

Empowering Identity Resolution with Vector Databases

Authors: Arpit Jain and Pragati Sharma

Executive Summary

In today's data-driven landscape, effective Identity Resolution (IDR) has become essential for businesses seeking to consolidate and manage vast and diverse datasets. Traditional identity resolution methods often struggle to handle the growing complexity, volume, and dimensionality of modern data. Vector databases, designed to manage and query high-dimensional data, present a powerful solution to these challenges. By leveraging vector-based representations, businesses can achieve more accurate, faster, and scalable identity resolution. This paper examines the advantages of using vector databases in IDR, highlighting how they outperform traditional databases in handling complex data relationships. Additionally, it explores how vector databases enhance various modern machine learning applications, such as semantic search, ultimately providing businesses with a more efficient and effective means of resolving identities and optimizing customer insights.

Introduction

Identity Resolution (IDR) is the critical process of identifying and consolidating all records related to a specific entity—whether an individual or an organization—across multiple, often fragmented, data sources. Traditional IDR techniques typically rely on rule-based systems and exact matching algorithms, which, while effective in some cases, often struggle to scale when faced with large volumes of unstructured or semi-structured data. As the volume and complexity of data continue to increase, these conventional methods become inefficient, limiting their ability to provide accurate and timely identity resolution.

Vector databases present a transformative solution to these challenges. Designed to manage high-dimensional vector data, such as embeddings generated by machine learning models, these databases enable semantic similarity searches. This allows for identity resolution based not on exact matches, but on contextual and behavioral similarities, leading to more accurate and insightful connections between disparate records.

This white paper explores how vector databases can revolutionize identity resolution by enhancing performance, scalability, and accuracy. It delves into the key benefits of leveraging vector-based approaches in IDR and outlines how they can address the limitations of traditional methods, enabling businesses to better manage their customer data and unlock new opportunities for personalization and targeted engagement.

The Need for Vector Databases in Identity Resolution

Challenges of Traditional Identity Resolution

Traditional Identity Resolution (IDR) approaches, though foundational in the field of data management, face a number of inherent challenges when dealing with the increasing complexity and volume of modern data. These challenges arise from the limitations of traditional databases and matching algorithms, particularly when handling diverse, high-dimensional, and unstructured data. Below is an in-depth exploration of the key challenges associated with traditional IDR methods:

• Columnar Data- Deterministic Matching:

Traditional IDR methods often rely on columnar data, which stores information in structured formats with predefined columns, such as names, addresses, phone numbers, etc. These databases are typically designed for deterministic matching, where the goal is to find exact matches between records. For example, if two records contain the same email address, they are considered to belong to the same person.

While deterministic matching can be effective for simple, structured datasets with clearly defined attributes, it becomes problematic when data is fragmented, inconsistent, or prone to variations in spelling, format, or data entry errors. Real-world datasets, such as customer profiles, often contain discrepancies due to typos, different naming conventions, or missing information, making exact matches unreliable. As the complexity of data increases, especially when dealing with customer records across multiple touchpoints (social media, transactions, service requests), relying solely on deterministic matching can lead to inaccurate results and missed opportunities for proper identity resolution.

• Probabilistic Matching: Limited to Word-to-Word Comparisons, No Context:

Traditional identity resolution methods can perform **probabilistic matching**, which estimates the likelihood that two records represent the same entity based on certain criteria. Probabilistic matching allows for more flexibility than deterministic methods, as it doesn't require exact matches. However, traditional probabilistic matching algorithms are typically **limited to word-to-word comparisons** with little to no consideration for the broader **context** surrounding those words.

For instance, consider two records for a person with the name "John Smith" and "John Smyth." A probabilistic algorithm might flag these as matching based on a simple character-by-character comparison, even though they could refer to different individuals. Furthermore, these algorithms often fail to account for the **contextual meaning** of data. For example, an address in one record might contain a misspelled street name, but without understanding the broader context, the system may fail to recognize that the misspelling still refers to the same location.

This lack of semantic understanding becomes more apparent as the complexity of data increases. Probabilistic matching works well for limited, clean datasets but falters when records contain ambiguous, incomplete, or inconsistent data. As a result, it can lead to both false positives (incorrectly linking unrelated records) and false negatives (failing to link related records).

• Low Dimensionality (Limited to 3-4 Attributes):

Another significant limitation of traditional IDR approaches is their reliance on **low-dimensional data**. Most traditional databases are designed to handle data with only a handful of attributes—usually no more than three or four key identifiers such as name, address, email, and phone number. This low dimensionality restricts the system's ability to account for the full complexity of an individual or entity.

For example, a person's identity might be captured by a variety of attributes beyond the basic four fields, such as purchase history, online behavior, geographic location, or interactions across different channels. Traditional IDR approaches, which are limited to a small number of attributes, are unable to capture the richness and nuance of these broader data points. As a result, they miss out on crucial insights that could help in accurately resolving identities.

