
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                    Volume: 06 Issue: 04 | April - 2022                         Impact Factor: 7.185                                  ISSN: 2582-3930                                                                                                                                               

 

© 2022, IJSREM      | www.ijsrem.com                                                                                                                |        Page 1 
 

Efficient Brain Tumor Segmentation with Multiscale Two-
Pathway-Group Conventional Neural Networks 

 
Rajesh Bhaskar pawar 

 
Guide: Asst Prof Gauri Ansursar 

 
Keraleeya Samajam's Model College, Khambalpada Road, Thakurli, Dombivli (East), Kanchangaon 

 
Maharashtra 

 
Abstract—Manual segmentation of the brain tumors for 

cancer diagnosis from MRI images is a difficult, tedious, and 
time-consuming task. The accuracy and the robustness of 
brain tumor segmentation, therefore, are crucial for the 

diagnosis, treatment planning, and treatment outcome 
evaluation. Mostly, the automatic brain tumor segmentation 

methods use hand designed features. Similarly, traditional 
methods of deep learning such as convolutional neural 
networks require a large amount of annotated data to learn 

from, which is often difficult to obtain in the medical domain. 
Here, we describe a new model two-pathway-group CNN 
architecture for brain tumor segmentation, which exploits 
local features and global contextual features simultane-ously. 

This model enforces equivariance in the two-pathway CNN 
model to reduce instabilities and overfitting parameter 

sharing. Finally, we embed the cascade architecture into two-
pathway-group CNN in which the output of a basic CNN is 

treated as an additional source and concatenated at the last 
layer. Validation of the model on BRATS2013 and BRATS2015 
data sets revealed that embedding of a group CNN into a two 
pathway architecture improved the overall performance over 

the currently published state-of-the-art while computational 
complexity remains attractive. 

 
Index Terms—Brain tumor, group CNN, CNN, deep 

neural network, group convolutional neural networks, 
cascade CNN, two-pathway CNN, 2PG-CNN. 

 
I. INTRODUCTION  

C ANCEROUS brain tumors present themselves as unnatu-ral, 
uncontrolled growth and division of cells in the brain.  

While brain tumors are not very common, they are one of the 

most lethal cancers. In the US alone for example, approximately 

23,000 new cases of brain cancer were diagnosed in 2015. It is an 

abnormality in the brain tissues that damage the nervous system 

severely, which result patient death. are the most com-mon brain 

tumors that are infiltrative in nature, and occur near white matter 

fibers. They may spread to any part of the brain 
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making it difficult to detect. High-grade gliomas are 

considered one of the most aggressive tumors with a median 

survival of 15 months. Gliomas can be measured by MRI 

using multiple sequences such as T2-weighted uid attenuated 

inversion recov-ery (Flair), T1-weighted (T1), T1-weighted 

contrast-enhanced (T1c), and T2-weighted (T2) using existing 

automated brain tumor segmentation techniques.  
Healthy brains consist of three types of tissues: gray matter, 

white matter and cerebrospinal fluid. Detection and segmen-tation 

of cancerous cells using MRI not only helps to detect the presence 

of tumors and their location, but it also enables the identification 

of tumor size, necrotic tissue, tumorous tissue (vascularized or 

not) and edema (swelling near the tumor). Brain tumors are 

heterogeneous in shape and appearance (gliomas may have the 

same appearance as gliosis and stroke etc), which makes 

segmentation challenging for radiologists. Furthermore, they may 

appear at any location in the brain: depending on the origin of the 

brain tumor, they can be classified as either primary tumors or 

metastatic brain tumors. The edges of brain tumors are often 

ambiguous and fuzzy, and are hard to distinguish from healthy 

tissues. Therefore a more sensitive alternative to MRI is needed to 

improve the detection of tumors and to increase the survival rate 

of people with brain tumors. 

Machine-aided image segmentation, and its subsequent quan-

titative assessment of cancerous tissue, provides valuable 

information for the early diagnosis and characterization of neu-

ropathologies, which then informs appropriate treatment strate-

gies. Quantitative analysis of affected cells reveals clues about the 

disease progression, its characteristics, and effects on the 

particular anatomical structure. Furthermore, it very important for 

early diagnosis that helps early prevention by planning the 

treatment strategies. Cancerous cells are normally quantified by 

means of the number of lesions, their volume, and biomark-ers 

that have been shown to be related to cognitive deficits. As a 

result, the quantitative analysis of effected regions requires 

accurate lesion segmentation, which is a challenging task be-

cause of the variations in size, shape, location and frequency of 

cancerous lesions. Arguably, the most accurate brain tumor seg-

mentation results are achieved manually by an expert; however, 

this is an expensive, time-consuming, tedious, and impractical 

task, that is prone to errors and is affected by inter-observer 

variability. Hence, clinicians often use qualitative or visual in-

spection only, or at best, crude measures like approximating the 

volume and numbers of tumors. 
. 
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Manual segmentation of brain tumors from large MRI im-ages 

