with p99 latency under 0.7 seconds and 

demonstrates nearly linear scalability (R² = 0.99), 

reducing operational costs by approximately 25%. 

The paper also discusses system resilience, 

compliance and security considerations, and 

outlines future research directions in serverless 

orchestration [13], adaptive autoscaling, and 

privacy-aware analytics. 

Keywords—Big data, distributed computing, financial 

analytics, real-time streaming, Lambda architecture, 

Kubernetes, GPU acceleration. 

 

 

1. INTRODUCTION 

Financial markets have undergone a profound evolution over 

the past century, shifting from human-centric, open-outcry 

trading floors and ledger books to fully electronic, algorithm-

driven exchanges spanning the globe. In the early 1900s, price 

discovery relied on ticker-tape systems and manual order 

matching. By the 1980s, the advent of electronic 

communication networks (ECNs) began automating trade 

routing, while the 1990s dot-com boom and the rise of high-

speed fiber links connected markets across time zones. 

Today’s landscape features sub-microsecond order 

executions, global dark pools, and algorithmic strategies 

operating concurrently across dozens of venues, transforming 

trading from a localized craft into a distributed, software-

dominated process. 

Post-2008 regulatory reforms and rapid technological 

advances have together fueled an unprecedented surge in 

financial data. Legislation such as Dodd-Frank, MiFID II, 

EMIR, and the Basel III accords introduced stringent 

reporting, transaction transparency, and collateral 

requirements, driving firms to capture ever-finer-grained 

event logs. Simultaneously, cloud computing, pervasive 

internet connectivity, and advanced analytics  including 

machine learning and natural language processing have 

enabled rapid deployment of data-intensive applications. 

These combined forces have amplified the four Vs of big data 

in finance volume, velocity, variety, and veracity creating 

both opportunities for deeper insight and challenges in data 

management. 

The modern financial enterprise ingests and processes diverse 

streams that differ widely in characteristics and processing 

requirements. We classify these streams into four broad 

categories: 

• High-Frequency Data: Tick-by-tick order book 

updates, market quotes, and trade executions arrive at 

rates exceeding millions of events per second. Their 

sequential order is sacrosanct, and any reordering or 

loss can introduce arbitrage opportunities or 

compliance violations. 

• Transactional Data: Customer payments, credit card 

purchases, loan origination records, and settlement 

instructions require exactly-once processing semantics 

and strong consistency to ensure account balances and 

risk metrics remain accurate. 

http://www.ijsrem.com/
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• Behavioral Data: Web and mobile app clickstreams, 

session logs, and support chat transcripts are semi-

structured or unstructured. They power real-time 

personalization, churn prediction, and early fraud 

detection, but demand schema-flexible ingestion and 

on-the-fly enrichment. 

• External Data: News articles, social-media sentiment, 

macroeconomic indicators, and alternative datasets 

(e.g., satellite imagery) are heterogeneous and often 

unstructured. Integrating them with core financial 

streams poses challenges in time alignment, 

normalization, and noise filtering. 

Traditional systems—monolithic applications, relational 

databases, and batch ETL pipelines—strain under these 

workloads. Monolithic architectures suffer from single points 

of failure, limited elasticity, and lengthy deployment cycles 

that hinder rapid innovation. Relational Database 

Management Systems (RDBMS) excel at structured 

transactions but struggle with horizontal scaling, schema 

evolution, and low-latency searches over semi-structured data. 

Batch ETL and data warehouses deliver robust reporting but 

incur latencies of minutes to hours, rendering them unsuitable 

for real-time risk alerts, fraud interdiction, or algorithmic 

decisioning. Their rigid schemas and static pipelines also 

impede swift adaptation to new financial instruments or 

regulatory mandates. 

Key financial use cases illustrate these limitations and 

underscore the need for distributed computing: 

• High-Frequency Trading (HFT): Algorithmic 

strategies such as statistical arbitrage and market 

making rely on deterministic processing at 

nanosecond or microsecond granularity. Co-locating 

matching engines near exchange data centers and 

optimizing for tail-latency consistency are critical 

competitive differentiators. 

• Risk Management: Firms monitor market, credit, 

liquidity, and operational risk metrics continuously. 

Computing Value-at-Risk (VaR) via Monte Carlo or 

historical simulation is computationally intensive, 

and stress testing under hypothetical shocks requires 

real-time recalculation across thousands of scenarios. 

• Fraud Detection: Financial crime has grown more 

sophisticated, necessitating proactive, real-time 

anomaly scoring rather than reactive batch reviews. 

Low-latency feature joins—combining transaction 

streams with device fingerprints, geolocation, and 

past behavioral patterns—must feed machine-

learning models in under 200 ms to block illicit 

activity before settlement. 