In contrast, modern methods like **vector databases** use high-dimensional vectors (representing data as many as hundreds or thousands of attributes), enabling a more comprehensive understanding of entities by capturing intricate relationships and patterns across diverse data types. Traditional systems are simply not equipped to handle the volume of data points that modern businesses rely on, especially when dealing with large-scale datasets.

• Algorithm-Specific Handling for Different Types of Attributes:

Traditional identity resolution techniques often require specific algorithms to handle different types of attributes. For example, string matching algorithms are commonly used for name matching, phonetic algorithms for matching names that sound similar, and edit distance algorithms (e.g., Levenshtein) for handling typographical errors in strings. While these algorithms may be effective for certain data types, they become cumbersome and inefficient when trying to apply them across multiple types of data or in large-scale environments.

For instance, matching a name attribute may use an entirely different algorithm from matching an email address or phone number. However, the process of linking multiple types of attributes together requires coordinating various algorithms, which can lead to complexities and inconsistencies, especially when there are missing, incomplete, or irregular data entries.

Moreover, traditional systems are not always adaptive to changes in the data. If new data types (e.g., social media handles, customer feedback, or geospatial data) are introduced, existing algorithms may not be equipped to handle these data types without significant reconfiguration or customization. This makes traditional identity resolution approaches difficult to scale in the face of rapidly evolving data sources and business needs.

The Solution: Vector Databases

Vector databases are designed to overcome these challenges by:

• **Support for Both Structured and Unstructured Data**: Vector databases are designed to work seamlessly with both structured data, like relational databases containing tabular data, and unstructured data, such as text, images, audio, or social media posts. This flexibility allows businesses to consolidate

diverse datasets and apply identity resolution techniques across various data types. Whether data is neatly organized in columns or stored in a more complex form like free-text descriptions, vector databases can efficiently process and query this information, making them highly adaptable to modern, multi-source data environments.

• Semantic Search for Improved Identity Matching:

Traditional identity resolution methods often rely on exact matches or simple probabilistic algorithms. In contrast, vector databases leverage **semantic search**, which goes beyond exact keyword matching by analyzing the meaning and context behind the data. For example, two names may differ slightly in spelling or formatting, but vector databases can recognize semantic similarities (e.g., "Jon Smith" vs. "John Smyth") by comparing their contextual meaning. This advanced matching increases the likelihood of accurately linking identities even when there are inconsistencies or variations in the data, leading to improved resolution.

• Handling Multidimensional Data:

Vector databases are capable of processing **high-dimensional data**, where each entity is represented by many attributes, such as behavioral patterns, preferences, interactions, and demographic data. This contrasts with traditional methods that typically rely on only a few attributes for identity resolution. By handling a large number of dimensions simultaneously, vector databases can capture deeper relationships and nuances between data points. For example, a customer's identity can be enriched with data from various touchpoints, such as purchase history, social media activity, and customer service interactions, enabling more accurate identity resolution.

• Unified Methodology for All Attributes:

In traditional identity resolution systems, different types of attributes (e.g., names, phone numbers, and addresses) are often handled by different algorithms. However, vector databases offer a **unified methodology** that applies a consistent process for semantic search across all attributes. This eliminates the need for separate algorithms for each data type, simplifying the overall identity resolution process. The use of vector embeddings allows a single, integrated model to evaluate relationships across various types of data, ensuring a cohesive and streamlined approach to linking identities regardless of the attribute or format.

• Enhanced Accuracy:

Vector databases offer **superior accuracy** in identity resolution by analyzing complex relationships in high-dimensional space. Unlike traditional methods that rely on simple comparisons of exact values, vector-based approaches identify patterns and similarities based on the data's context and behavior. This enables more precise identification of entities, even when their data points are incomplete, inconsistent, or contain errors. With the ability to account for variations in how identities are represented across datasets, vector databases significantly reduce the chances of false positives (incorrectly linking unrelated entities) and false negatives (failing to link related ones).

• **Faster Search and Querying**: One of the key strengths of vector databases is their ability to perform **fast searches and queries**, even in large, complex datasets. Unlike traditional relational databases that struggle with large-scale or high-dimensional data, vector databases are optimized for quick retrieval

and analysis of vectorized data. They utilize specialized indexing techniques, such as **approximate nearest neighbor** (**ANN**) search algorithms, that allow them to process high-dimensional queries in real-time. This speed is crucial for businesses requiring fast identity resolution across vast datasets, enabling timely decision-making, personalized customer experiences, and enhanced operational efficiency.

Vector databases offer the performance, scalability, and flexibility required to handle large datasets with complex relationships, making them an ideal choice for modern identity resolution tasks.