is a difficult and time-consuming task. Existing brain tu-mor 

segmentation approaches can be broadly categorized into either 

generative models or discriminative models [1]. Genera-tive 

models require prior information and segmentation of brain 

tumors, whereas discriminative models depend on a set of fea-

tures and classifiers. The most commonly adopted classifiers are 

support vector machines (SVMs), random forests, neural 

networks and genetic algorithms. In contrast, automatic brain 

tumor segmentation methods use hand-designed features and a 

variety of image features (e.g., shape, area, perimeter, circularity 

etc.), intensity (e.g., mean, variance, standard deviations) and 

texture (e.g., contrast, entropy, correlation etc.).  
Recently, deep learning, and in particular the Convolutional 

Neural Network (CNN) has become the methodology of 

choice for medical image analysis, following its tremendous 

success in routine computer vision applications [2], [3]. With 

regards to tumor detection, candidate generation and false 

positive reduc-tion, using deep learning based methods, 

unambiguously out-performed traditional machine learning 

approaches [4]–[7]. This achievement was acknowledged in 

2015 where the DeepMedic software for brain lesion 

segmentation, which was based on a 3D-CNN coupled with a 

3D fully connected CRF, won the ISLES 2015 challenge [8]. 

Additional deep learning based brain tumor segmentation 

methods were presented in the 2013, 2015 and 2017 

challenges. Different deep learning models were adopted, 

including FCNN [9]–[4], [11], 3DCNN [12], [13], FCNN with 

CRF [14], 3D U-Net [15], [16] and Autoencoders [17], [18].  
Results of the 2015, 2016 and 2017 ISLES brain tumor 

challenge showed that, among the deep learning based tumor 

segmentation methods, CNN based approaches achieved better 

performance as compared to other methods. CNNs, however, 

require a substantial amount of labeled data for training, which 

is typically scarce within the medical imaging community as a 

result of patient confidentiality and the time needed to obtain 

high-quality annotations. Furthermore, CNNs do not exploit 

symmetries which result in the creation of multiple rotated and 

reflected copies of filters. The problem is further compounded 

by the fact that many CAD systems will need to be developed 

to accommodate different imaging modalities, scanner types, 

settings, resolutions, and patient populations. Therefore, data 

efficiency is a major hurdle for the scalable development of 

CAD systems for tumor detection.  
CNN is somehow data efficient as compared to fully con-

nected networks due to its translation weight sharing proper-ties 

in the convolutional layers. Layers in CNN are translation 

equivariant i.e., when the network input is shifted, internal rep-

resentations are also shifted, thus transnational weight sharing is 

effective in each layer. Brain tumors maintain their identity not 

just under translation but also rotation and reflection. Thus, em-

bedding these properties by using group convolutions, weight 

sharing, and equivariance into CNN for brain tumor detection is a 

viable option. Furthermore, contextual information has played a 

very useful role in computer vision and image segmentation tasks. 

Currently, the use of conditional random fields is a widely used 

approach to model context information; however, it relies 

 
 
 
 
 
 
 
 
 

 
Fig. 1. Block diagram of the proposed brain tumor segmentation.  

 

on fixed topologies and offers limited flexibility. To 

incorporate the spatial correspondence of labels, the output of 

one network could be concatenated with another network.  
We developed a Two-Pathway-Group Conventional Neural 

Network (2PG-CNN) to address current hurdles in brain tu-

mor segmentation by embedding a group conventional neural 

network, that exploits transnational, rotational and reflection 
properties in itself, and that exploits local and global features 

through a Two-Pathway CNN. The key contributions of this 

paper are: 

.
 Development of a Two-Pathway-Group CNN that sub-
stantially increases the expressive capacity of a network 
through rotational and transnational invariance properties and 
which embeds local and global features by utilizing two-
pathway architecture without increasing the number of 
parameters.  
.

 A novel deep learning approach that utilizes symmetries 

together with local and global features for brain tumor 
segmentation that takes approximately 3 minutes and 18 
seconds which is almost faster, or comparable with, most 
current state-of-the-art systems.  

.
 A fully automatic brain segmentation method with state-of-

the-art results on BraTS-2013 and BraTS-2015 datasets. 
.

 An equivariance in the Two-Pathway CNN model to re-duce 
instabilities and overfitted parameter sharing. 

.
 An extension of the Two-Pathway-Group CNN to include 
novel cascaded architecture by performing concatenation 
prior to its output layer.  