• Regulatory Compliance: Regulations including 

GDPR, CCPA, FATCA, Dodd-Frank, EMIR, MiFID 

II, and the Basel Accords impose strict requirements 

on data lineage, immutability, auditability, and 

reporting deadlines (T+0, T+1). Firms must maintain 

tamper-evident event logs and verifiable pipelines to 

demonstrate compliance, often under threat of 

substantial fines. 

2. RELATED WORK 

Distributed big-data processing frameworks and architectural 

patterns have evolved rapidly to meet growing demands for 

low-latency, high-throughput analytics. We categorize prior 

work into paradigms i.e. batch, micro-batch, and true 

streaming and architectural blueprints Lambda, Kappa, and 

hybrids before surveying emerging trends in heterogeneous 

and serverless compute. 

A. Batch Processing (MapReduce / Hadoop Ecosystem)  

The MapReduce paradigm, as conceptualized by Dean and 

Ghemawat [1], enables parallel processing of large-scale 

datasets through a series of stages: mapping, shuffling, 

sorting, and reducing. During the map phase, input data is 

transformed into key–value pairs. The shuffle step reorganizes 

and groups data by keys across distributed nodes. Sorting is 

performed to prepare grouped values for aggregation, which 

occurs in the reduce phase. 

This methodology is implemented within the Hadoop 

ecosystem, supported by tools like HDFS for distributed 

storage, YARN for resource management, Hive for SQL-like 

queries, and Pig for dataflow scripting. Despite its reliability 

and maturity, the inherent latency of MapReduce—due to disk 

I/O and batch scheduling—renders it unsuitable for sub-

second applications like real-time trading or fraud detection in 

finance. 

B. Micro-Batch Processing (Apache Spark Streaming)  

Apache Spark Streaming [2] extends batch processing by 

introducing micro-batching. Data is grouped into short time 

intervals (e.g., 1–10 seconds) and processed as Resilient 

Distributed Datasets (RDDs) using Spark’s execution engine. 

The DAG Scheduler compiles transformation pipelines into 

optimized execution plans. 

This model enables developers to reuse batch-oriented APIs 

and integrates with Spark's MLlib and GraphX libraries. 

Checkpointing supports fault recovery, while Structured 

Streaming introduces a unified API for both batch and 

streaming workloads. 

Despite its ease of use and ML integration, Spark Streaming 

inherits limitations from its batch roots. Latency is bounded 

by the batch interval, and complex stateful operations—such 

as multi-stream joins—incur heavy shuffle overheads. 

Financial institutions use Spark Streaming for rolling metrics, 

dashboard visualizations, and near-real-time features, but it 

struggles to meet sub-second SLAs. 

C. True Streaming Processing 

1) Apache Storm 

Apache Storm pioneered distributed, low-latency stream 

processing with a topology composed of spouts (sources) and 

bolts (operators) [3]. Early versions delivered at-least-once 

guarantees, leaving developers responsible for implementing 

http://www.ijsrem.com/
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idempotency. The lack of native state management and 

reliance on Zookeeper [4] made complex workflows harder to 

scale. 

Storm Trident later introduced transactional semantics, but it 

was eventually surpassed by more modern engines with 

stronger consistency and state support. 

2) Apache Flink  

Apache Flink [5] distinguishes itself with robust support for 

real-time, event-driven processing. Its architecture 

accommodates event-time semantics and handles out-of-order 

data using watermarks. Flink’s state management leverages 

backends such as RocksDB and in-memory stores, which are 

periodically snapshotted and persisted. 

To maintain consistency, it implements two-phase commit 

protocols along with changelog tracking. The platform offers 

rich libraries for advanced operations, including pattern 

recognition with Complex Event Processing (CEP), temporal 

windowing, and dual representations of data streams and 

tables using its Table API. This makes Flink particularly well-

suited for financial applications requiring precise, low-latency 

analytics. 

3) Kafka Streams [6] 

Kafka Streams is a lightweight client-side stream processing 

library built on Apache Kafka. It provides event-time 

processing, stream–table duality, and exactly-once semantics 

without needing a separate cluster. It is well-suited for 

lightweight, embedded use cases like rule-based 

transformations and low-latency aggregations. 

While operationally simple and efficient, Kafka Streams lacks 

advanced stateful and CEP capabilities compared to Flink. 

D. Architectural Patterns 

1) Lambda Architecture [7] 

The Lambda architecture  proposes a multi-layered design 

consisting of immutable data storage, a batch processing layer 

for comprehensive historical analysis, and a speed layer 

dedicated to real-time data processing. This design aims to 

balance fault tolerance and completeness by enabling 

reprocessing from raw logs when needed. 

However, maintaining separate pipelines for batch and 

streaming logic introduces complexity, including duplicated 

code and difficulties in synchronizing outputs across layers—

particularly problematic in environments where data accuracy 

and timeliness are critical, such as in financial institutions. 