Applications of Vector Databases in Identity Resolution

Vector databases are a critical component of machine learning workflows, particularly for applications in **Generative AI** (GenAI), **semantic search**, and **Natural Language Processing** (NLP). Here's how they play a pivotal role:

• Generative AI and Retrieval-Augmented Generation (RAG): Vector databases play a crucial role in enhancing Generative AI models, particularly in the context of Retrieval-Augmented Generation (RAG). They store vast amounts of contextual information, enabling generative models like Large Language Models (LLMs) to access relevant, structured data during the generation process. By leveraging vectors to represent knowledge in a high-dimensional space, vector databases mitigate the problem of hallucinations—when AI models generate unreliable or inaccurate information. This ensures that models have access to accurate, up-to-date information, improving the quality and relevance of generated outputs, particularly in complex, data-intensive tasks.

• **Customer Segmentation**: Vector databases are essential for customer segmentation by enabling more precise analysis of behavioral patterns. Traditional methods of segmentation often rely on static, demographic data, but vector databases can incorporate dynamic, contextual information, such as purchase history, browsing behavior, and interaction patterns. By converting these behaviors into vectors, businesses can perform more nuanced clustering and segmenting of their customer base, identifying subtle patterns and preferences. This leads to more accurate, targeted marketing strategies, improving customer engagement, retention, and overall personalization, allowing businesses to offer tailored recommendations that align with the unique behaviors and needs of each customer.

• **Semantic Search**: One of the most significant advantages of vector databases is their ability to perform semantic search. Unlike traditional databases that rely on exact matching of keywords or values, semantic search leverages the power of vectors to find similar items based on context, meaning, and relationships. This is particularly useful when looking for items such as products, services, or entities that are similar in nature but may not share exact keywords. By encoding data into high-dimensional vectors, vector databases facilitate the retrieval of relevant information, even when direct word matches are not present, leading to more accurate and contextually aware search results.

Workflow for Identity Resolution with Vector Databases

1. **Data Cleansing and Preprocessing**:

The first step in the identity resolution workflow is **data cleansing and preprocessing**. Raw data often contains errors, duplicates, inconsistencies, or irrelevant information. Before applying any advanced techniques like vectorization, it's essential to standardize and clean the data to ensure that only high-quality inputs are fed into the system. This step involves tasks like removing duplicate records, handling missing values, converting data into consistent formats (e.g., dates or phone numbers), and normalizing textual data (e.g., correcting typos or converting to lowercase). The goal is to prepare the data for accurate processing and meaningful representation, ensuring that vectorization produces useful and reliable outcomes

2. Feature Extraction and Vectorization:

Once the data is cleaned, the next step is **feature extraction and vectorization**. In this phase, relevant features are identified and extracted from the raw data. For instance, if the goal is to resolve customer identities, features might include purchase history, browsing behavior, demographic information, or customer service interactions. These features are then transformed into numerical representations, called **vectors**, using machine learning models, such as deep learning embeddings or other transformation techniques (e.g., BERT for text data). These vectors are **semantic representations** that capture not only the raw data but also the underlying meaning and context, enabling better matching of identities that may not have exact attribute matches but share similar behavioral patterns.

3. **Indexing and Storage**:

After the features have been vectorized, the next step is to **index and store** the vectors in a vector database. The vector database is specifically designed to handle and organize high-dimensional vector data. During this step, each vector is indexed based on its similarities to other vectors, often using specialized indexing methods like **approximate nearest neighbor** (ANN) search. This indexing process allows for efficient searching, making it quick to find vectors that are similar to a given query vector. The storage in a vector database is optimized for high-dimensional data, ensuring that the system can scale efficiently as the dataset grows over time.

4. **Querying and Matching**:

When a new query is received—such as an incoming customer profile or a new record that needs to be resolved—**querying and matching** are performed. A vector is created for the new query based on the same features and vectorization methods used for the existing data. The vector database then compares the query vector against the indexed vectors in the database, typically using similarity metrics like **cosine similarity** or **Euclidean distance**. These metrics measure how similar the query vector is to the existing vectors, indicating the likelihood that the new query matches an existing identity in the database. This process allows for the matching of identities based on context and semantic meaning rather than exact values.

5. **Final Merging**: If a sufficient level of similarity is found between the query vector and one or more existing vectors, the next step is **final merging**. This involves merging the matched data into a unified profile. The system combines the matched records into a single, comprehensive identity profile that

consolidates all relevant information from various sources. This merging process creates a more accurate, complete representation of the customer or entity, resolving any inconsistencies or duplicates. The resulting unified profile can then be used for various downstream applications, such as personalized marketing, targeted customer support, or data analysis.

Example of Structured data

Following is an example of structured data containing rows and columns, where each row represents a record (such as a customer) and each column contains specific attributes (like name, email, phone number, and purchase history).