We produced new insights into the higher degree of weight 

sharing in the Two-Pathway-Group CNN compared with the 

Two-Pathway CNN, and have increased the capacity of CNN 

by modeling symmetry into it without increasing the parame-

ter. We observed that the network is able to learn the 

anatomical features of a brain in order to identify and segment 

brain tumors. A block diagram of our new 2PG-CNN 

approach to brain tumor segmentation is given in Fig. 1. In 

what follows, we provide the related work in Section II, 

followed by the architecture of the proposed approach. In 

Section IV, we provided the comprehen-sive evaluation. 

 

II. RELATED WORK 
 

Accurate brain tumor segmentation is critical for early diag-

nosis and patient survival. Manual segmentation (human-based) is 

typically undertaken for the diagnosis of brain tumors by ra-

diologists, and it is a difficult, tedious and time-consuming task. 

http://www.ijsrem.com/
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Automated (machine-based) brain tumor segmentation offers an 

objective, reproducible, and scalable alternative to manual 

segmentation, and is a popular research focus in the medical 

imaging community. Brian tumor segmentation techniques can be 

roughly classified into two categories: generative and dis-

criminative model-based approaches. Generative model-based 

approaches rely on differentiating healthy from cancerous tis-sues 

based on appearance and therefore rely on knowledge of the 

anatomical structure of the organ that could be computed by 

aligning the image with several images of healthy tissues. 

Contour-based generative methods for tumor segmentation rely 

on alignment-based features or left-right brain symmetry fea-

tures. The main advantage of these methods is that they do not 

rely on labeled data. In contrast, discriminative approaches 

exploit prior knowledge of the brains anatomy. Segmentation is 

based on low-level image features such as raw pixels and Gabor 

filterbanks. Typical discriminative methods include con-ventional 

machine learning approaches such as random forest and support 

vector machines; however, these methods rely on handcrafted 

features consisting of high discriminative power.  
Deep learning based approaches for medical object detection 

and classification are emerging as viable alternatives for applica-

tions in medical imaging. In brain tumors, these approaches out 

perform classical machine learning techniques in terms of false 

positive reduction. They are able to learn discriminative features 

automatically by outperforming hand-crafted feature sets [19]. 

Among the deep learning based approaches for brain tumor 

segmentation, methods based on CNNs have provided perfor-

mance as compared to others. In other words, CNN has become 

the methodology of choice and have been extensively applied on 

variety of medical image task and showed promising results [20]–

[7], [26]. Particularly, both 3D-CNNs and 2D-CNNs are being 

used to develop a brain tumor segmentation system. How-ever, 

deep learning based methods are data hungry i.e., more the data 

the better the performance. Whereas it is not easy to obtain the 

labeled data in medical fields due to its sensitivity and cost of 

labeling the data as annotation by single expert is not enough due 

to human error and requires to have consensus annotations by 

multiple expert observers.  
Both 2D-CNNs and 3D-CNNs models are being adopted to 

develop brain tumor segmentation methods [16], [21], [27]. Al-

though, 3D-CNNs takes full advantage of 3D information of the 

MRI volume-metric data, however, size of networks is much 

bigger than 2D-CNN which results in high computational com-

plexity. Thus, 2D-CNNs has been widely preferred for brain 

tumor segmentation. To overcome the computational challenge 

for 3D processing and to incorporate 3D contextual informa-tion, 

several researchers focus on using the 2D CNNs on three 

orthogonal 2D patches. Kamnitasas et al. presented an effec-tive 

dense training approach by processing the adjacent patches into 

one pass [8]. They have applied dual pathway architecture to 

incorporate both local and larger contextual information. At the 

final stage, a 3D fully connected conditional random field was 

used for soft segmentation, which effectively removed false 

positives. Similarly, Havaei et al. simultaneously exploited local 

contextual features, together with global contextual features by 

using two different CNN paths, concatenated at the last layer [4]. 

 
To overcome the issue of data imbalance, they used a 2-phase 

training procedure: patches from the true distribution followed by 

an imbalanced dataset. The network was extended by adding 

another network, and concatenated it at the last layer. In other 

work, Kamnitasas et al. presented an efficient and effective dense 

training scheme to join the processing of adjacent image patches 

into one pass through the network [8]. The dual pathway was 

applied in order to model the local and global features.  
In most of the pattern recognition tasks, image maintains its 

identity under translation, rotation as well as reflection. Gen-

eralizing CNNs to deal with such kind of data is shown great 

performance by using group convolutions and weight sharing. 