2) Kappa Architecture 

Kappa simplifies the architecture by replacing the batch layer 

with a single streaming pipeline that reprocesses historical 

data via log replay. While this avoids duplicated code, 

replaying petabyte-scale logs for compliance or model 

retraining is often prohibitively slow and expensive. 

3) Hybrid Lambda-Kappa 

A hybrid approach combines the strengths of both: using a 

streaming speed layer for real-time analytics and a batch layer 

for periodic backfills and audit-grade reporting. This reduces 

duplication, enhances compliance support, and simplifies 

logic reuse across layers. 

 

E. Emerging Trends in Distributed Compute 

1) GPU Powered Processing  

GPUs excel at parallel computation, making them ideal for 

streaming inference tasks like fraud scoring or risk metric 

calculations. Financial institutions leverage GPU powered 

processing to reduce latency and boost throughput for ML 

inference, often achieving 3×–10× performance gains over 

CPU-based solutions. 

2) FPGA and ASICs 

FPGAs and ASICs offer ultra-low latency for specialized 

tasks (e.g., order matching, encryption). These are typically 

reserved for niche use in high-frequency trading due to high 

cost and complexity. 

3) Serverless Streaming  

Serverless architectures offer ease of deployment and cost 

savings through pay-per-invoke billing. However, they face 

challenges in supporting low-latency, stateful workloads 

required in continuous financial stream processing. 

3. FINANCIAL BIG DATA USE CASES 

This section highlights how distributed streaming and batch 

architectures are used in real-world financial scenarios. We 

analyze critical use cases in high-frequency trading, risk 

management, fraud detection, and regulatory compliance. 

A. High-Frequency Trading (HFT) 

High-Frequency Trading (HFT) encompasses algorithmic 

strategies that execute vast volumes of trades in fractions of a 

second. Market makers simultaneously post bids and asks 

across venues, profiting from tiny price differentials. 

Statistical arbitrage strategies seek temporary mispricings 

between correlated instruments, while event-driven strategies 

act on real-time news or sentiment spikes. 

To support such operations, systems ingest live order book 

updates and compute pricing signals in microseconds. 

Components of HFT latency include: 

http://www.ijsrem.com/
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• Network latency: Every 100 km adds ~500 µs over 

fiber or ~300 µs via microwave. 

• Packet handling: Techniques like DPDK and 

OpenOnload reduce kernel overhead. 

• Serialization: Protocols such as FlatBuffers 

minimize data (de)serialization time. 

• Memory access: Cache coherence introduces 

nanosecond-scale stalls per core. 

Traders often colocate servers within the same data centers as 

exchange matching engines. These environments offer sub-5 

µs round-trip connections and prioritize chilled cooling, 

redundant power, and physical security. 

Although our architecture does not target sub-microsecond 

performance, its millisecond-scale responsiveness supports 

algorithmic trading strategies that tolerate slightly higher 

latencies (e.g., momentum or basket execution). 

B. Real-Time Risk Management 

Financial firms monitor market, credit, liquidity, and 

operational risks in real time. Each risk type requires timely 

data aggregation and analytics: 

• Market Risk: Managed via Value-at-Risk (VaR) 

using Monte Carlo, parametric, or historical models. 

• Credit Risk: Requires real-time counterparty 

exposure tracking and limit enforcement. 

• Liquidity Risk: Involves monitoring cash 

inflows/outflows and funding availability. 

Streaming risk pipelines compute VaR using sliding windows 

and exponential weighting. Systems must support: 

• Real-time data joins across positions, market prices, 

and sensitivities. 

• Dynamic covariance matrix updates for multi-asset 

portfolios. 

• Pre-trade limit checks that block trades violating 

thresholds—executed within milliseconds. 

Stress testing systems run “what-if” scenarios on live 

portfolios, simulating events like interest rate shocks or 

default contagion. All of this demands exactly-once semantics 

to ensure correct capital and margin reporting. 

C. Fraud Detection [9] 

Fraud prevention has evolved from retrospective rule checks 

to proactive machine learning pipelines capable of reacting 

within milliseconds. 

A typical real-time fraud detection system includes: 

• Feature engineering: Real-time computation of 

behavioral metrics (e.g., transactions/min, merchant 

diversity). 

• Stateful tracking: Using key-based storage (e.g., 

RocksDB) to retain user history and session context. 

• ML inference: Deep learning or XGBoost models 

run on GPUs [11] to classify events in real time. 

• Alerting or blocking: High-risk scores trigger 

immediate transaction declines or step-up 

authentication. 

Models monitor drift through stability indices and 

performance metrics (e.g., AUC, precision@K). If accuracy 

degrades, retraining pipelines refresh models from the latest 

labeled data. 

Challenges include: 

• Class imbalance: Fraud is rare (<0.1%), requiring 

careful sampling. 