Recently, modeling symmetry into CNN is actively being stud-ied 

[28]–[33]. Recently, Cohen and Welling presented Group 

equivariant CNN that reduces sample complexity by exploiting 

symmetries such as translation, rotation, reflection [34]. Group 

equivariant CNNs use G-convolutions than regular convolution 

layers for weight sharing which helps to increase the expres-sive 

capacity of the network without increasing the number of 

parameters. Bekkers et al. presented a framework for rotation and 

translation co-variant CNN using group convolutions that are 

invariant to shape and appearance variability for medical image 

analysis [28]. Results on histopathology, retinal imag-ing, and 

electron microscopy images showed achieved better performance 

without the need for data augmentation by rota-tion. Winkels and 

Cohen presented 3D roto-translation group CNN based approach 

for pulmonary nodule detection instead of using more 

conventional translational convolutions [5]. Re-sults showed that 

CNN by leveraging the symmetrical behavior reduce not only 

reduce the false positive but also improve the performance of 

nodules detection. In another work, Veeling et al. applied rotation 

equivariant CNNs for pathological image anal-ysis [35]. The 

method shows strong generalization under limited dataset size 

and are more robust under adversarial perturbations in the 

rotation, translation, and local geometric distortions. 

 

III. TWO-PATH-GROUP CNN ARCHITECTURE 
 

In this section, we presented Two-Path-Group convolutional 

neural network (2PG-CNN) in detail focusing on the algorithm 

rather than the underlying mathematical theory and using visual 

aids where this is helpful. We start the brain tumor segmentation 

with a novel representation learning on features scheme by em-

bedding the symmetry into two pathway CNN. Since glioblas-

tomas are infiltrative tumors, their borders are often fuzzy in 

appearance that make them quite hard to distinguish them from 

healthy tissues thus additional attention is needed to segment the 

border pixels. Recently, multi-scale features representation has 

been successfully applied for brain tumor segmentation that fully 

capture both local and global contextual information [4], [36], 

[37]. Thus, to overcome this fuzzy appearance of tumor 

segmentation, we have also adopted two pathway CNN to model 

the local and global contextual information in CNN.  
As discussed earlier, the performance of CNNs is signifi-cantly 

influenced by the feature matrix. Furthermore, it does not 

accommodate local features as well as global contextual fea-tures 

simultaneously. To overcome these challenges, we present 

http://www.ijsrem.com/
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2PG-CNN that simultaneously accommodate the global and 

lo-cal features as well as embed additional transformations 

like rotations and reflections in itself by applying not only 

transla-tion but also rotational and reflection to the filters 

which result in an increase in the degree of weight sharing. 

More specifi-cally, starting with a canonical filter with 

learnable parameters, one produces a number of transformed 

copies, which are then convolved (translationally) with the 

input feature maps to pro-duce a set of output feature maps. 

Enforcing equivariance in the Two-Pathway CNNs model 

reduces instabilities and overfitting parameter sharing.  
Since the BraTS image dataset has lack of resolution in third 

dimension, thus we considered the two dimensional approach by 

performing the tumor segmentation slice by slice (2D axial 

image) where each pixel in each slice is associated with different 

image modalities (T1, T2, T1C and FLAIR). Thus, input of two 
 
dimensioanl 2PG-CNN is the x×x patch that extract the group 
equivariant features from its preceding layers into the hierarchyto 
which it is concerned. In the following subsections, we first 
describe the group CNN and modelling of rotational, reflection 
and transnational invariant properties in to Two-Pathway CNN. 

 

A.  Group Equivariant CNN 
 

Practically, the convolutional neural network is transna-  

tional  equivariant  and  can  be  expressed  as  [[Lt f ] ∗Φ](x) = 

[Lt [f ∗ Φ]](x) however,  it  is  not  rotational  equivariant  i.e., 

[[Lr f ] ∗Φ](x) = Lr [f ∗ [Lr − 1 Φ]](x); where L denotes the op-  
erator that translate the features map f : RK by t ∈ Z2 . As a 
result, conventional CNN requires a substantial amount of la-  
beled data for training, however, it is quite tedious, expensive and 

prone to error to label complex data especially in medical. The 

problem is further compounded by the fact that in all likeli-hood, 

many CAD systems will have to be developed for different 

imaging modalities, scanner types, settings, resolutions, and pa-

tient populations. All of this suggests that data efficiency is a 

major hurdle to the scalable development of CAD systems.  
For a traditional CNN filter (translational), the filter is trans-

lated across the features, as a result, each cell of feature map 

associated with translation. However, symmetry is preserved by 

each layer that could be used rather than shifting the image and 

feeding it. To overcome this issue, we have used a group con-

volutional neural network [34] for brain tumor segmentation. 
Mathematically, group  convolution for a group G and input 

 

Σ Σ 
 

space X is defined as [f   Φ](g) ∗= 
 

where fk and Φk are the signals defined on X, k is the input channel 

and g is the transformation in G [34]. Now, we can say that the G-

convolution is equivariant to G transformations i.e.,  
[[Lu f ] ∗ g Φ](g) = [Lu [f∗ g Φ]](g). In conclusion, group 
equivariant CNN is based on the symmetry of an object is a  
transformation that leaves the object invariant. It embed addi-

tional transformations like rotations and reflections in itself by 

applying not only translation but also rotational and reflection to 

the filters which result in an increase in the degree of weight 

sharing. More specifically, starting with a canonical filter with 

learn-able parameters, one produces a number of transformed 

copies, which are then convolved (translationally) with the input 

 
feature maps to produce a set of output feature maps. To em-

bed these symmetries, we used the recent CNN that is rotation 

equivariant [5], [31], [34], [38].  
Generally, the symmetry group of an object is the set of trans-

formations that map the object back onto itself without changing 

its structure (leaves the object invariant) i.e., rectangle or square 

can be rotated any degrees without changing its appearance. In 

other words, rotation of an object does not effect its shape. 