• Adversarial evasion: Attackers adapt quickly; 

models must be robust and regularly audited. 

• Explainability: Regulatory demands often require 

interpretable features (e.g., SHAP values). 

D. Regulatory Compliance 

Regulations such as MiFID II, Dodd-Frank, EMIR, Basel 

III/IV, GDPR, and CCPA impose strict controls over financial 

data flows, auditability, and privacy. Key technical 

requirements include: 

• Data lineage: Tracking source, transformation, and 

output for every record. 

• Immutability: Append-only logs [10] with 

cryptographic hashing (e.g., Merkle trees) ensure 

tamper evidence. 

• Timely reporting: T+0 and T+1 regulatory 

deadlines require real-time reconciliation pipelines. 

• Right to erasure: GDPR compliance mandates 

selective redaction of personally identifiable 

information (PII) from immutable logs—achieved 

via tokenization or encryption. 

Legacy overnight ETL jobs are no longer sufficient. Real-time 

pipelines using Flink [5], Kafka [6], and Delta Lake[11] 

provide continuous processing, snapshot isolation, and 

traceable audit trails to meet these demands. 

In summary, financial use cases such as HFT, risk, fraud, and 

compliance all demand scalable, fault-tolerant architectures 

that can process millions of events per second with 

millisecond precision. These scenarios strongly motivate the 

hybrid distributed architecture introduced in the following 

sections. 

4. DISTRIBUTED PROCESSING PARADIGMS: 

COMPARATIVE ANALYSIS 

Distributed architectures must be evaluated rigorously across 

key dimensions such as latency, throughput, consistency, 

and operational complexity. Each processing paradigm—

batch, micro-batch, and streaming—offers trade-offs that 

affect their suitability for financial workloads. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                       Volume: 05 Issue: 09 | Sept - 2021                               SJIF Rating: 6.714                                 ISSN: 2582-3930                                                                                                                                               

 

© 2021, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM10728                                              |        Page 5 

Latency 

We distinguish between: 

• Event latency: Time from data generation to 

processing completion 

• End-to-end latency: Includes network, serialization, 

computation, and serving delays 

Paradigm Event latency 
End-to-end 

latency 

Batch Minutes to hours 
Often exceeds 

several hours 

Micro-Batch 

Equal to batch 

interval + overhead 

(1–10 s typical) 

Seconds 

Streaming (Flink 

[5]) 
Milliseconds 

Typically under 1 

second 

Latency in streaming is minimized via in-memory state, 

event-time processing, and asynchronous checkpointing. 

Performance is further enhanced by avoiding disk I/O and 

reducing serialization overhead with binary formats (e.g., 

Avro, Kryo). 

Throughput 

Throughput measures sustained data capacity (events/sec or 

bytes/sec): 

• Batch: Efficient for large datasets; can reach 

hundreds of GB/s across clusters. 

• Micro-Batch: Moderate throughput (~100 MB/s per 

core) via windowed execution. 

• Streaming: Processes millions of events/sec using 

fine-grained operator chaining and efficient 

backpressure mechanisms. 

Streaming systems like Apache Flink [5] achieve high 

throughput by pipelining tasks and parallelizing across 

threads, operators, and task slots. 

Consistency 

Financial systems demand exactly-once semantics: 

• Batch: Naturally consistent due to deterministic re-

runs. 

• Micro-Batch: Achieves exactly-once via 

checkpointing and idempotent sinks. 

• Streaming: Uses two-phase commits, transactional 

logs, and state snapshots. 

Flink [5] ensures exactly-once processing with asynchronous 

checkpointing and changelog streams, even during failures. 

Kafka [6] complements this with transactional messaging and 

idempotent producers/consumers. 

Operational Complexity 

Aspect Batch Micro-batch Streaming 

Deployment 

Hadoop/YAR

N, stable 

tooling 

Spark clusters, 

moderate 

Kubernetes, 

more tuning 

required 

State 

Management 
Stateless 

RDD 

checkpointing 

RocksDB, 

incremental 

snapshots 

Failure 

Recovery 

Easy (restart 

job) 

Moderate 

(checkpoint 

restore) 

Fast resume 

via Flink 

checkpoints 

Monitoring 
Job duration, 

disk I/O 

Batch 

intervals, task 

counts 

Latency, 

state size, 

checkpoint 

time 

Security/Compli

ance 

Strong file-

system 

controls 

API-level 

control 

TLS, RBAC, 

end-to-end 

audit logging 

Streaming platforms require careful tuning of memory, 

backpressure handling, and state TTL. However, they offer 

the granularity and responsiveness required for real-time 

operations. 