For example, flipping of an image Z, we get− Z such that 

— Z = − x,− y∈ Z = Z. We have used p4m that consist of all 
compositions of translations mirror reflections, and rotations (0,  

90, 180, 270) about any center of rotation in the grid each 

learn-able filter produces a number of orientation channels, 

each of which detects the same feature in a different 

orientation. The group p4m consists of all compositions of 

translations, mirror reflections, and rotations by 90 degrees 

about any center of ro-tation in the grid. Like p4, we can 

parameterize this group by integers: 

 ⎧        ⎫ 
 

 rπ rπ 
 

   
 

  2 — − 2  
 

g(m, r, u, v) =  sin(rπ/2) cos(rπ/2) v 
 

  0    0   1 
 

where m ∈ [0, 1] , 0 ≤ r < 4 and (u, v) ∈ R2 .  
To embed the symmetric properties into Two-Pathway 

CNN with a feature map, the filter is translated across the 

feature map, and a dot product is computed at each position, as 

a result, each cell of output features map consist of translation, 

rotation and reflection properties in itself. Output filter has 

several obvious properties, such as closure, associativity for 

transformations, identity map, and inverses. Further detail of 

GCNN can be found at [33]–[35]. 

 

B.  Two-Pathway-Group CNN 
 

Two-Pathway CNNs exploit both local features of an image, as 

well as the larger context simultaneously. The proposed patch 

classification model used here is shown in Fig. 2 for p4 (the p4m 

variant is input, alternated with transition blocks  
consisting of an 1× 1 convolutional layer and ×2 2- strided 
average pooling [4]. Two-Pathway-Group convolutional neural  
networks architecture consist of two parallel streams of CNN. 

Stream-I, convolutional neural networks with smaller receptive 
 
fields (7 ×7 or 5 ×5) and stream-II that consist of larger 

receptive fields (13× 13, 15×15 or 17 ×17). In the following 
throughout discussion, we refer to two convolutional neural  
networks streams as the local CNN pathway and the global CNN 

pathway, respectively. Two-Pathway-Group convolutional neural 

networks is able to predict the label of pixel by using visal detail 

of the pixel through local CNN pathway and larger context of the 

pixel through global CNN pathway. The motivation of using two-

pathway CNN is to utilized the local as well as context 

information of the image to reach precise segmentation. Fig. 2 

and Fig. 3, shows the two pathway architecture that embed 

symmetrical properties in itself.As in Two-pathway group CNN, 

http://www.ijsrem.com/
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Fig. 2. Two-Pathway-Group CNN architecture (2PG-CNN) showing that the input patch is processed by two different group CNNs. The four 
blocks in a feature map of both CNNs show a p4 group features map that inherits group CNN properties. The upper CNN represents a l ocal 
feature map and the lower CNN shows a global feature map.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Cascaded Two-Pathway-Group CNN architecture based on pre-output concatenation. 
 
 
we have two different streams of CNNs (local pathway CNN 

and global pathway CNN), we have performed concatenation 

of both CNN at second-last layer. The concatenationed 

features set is finely fed to the output layer.  
The next step is modeling the Group Equivariant symmetry in 

the two pathway CNN i.e., the feature maps of both CNNs are 

thought of as functions on p4m group i.e., p4m group means that 

feature channels come in groups of 8 ( 4 for rotations and 4 for 

reflections). We have modeled the symmetrical features in 

 

 

both CNNs individually. In the first layer, these were produced 

using the (Z2 → G)-convolution. Group-pooling layer is used 
to ensure that the output is either invariant. 

  Σ Σ 
  K 

[f ∗ ϕ](g) = fk (y)ϕk (g−1 y) 

  y =Z 2 k =1 
 
where g = (r, t) is the roto-reflection-translation. 

http://www.ijsrem.com/
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In next layer, both feature maps of earlier layer and filters 

are functions on G and combined using convolution. 
 

Σ ΣK 
 

[f ∗ ϕ](g) = fk (h)ϕk (g−1 h) 
h∈G k =1 

Two-Pathway Group CNN show strong generalization under 

limited dataset size and are more robust under adversarial per-

turbations in rotation, translation and local geometric distortion. 

Thus, each learnable filter produces a number of orientation 

channels, each of which detects the same feature in a differ- ent 

orientation. We will refer to the set of orientation channels 

associated with one feature / filter as one feature map.  
1) Cascaded 2PG-CNN: One main disadvantage of the con-

volutional neural networks described is that conventional CNNs 

predict segmentation label separately from each other that are of 

the same semantic class. As CNN predict the segmentation labels 

separately from each other and CRF is being used to over-come 

this issue by performing the mean-field message passing 

inference to segment completely. However, it results in biase-ness 

as a label at a given position is effectively influenced by the 

model’s beliefs about what the label is in the vicinity of that 

position. In literature, joint models for segmentation are being 

used however these methods are typically more computationally 

expensive than a simple feedforward pass through a CNN. To 

overcome this issue, we simply concatenate the output layer of 

the first CNN with any of the layers in the second CNN. More-

over, we use the same two-pathway structure for both CNNs. This 

effectively corresponds to a cascade of two CNNs. 

In this work, we investigated the cascaded architectures that 

concatenate the first CNNs output at end of other CNNs i.e., 

con-catenation is performed right before the output layer as 

shown in Fig. 3. In detail, the first CNNs output is actually the 

first iteration of mean-field whereas the output of second 

CNN is the second iteration. 

 

IV. EXPERIMENTAL SETTING 
 

The brain tumor segmentation is performed on the multi-

modal MRI volumes image dataset where each voxel is as-

sociated with several image modalities (such as T1, T1c, T2 

and FLAIR). Segmentation of brain tumor is a data 

imbalanced problem due huge variations in differnt types of 

tumors such as healthy voxels comprise 98% of total voxels. 

2% of them are pathological voxels whereas only 0.18%, 

1.1%, 0.12% and 0.38% belongs to necrosis, edema, non-

enhanced and enhanced tumor respectively. In medical 

imaging, even small image fea-tures may be very important 

form clinical perspective as some of the pathologies are rare 

but life threatening, thus approach should be sensitive to 

imbalance class. CNNs performance is significantly effected 

by the strategy of training sample being used. As dataset is 

biased, thus, trained model could be biased to the classes with 

more training samples which result in over segmentation. In 

conclusion, using path from the true distribu-tion for initial 

training would result in imbalance training of the model as in 

this case model will be overwhelmed by healthy patches. 

 
A commonly approach adopted to overcome the imbalancing 

issue of data is the training on image patches that are equally  
sampled from each tumor type. This, however, add the biaseness 
in the classifier towards class having more data and it mayresult 
in over-segmentation. To overcome this issue, initially, we 
consider the patches. In conclusion, using path from thetrue 
distribution for initial training would result in imbalance training 
of the model as in this case model will be overwhelmed by 
healthy patches. To overcome this issue, initially, we consider 
the patches that are equal probable. Once the initial training on 
done on balance dataset, we moved to un-balanced nature of the 
data and train the output layer only. First training phase results 
the the networks having the balanced properties whereas the 
second result the output probabilities to be calibrated correctly. 
As we dataset is small, 2PG-CNN showed strong generalization 
as it is robust under adversarial perturbations in rotation and 
translation as well as geometric distortions.  

The data in the BraTS have lack resolution in the third di-

mension thus, in this work, we have considered segmenting 

the tumor form image slice by slice from the axial view. We 

pro-cesses each 2D axial slice sequentially where each pixel in 

slice is associated with different image modalities namely 

such as T1, T2, T1C and FLAIR. The input is NN 2D patch 

with several modalities that predicts the class of a pixel. Final 

layer con-sists of a group-pooling layer followed by a sigmoid 

activation, resulting out is probability of tumor output. 

 

A.  Dataset 
 

We evaluated our network using BraTS 2013 and 2015 train-

ing sets, leaderboard datasets and challenge datasets [39], [40]. 

The complex characteristics of the medical imaging datasets 

imposed several challenges as the image acquisition was quite 

expensive and sensitive as compared to real life data. Thus, 

medical images were collected under controlled conditions to 

enable more predictable data distributions. In many modalities, 

images were calibrated before capturing, such that the spatial 

relationships and image intensities mapped directly to physical 

quantities and were inherently normalized across subjects.  
The training sets contained images from 285 individuals (220 

HGG and 54 LGG) captured under controlled environ- ments, 

whereas the testing datasets consisted of 110 cases. The BraTS 

2016 dataset also shared the same training dataset with BraTS 

2015. The BraTS 2015 validation and testing set contained 

images from 46 and 146 patients with brain tumors of unknow n 

grade, respectively. For each brain there existed four modalities 

(T1, T1C, T2 and FLAIR) for the same patient, which 

coregistered and aligned onto the same anatomical tem- plate 

space. The training brains came with manual segmented, ground-

truth results given by experts for which five segmen-tation labels 

were provided: non-tumor, necrosis, edema, non-enhancing tumor 

and enhancing tumor. All brain images were skull-stripped to an 

isotropic 1 mm3 resolution. 
 