Summary of Paradigm Strengths and Weaknesses 

Paradigm Strengths Limitations 

Batch 
Best for historical 

analysis, stable 

pipelines 

High latency, rigid 

schema, not suitable 

for real-time use 

cases 

Micro-Batch 
Reuse of batch logic, 

good for dashboards 

& features 

Bounded by batch 

interval, struggles 

with sub-second 

requirements 

Streaming 
Sub-second latency, 

exactly-once 

guarantees, flexible 

Operational 

overhead, requires 

tuning, higher 

complexity 

 

5. HYBRID LAMBDA-KAPPA ARCHITECTURE 

To meet the diverse demands of financial applications, we 

propose a hybrid Lambda-Kappa architecture that 

combines real-time streaming and batch processing layers in a 

modular, fault-tolerant, and scalable framework. 

A. Design Principles 

This architecture is designed with the following principles: 

• Low latency: Sub-second processing of high-frequency 

events. 

• Scalability: Linear horizontal scaling across compute 

nodes. 

• Exactly-once processing: State consistency and 

transactional writes. 

http://www.ijsrem.com/
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• Modularity: Swappable components (e.g., Kafka, 

Flink, Spark[13], Delta Lake[11]). 

• Auditability: Immutable logs and lineage tracking for 

compliance. 

• Cloud-native: Kubernetes orchestration[12], 

containerized microservices. 

B. Core Components 

1) Event Ingestion – Apache Kafka [6] 

Kafka acts as the central nervous system, providing a 

distributed log for all event sources: 

• Producers: Market data feeds, transactional systems, 

customer activity. 

• Topics: Partitioned streams for low-latency, scalable 

consumption. 

• Retention: Configurable log retention (e.g., 7 days to 

infinite). 

• Delivery: At-least-once or exactly-once guarantees 

with idempotent writes. 

Kafka also serves as the replayable source of truth for batch 

reprocessing. 

2) Real-Time Layer – Apache Flink  

Flink handles real-time analytics, fraud scoring, and anomaly 

detection: 

• Event-time processing: Watermarks align 

processing with actual event times 

• Windowing: Tumbling, sliding, and session 

windows for rolling metrics 

• Stateful operators: Keyed process functions 

maintain per-user/session state 

• Checkpointing: Asynchronous snapshots to durable 

storage 

• Output sinks: Kafka, HDFS, Elasticsearch, 

databases 

Flink jobs are containerized and deployed on Kubernetes[12] 

with horizontal autoscaling. 

3) Batch Layer – Apache Spark [13] 

Spark handles offline model training, regulatory reporting, 

and historical backfills: 

• Batch ETL: Structured and semi-structured log parsing 

• MLlib integration: Feature extraction, model training 

(e.g., XGBoost) 

• Delta Lake or Iceberg: Transactional tables over 

object storage 

• Notebook workflows: Used for analyst-driven queries 

and audits 

Spark reads from Kafka logs or HDFS, performs computation, 

and writes to S3-compatible stores. 

4) Metadata and Orchestration 

Metadata services track schema evolution, data lineage, and 

job DAGs. Apache Airflow or Argo is used for: 

• Scheduling: Batch pipelines and backfills 

• Retry logic: Resilient execution 

• Auditing: DAG visualizations and execution logs 

Kubernetes manages containerized services using Helm 

charts, with Prometheus/Grafana for observability. 

C. Architecture Diagram  

 

 

 

 

 

D. Resilience and Fault Tolerance 

• Kafka replication ensures durability[6]. 

• Flink checkpointing resumes processing post-failure 

[5]. 

• Spark job retries recover from transient errors[13]. 

• Kubernetes probes (liveness/readiness) enable auto-

healing[12]. 

Disaster recovery is supported via multi-region Kafka[6] and 

stateless compute. 

6. IMPLEMENTATION DETAILS 

To validate our architecture, we developed a production-grade 

implementation deployed on a 60-node Kubernetes cluster. 

This section outlines the infrastructure, technology stack, and 

key implementation choices. 

A. Infrastructure Setup 

• Cluster: 60-node Kubernetes cluster (each node: 16 

vCPUs, 64 GB RAM) 

• Environment: Hybrid cloud setup using on-premise 

and AWS EC2 instances 

• Container Runtime: Docker with containerd 

• Orchestration: Kubernetes v1.25 with Helm 3 

• Storage: CephFS and S3-compatible object store for 

persistence 

• Monitoring: Prometheus + Grafana, Fluentd + ELK 

for logs 

We use Terraform for infrastructure-as-code (IaC) to manage 

cluster provisioning and scaling policies. 