B.  Data Preprocessing 
 

Since CNNs are able to learn useful features from the be-
ginning, data should be clean and standard. However, intensity 

http://www.ijsrem.com/
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values being non standardized in MRI data as data may be 

from different MRI scanners with varying protocols that 

causes false positives in predicted outputs i.e., images 

obtained from different modalitites may be affected by 

artefacts that causes false intensity levels. Data normalization 

is therefore required especially in the case of deep learning 

where input data is con-sidered as color channels i.e., raw data 

is directly input to the neural network. Thus, we employed 

preprocessing, by normal-izing the value ranges, to assure that 

data integrity matched not only between patients but between 

the modalities in order to avoid initial biases of the network.  
We applied the same preprocessing as described by Menze 

et al. (winner of the 2013 BRATS challenge [1]) and Gibsona 

et al. [40]. We follow the simple work flow and removed the 

1% highest and lowest intensities followed by N4ITK bias 

cor-rection on T1 and T1C modalities [41]. We have applied 

non-uniform intensity normalization algorithm [41], which is 

widely used for artefact removal and intensity normalization.  
Finally, each modality is normalized by subtracting the 

mean and dividing by the standard deviation of the brain 

region and clipping to [5, 5] and scaling to [0, 1] to remove 

outliers and segmenting the interested region respectively. 
 
 
 
C.  Parameter Setting 
 

The proposed tumor segmentation model is shown in Fig. 2 

and Fig. 3. We have provided visual demonstration of P4 in Fig. 2 

as p4m variant is a trivial extension. Our implementation is based 

on the PyTorch library. It is an open source machine learning 

library for Python, based on Torch and supports the use of GPUs, 

which can greatly accelerate the execution of deep learning 

algorithms. The architecture is based on the tradi- tional 

convolutional neural network.Models are optimized using Adam  
[42]. We have replaced the traditional layer of CNN with group 

equivariance convolution layers [34]. Training parameter of both 

Two-Pathway-Group CNN and Cascade Two-Pathway- Group 

CNN can be seen in Fig. 2 and 3. For max pooling, we used a 

stride of 1 to to keep per-pixel accuracy during full image 

prediction. The final layer consists of a group-pooling layer fol-

lowed by a sigmoid activation and group-pooling layer followed 

by a concatenation layer respectively. The final layer consist of 

5 ×11.×  
Stochastic gradient descent (SGD) in update the parameter 

for each training example xi and label yi. To maximize the 

label probability in training datasete, we used SGD by select- 

ing labels Yij repeatedly at random subset of patches within 
each brain and computing the average negative log proba- 

Σ 

blity − log p(Y/X) =− | ij log p (Yij X) for each label im - age. 
Batch gradient descent performs redundant computations  
for large datasets, hoever, SGD performed one update at a 

time and frequent updates with a high variance that cause the 

objec-tive function to fluctuate heavily. We performed update 

based on small subset patches to avoid the process for whole 

brain im-age. As training the network with simple gradient 

descent can take quite a long time, however, momentum can 

accelerates the gradient descent learning. We have used the 

momentum strategy as described by Krizhevsky et al. in [43]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Brain tumor segmentation visual comparison Two-Pathway CNN 

([4]) vs Group Two pathway CNN (proposed) on BraTS 2013 dataset (color 

code: green:edema, blue:non enhanced tumor, pink:necrosis.  

 

By interpreting the output of 2PG-CNN as a model for the 

distribution of over segmentation labels, a natural training crite-

rion was to minimize the negative log-probability, equivalently, 

or maximize the probability of all labels in the training dataset. 

To do this, we followed a stochastic gradient descent approach by 

repeatedly selecting labels at a random subset of patches. We set 

the learning rate to 0.005 with the decay 0.1. We gradually 

increase the momentum coefficient form 0.5 to 0.9 during train-

ing. The learning rate is decreased by a factor at every epoch. To 

learn the useful features, we used dropout [44] by multiplying 

each hidden layer by 0 with certain probability. 

The optimization improves the performance and it results in 

tumor probability output on the plane Z. Training took 3 

minute and 14 second per epoch. 

 

D. Training 
 

We developed two networks: 2PG-CNN and Cascade 2PG-

CNN. In 2PG-CNN, we trained two group CNNs with different 

receptive field sizes to model local and global properties. The 

architecture was made of two streams: a local-receptive field  
size of 7 ×7 to model the local properties, and global receptive 

field of size 13×13 to model the global properties. We have 
selected this size based on earlier experiments [4]. Finally two  
networks are concatenated followed by the soft max.To train 

cascaded 2PG-CNN, In 2PG-CNN, we have used the same net-

work (2PG-CNN) and concatenation is performed at last layer. In 

this network, there are three networks, Cascade with receptive  

field size 53 × 53, local 7 × 7 and global 13 × 13. Unlike CNN 

http://www.ijsrem.com/
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TABLE I 
PERFORMANCE EVALUATION OF 2PG-CNN AND CASCADE 2PG-CNN  

 
 
 
 
 
 
 
 
 
 
 

 

and 2PG-CNN, cascaded 2PG-CNN model the dependencies 

between adjacent labels in segmentation.  
As the data was imbalanced, we considered patches to over-

come this issue. A path from the true distribution for initial 

training resulted in the imbalanced training of the model be-

cause of the presence of an overwhelming number of healthy 

patches. To overcome this issue, we considered the patches 

that were equally probable. Once the initial training was done 

on the balanced dataset, we moved to an unbalanced dataset 

and trained the output layer only. In the first training phase the 

net-works had balanced properties and in the second training 

phase, the output probabilities calibrated correctly. As our 

dataset was small, 2PG-CNN showed a strong generalization. 

Furthermore, it was robust under adversarial perturbations in 

rotation and translation, as well as in geometric distortions. 

 

E.  Evaluation Parameters 
 

For the quantitative evaluation of the segmentation perfor-

mance on the test set, we have used the three metrics namely: 

Sensitivity, Specificity, specificity, and the dice similarity 

coef-ficient because As the tumor structure is was grouped 

into three different tumor regions: such as (complete, core and 

enhanc-ing tumor). Thus, we have computed the all three 

metrics for all regions as shown in Fig. 4. For each tumor 

region, the dice score (identical to F-measure) was computed 

by overlapping the predicted output image with the ground 

truth image. Eval-uation metrics, dice similarity, sensitivity 

and specificity were computed as 

Dice(P, G) = 
|P1 ∩ G1| 

 

 
 

(|P1| + |G1 |)/2 

Sensitivity(P, G) = |P1 ∩ G1 |  
(|G1 | 

Specif icity(P, G) = |Po ∩ Go |  
(|Go |  

Where P is the machine based segmentation region and G is 

the manually labeled ground truth. Here P1 and Po are the 

positive and negative predicited tumor regions respectively. 

Sim-ilarly, for G1 and Go . 

 

F. Results 
 

The experiments were carried out on real patient data ob-

tained from the 2015 brain tumor segmentation challenge 

(BraTS2015), as part of the MICCAI conference [39], [40]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
As mentioned earlier, Two-Pathway Group CNN has proper-ties 

of modeling local and global features as well as symmetry in 

itself. The architecture discussed in earlier sections has two path 

way, one group CNN is used to model the local whereas the other 

global CNN model the context. The results reported in table-I 

shows that joint embedding of of group CNN into Two-Pathway 

CNN benefits the segmentation performance. The results indicate 

that the proposed 2PG-CNN and Cascade 2PG-CNN performed 

consistently better than competing methods. Compared to [4], [8] 

results, we see that the superiority of both 2PG-CNN and cascade 

2PG-CNN architecture. It is due to the increased parameter 

sharing by the p4m-equivariance as well as local and global 

contextual features. Furthermore, cascade CNN embedding with 

Group CNN helps to reduces the redundancy of detecting the 

same tumor in in different orientations. Table I presents the 

quantitative results of the proposed approach. Re-sults showed 

that Cascade 2PG-CNN provided slightly better results compared 

to 2PG-CNN. Fig. 4 showed the segmentation result comparison 

of the Two-Pathway- Group CNN and the cas-cade Cascade Two-

Pathway-Group CNN. We have noticed that the architecture 

shown in Fig. 3 provided better segmentation with smooth 

boundaries that might be due to the concatenation at layer before 

the soft-max output layer that resulted in learning of a center pixel 

similar to its surrounding. 
 

V. CONCLUSION 
 

In summary, this work presented a fully automatic brain tu-

mor segmentation approach (Two-Pathway-Group CNN) that 

embedded symmetrical properties, as well as local and global 

contextual features, in itself. In contrast to previous multiscale 

features, 2PG-CNN benefited from symmetrical embedding 

(i.e., additional transformations like rotations and reflections 

in itself) by applying not only translation but also rotational 

and reflection to the filters, which resulted in an increase in 

the de-gree of weight sharing. We extended 2PG-CNN to 

predict the segmentation label using Cascade 2PG-CNN. 

Evaluation results showed that G-CNN outperformed the 

CNN. We concluded that modeling symmetrical equivariance 

into Two-Pathway CNN improved the model reliability with 

similar numbers of pa-rameters. Furthermore, experiments 

showed that 2PG-CNN and Cascade 2PG-CNN were more 

data efficient than conventional CNNs. 
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