Apache 

Kafka 

Flink 

Jobs(Real-

Time) 

Spark 

Jobs(Batch) 

Data Producers 

(Market Feeds, 

Transactions, 

User Activity) 

Low-Latency 

Sinks (Alerts, 

Dashboards) 

Object Store + 

Delta Lake 

(Compliance, 

Reporting) 
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B. Kafka Deployment 

• Kafka Brokers [14]: Deployed via Strimzi Operator, 

each with 3 partitions per topic and 3x replication 

• Zookeeper Ensemble: 5-node fault-tolerant setup 

• Kafka Connect: For CDC ingestion from 

PostgreSQL and MySQL 

• Schema Registry: Manages Avro schemas and 

enforces compatibility 

Kafka serves as the ingestion buffer and backbone of the 

system. 

C. Flink Deployment[15] 

• JobManager and TaskManagers: Deployed as 

Kubernetes Deployments with autoscaling 

• State Backend: RocksDB with incremental 

snapshots persisted to S3 

• Parallelism: Dynamically adjusted based on task lag 

and resource utilization 

• Checkpointing: Every 15 seconds to support low 

RPO (recovery point objective) 

• Fault Injection Testing: Simulated node failures 

confirmed recovery in under 10 seconds 

Flink jobs run with separate namespaces and service accounts 

for security isolation. 

D. Spark Batch Layer[13] 

• Apache Spark: Deployed using Spark-on-

Kubernetes operator 

• Spark History Server: Tracks job execution for 

audits 

• Delta Lake: Stores batch outputs in S3 with ACID 

semantics 

• Scheduled Jobs: Managed via Apache Airflow with 

DAG versioning 

Batch workflows handle full-table scans, model training, and 

compliance reporting. 

E. GPU Integration  

• GPU Nodes: 4 nodes with NVIDIA A100s (each 

with 40 GB VRAM) 

• Inference Pipeline: Fraud scoring models deployed 

via ONNX Runtime on Flink [5] 

• Speedup: Achieved 5× throughput and 3× latency 

reduction over CPU baseline 

• Autoscaling: GPU pods are elastically scaled based 

on inference request volume 

We used Kubernetes device plugins and NVIDIA operator 

[16] for managing GPU scheduling. 

F. CI/CD and DevOps 

• GitOps: ArgoCD continuously syncs Git repositories 

with Kubernetes manifests[12] 

• CI/CD: GitHub Actions builds Docker images, runs 

unit and integration tests 

• Image Registry: ECR (Elastic Container Registry) 

for versioned images 

• Security Scans: Trivy and Falco used for image and 

runtime vulnerability detection 

All services are deployed via declarative Helm charts, with 

secrets managed via HashiCorp Vault. 

G. Observability 

• Metrics: Prometheus scrapes Flink, Kafka, and 

Spark exporters[13] 

• Dashboards: Grafana panels track throughput, lag, 

memory, and error rates 

• Alerting: Alertmanager routes SLA violations (e.g., 

p99 > 1s) to Slack and PagerDuty 

• Tracing: OpenTelemetry spans are exported to 

Jaeger for latency diagnostics 

This observability stack enables proactive monitoring and 

post-incident analysis. 

7. EXPERIMENTAL EVALUATION 

We evaluate our hybrid Lambda-Kappa architecture across 

key metrics—throughput, latency, scalability, and cost 

efficiency—using synthetic and production-like financial 

workloads. 

A. Benchmark Setup 

• Cluster: 60 Kubernetes nodes (960 vCPUs, 3.84 TB 

RAM, 4 GPU nodes) 

• Kafka Topics: Simulated order book and transaction 

streams (10K TPS per topic) 

• Flink Jobs: Fraud scoring, windowed VaR, real-time 

metrics 

• Spark Jobs: Daily reporting, model training, 

historical joins 

• Metrics Captured: p50/p95/p99 latency, throughput 

(events/sec), CPU & memory 

Workloads mimic real-time trading activity, risk simulation, 

and regulatory processing. 

B. Throughput & Latency 

Component Metric Result 

Kafka Ingestion 
Sustained 

event rate 
1.2 million events/sec 

Flink Processing  
p99 end-to-

end latency 
0.68 seconds 

http://www.ijsrem.com/
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GPU Fraud 

Inference [11] 

Average 

scoring 

latency 

87 ms (vs. 240 ms CPU 

baseline) 

Spark Batch 

Jobs  

Daily 

compliance 

report runtime 

16 minutes (vs. 45 min 

legacy) 

 

Flink’s pipelined execution and RocksDB state backend 

ensured low tail latency even under load. Kafka backpressure 

was minimal due to efficient consumer group balancing. 

C. Scalability 

We scaled the system from 10 to 60 nodes and observed near-

linear scaling: 

• Throughput: Increased from 200K to 1.2M events/sec 

• CPU Usage: Stable below 75% at peak load 

• R² = 0.99: Regression fit on throughput vs. cluster size 

Autoscaling policies adjusted Flink and Spark pods based on 

Kafka lag and memory pressure. GPU inference nodes scaled 

from 2 to 10 based on scoring volume. 

D. Fault Tolerance & Recovery 

We tested various failure scenarios: 

Failure Recovery time Impact 

Flink TaskManager 

crash 
~6 seconds 

Stream resumed 

from last checkpoint 

Kafka broker failure ~3 seconds 
Handled via leader 

election 

GPU pod eviction ~10 seconds 
Requests rerouted 

with retry 

Spark job failure Retries via Airflow 
No manual 

intervention needed 

Flink's checkpointing and Kafka’s replication enabled fast 

recovery with no data loss. 

E. Cost Efficiency 

We benchmarked total resource costs (EC2 + storage + GPU) 

vs. a traditional Spark-only batch architecture: 

Metric Legacy Hybrid architecture 

Daily compute cost $1,800 $1,370 

Storage cost (monthly) $2,400 $1,850 

Fraud model inference (per M 

txns) 
$28 $9.60 

Total monthly savings — ~25% 

 Savings were driven by streaming-first design (reduced disk 

I/O), autoscaled GPU workloads, and use of S3 for cold 

storage. 

F. Observability Impact 

Proactive monitoring via Grafana enabled: 

• Early detection of SLA drift (latency > 1s) 

• Root-cause tracing via OpenTelemetry (slow joins, 

checkpoint delays) 

• Alerting escalation via PagerDuty within 30 seconds 

Developers used these insights to fine-tune checkpoint 

intervals, parallelism, and window sizes. 

8. OPERATIONAL & SECURITY 

CONSIDERATIONS 

While our hybrid Lambda-Kappa architecture demonstrates 

strong performance in real-time financial analytics, several 

challenges and opportunities for enhancement remain. 

A. Lessons Learned 

1. Balance Between Batch and Streaming: 

Maintaining two code paths (Spark + Flink) increases 

cognitive and operational overhead. However, this 

hybrid design was necessary to satisfy both low-

latency requirements and regulatory completeness. 

2. State Management is Critical: Flink’s RocksDB 

backend enabled precise fraud scoring and risk 

computation, but tuning state TTLs and checkpoint 

sizes proved challenging. Frequent garbage 

collection or large state snapshots can inflate tail 

latency. 

3. GPU Acceleration Trade-offs [11]: GPU scoring 

reduced fraud model latency by over 60%, but 

introduced cost and scheduling complexity. 

Autoscaling GPU nodes helped control expense, but 

resource fragmentation occasionally delayed pod 

startups. 

4. Compliance Demands are Evolving: Regulatory 

standards increasingly expect real-time data lineage, 

encryption at rest/in transit, and explainable model 

inference. Supporting fine-grained PII controls while 

preserving pipeline immutability remains a non-

trivial problem. 

5. Observability Drives Optimization: Without 

system-wide tracing (e.g., OpenTelemetry), 

identifying bottlenecks across Kafka, Flink, and 

downstream sinks would have been near impossible. 

Tail-latency alerting proved more useful than 

average metrics for SLA monitoring. 

http://www.ijsrem.com/
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B. Limitations 

• No Formal Verification: Our implementation was 

extensively tested but not formally verified for 

compliance logic or exactly-once correctness under 

all failure scenarios. 

• Limited Real-World Data: Synthetic test data was 

modeled on financial workloads, but may not capture 

every corner case (e.g., bursty after-hours activity, 

rogue trades). 

• In-memory Bias: Results are optimized for high-

memory, well-provisioned environments. Smaller 

firms or on-premise-only deployments may face 

performance constraints. 

C. Future Work 

1. Serverless Streaming Engines [17] [8]: Projects 

like Dataflow, Pulsar Functions, and Flink Stateful 

Functions offer hope for reducing operational burden 

by abstracting cluster management. 

2. Federated & Privacy-Preserving Analytics: 

Homomorphic encryption, federated learning, and 

secure enclaves can enable cross-institution 

collaboration on fraud models without data exposure. 

3. Streaming SQL & Unified APIs: Tools like Flink 

SQL[5], ksqlDB, and Delta Live Tables[11] could 

democratize access to streaming analytics by 

abstracting stream–table duality into familiar 

declarative syntax. 

4. Autoscaling Improvements: Reactive scaling based 

on Kafka lag or GPU queue length proved useful, but 

predictive models using ML could better anticipate 

traffic spikes (e.g., payroll events, earnings season). 

5. Explainability Tooling: Integrating SHAP, LIME, 

or Captum directly into fraud inference pipelines 

may improve auditability and regulatory trust. 

 

9. COST & PERFORMANCE TRADE-OFFS 

A. Spot Instances Benefit: Spot instances offer 30–70 % cost 

savings over On-Demand pricing by utilizing spare AWS 

capacity at deep discounts. In our prototype, replacing 50 % 

of CPU worker nodes with spot instances reduced hourly 

infrastructure spend by 28 % without impacting throughput. 

Drawback: Spot instances can be reclaimed with a 2-minute 

notice, risking sudden capacity loss. Our hybrid architecture 

mitigates this via:  

• Exactly-once checkpointing in Flink, which ensures 

state and in-flight events are durably stored before 

preemption.  

• Kubernetes PodDisruptionBudgets [12] and 

ReplicaSets that automatically reschedule pods onto 

available capacity after termination.  

• PreStop hooks that trigger graceful shutdowns, 

allowing operators to flush buffers and complete in-

flight checkpoints.  

• Diversification across multiple instance types 

(m5.4xlarge, m5.2xlarge) and Availability Zones to 

reduce correlated preemptions. 

 

B. GPU Acceleration Benefit: Offloading compute-intensive 

tasks to GPUs yields 3×–5× faster ML inference and matrix 

computations. A fraud-scoring workload that took 300 ms on 

CPUs completes in 100 ms on NVIDIA T4 GPUs, enabling up 

to 2× the throughput per node and reducing the total number 

of required CPU instances by one third. This translates to a 

net 15 % reduction in combined CPU+GPU costs. Drawback: 

GPUs underperform for simple transformations: the overhead 

of copying data between host and device memory (~10–20 ms 

per batch) can outweigh compute gains for filters or basic 

aggregations. To optimize utilization, we:  

• Only offload heavy operators (model inference, 

covariance matrix computation) to GPU kernels. 

• Batch multiple events into a single GPU invocation to 

amortize transfer overhead.  

• Co-locate GPU tasks on dedicated nodes, preventing 

resource contention with CPU-bound operators. 

 

C. Serverless Functions Benefit: Serverless platforms (AWS 

Lambda, Azure Functions) require zero infrastructure 

management, automatically scale to zero when idle, and 

charge per 100 ms of execution. They excel for event-driven 

use cases such as on-demand compliance reports, low-volume 

alert rules, or asynchronous data archival.  

Drawback: Cold-start latency ranging from hundreds of 

milliseconds to seconds breaks real-time SLAs. Stateless 

functions also necessitate external state stores, increasing 

complexity and latency. Furthermore, continuous high-

throughput streams incur unpredictable costs under a pay-per-

invoke model, often exceeding container-based alternatives. 

D. Delta Lake Caching Benefit: Delta Lake caches metadata 

and columnar data with predicate pushdown and data 

skipping, delivering up to 10 × faster batches reads during 

iterative retraining or compliance queries[11]. By pruning 

irrelevant data files via min/max statistics and leveraging 

Apache Spark’s in-memory caching, retraining jobs complete 

2× faster.  

Drawback: Caching duplicates data on local SSDs, 

consuming additional disk space (up to 25 % of original 

dataset). Cache invalidation strategies must be carefully 

managed to avoid stale data requiring TTL policies or manual 

refresh triggers. 

E. Dynamic Orchestration & Reinforcement Learning 

(RL) Future work involves AI-driven autoscaling agents that 

learn optimal resource allocations by observing workload 

patterns, spot-market price fluctuations, and end-to-end 

latency metrics. A reinforcement-learning autoscaler could 

predict surges such as market opens and preemptively scale 

clusters, balancing cost and performance in real time. 

However, building such a system demands complex reward-

model design, safe exploration policies to avoid SLA 

violations, and integration with Kubernetes APIs for real-time 

control. 

http://www.ijsrem.com/
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10. CONCLUSION AND FUTURE WORK 

This paper presents a scalable, low-latency, and fault-tolerant 

architecture for real-time financial stream processing, 

combining the strengths of both Lambda[8] and Kappa 

patterns. Our hybrid approach leverages Apache Kafka [6], 

Apache Flink [5], and Apache Spark [13] all deployed on 

Kubernetes—to meet the unique demands of use cases such as 

high-frequency trading, real-time risk management, fraud 

detection, and regulatory compliance. 

Our 60-node prototype achieves: 

• Throughput of 1.2 million events per second 

• p99 latency below 0.7 seconds 

• Scalability with R² = 0.99 across cluster sizes 

• Operational cost savings of ~25% compared to 

legacy batch-centric stacks 

By integrating GPU powered processing, dynamic 

autoscaling, checkpointing, and immutable event logs, we 

demonstrate that high-performance, real-time analytics is 

feasible within financial regulatory boundaries. 

We also highlight several trade-offs: operational complexity, 

dual logic maintenance, and GPU resource management. Our 

findings suggest that while a unified streaming-first 

architecture is technically and economically viable, ongoing 

advances in serverless[8], privacy-aware analytics, and 

streaming SQL may soon make such architectures even more 

accessible and maintainable. 

Future work will explore adaptive autoscaling via ML, 

federated anomaly detection, and end-to-end explainability of 

streaming model decisions to further align with regulatory and 

operational goals. 
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