Data cleansing:

During data cleansing, we apply specific rules to different columns based on the requirements. For example, extra "@" symbols in email addresses are removed, hyphens ("-") in phone numbers are eliminated, and special characters like "?" in product categories are cleaned. All these rules are predefined in the cleansing script.

Input:

email	phone	customername	orderpriotority	orderquantity	productprice	county_name	state_name	zip_code	customersegment	productcategory	productsubcategory	productname	device_ca	t device_plat	touchpoin	page_visi	browser_t	browser_	screen_re	time_zone	language
sylvia@example.org	32124246	sylvia foulston	Critical	44	4462.23	Davidson	Tennessee	37201	home office	furniture	bookcases	hon 4-shelf metal bookcases	mobile	android	add_to_ca	Product_	chrome	9	1920x108	UTC	English
sylvia@@example.org	32124247	sylvia foulston????	Critical	11	4500.99	Davidson	Tennessee	37201	home office	furniture	tables	lesro sheffield collection coffee	mobile	android	add_to_ca	Checkout	t chrome	9	2560×14	UTC	English
sylvia_test@example.org	8707042810	sylvia foulston	Critical	5	4944.33	Davidson	Tennessee	37201	home office	furniture	dinning table	dinning table									
carlos11@example.net	32124251	carlos solttero	Not Specified	21	1200	Cook	Illinois	60601	consumer	office supplies	storage & organization & art supplies	plymouth boxed rubber bands b	tablet	los	view	Product_	chrome	7	1680×10	UTC	English
carlos1990@example.ne	32-12-4253	carlos solteroo	Not Specified	21	1009.08	Cook	Illinois	60601	consumer	office supplies	storage & organization	plymouth boxed rubber bands b	tablet	ios	buy	Confirma	chrome	5	2560×14	UTC	English
carlos32@example.net	32124252	carloss soltero	Not Specified	21	1100.12	Cook	Illinois	60601	consumer	office supplies	storage & organization	plymouth boxed rubber bands b	tablet	ios	add_to_ca	Checkout	t chrome	7	1680×10	UTC	English
carlos@example.net	32124250	carlos soltero	Not Specified	13	1299.08	Cook	Illinois	60601	consumer	office supplies	storage & organization	plymouth boxed rubber bands b	tablet	ios	view	Product_	chrome	5	2560 x 14	UTC	English
mm2@example.net	333333333	muhammedd macintyre	High	6	10123.02	Orange	California	92801	smallbusiness	office supplies	storage & organization	eldon base for stackable storage	mobile	android	buy	Confirma	t mozilla	5	1920x108	UTC	English
mm@example.net	111111111	muhammed macintyre	Low	6	10123.02	Orange	California	92801	small business	office supplies	storage & organization	eldon base for stackable storage	mobile	android	view	Home	mozilla	5	1920×108	UTC	English
mm@example.net	22222222	mubammed macintyree	High	6	10123.02	Orange	California	92801	small husiness	office supplies	storage & organization	eldon base for stackable storage	mobile	android	add to co	Product (mozilla	5	1920v108	UTC	English

Output:

email	phone	customername	orderpriotority	orderquantity	productprice	county_name	state_name	zip_code	customersegment	productcategory	productsubcategory	productname	device_ca	at device_pla	touchpoir	page_visit browser_	browser_screen_	time_zone	language
sylvia@example.org	32124246	sylvia foulston	Critical	44	4462.23	Davidson	Tennessee	37201	home office	furniture	bookcases	hon 4-shelf metal bookcases	mobile	android	add_to_ca	Product_c chrome	9 1920×10	JEUTC	English
sylvia@example.org	32124247	sylvia foulston	Critical	11	4500.99	Davidson	Tennessee	37201	home office	furniture	tables	lesro sheffield collection coffee	mobile	android	add_to_ca	Checkout chrome	9 2560 x 1	4 UTC	English
sylvia_test@example.org	8707042810	sylvia foulston	Critical	5	4944.33	Davidson	Tennessee	37201	home office	furniture	dinning table	dinning table							
carlos11@example.net	32124251	carlos solttero	Not Specified	21	1200	Cook	Illinois	60601	consumer	office supplies	storage & organization & art supplies	plymouth boxed rubber bands b	tablet	ios	view	Product_c chrome	7 1680×1	OUTC	English
carlos1990@example.ne	32124253	carlos solteroo	Not Specified	21	1009.08	Cook	Illinois	60601	consumer	office supplies	storage & organization	plymouth boxed rubber bands b	tablet	ios	buy	Confirmat chrome	5 2560 x 1	4 UTC	English
carlos32@example.net	32124252	carloss soltero	Not Specified	21	1100.12	Cook	Illinois	60601	consumer	office supplies	storage & organization	plymouth boxed rubber bands b	tablet	ios	add_to_ca	Checkout chrome	7 1680×1	0 UTC	English
carlos@example.net	32124250	carlos soltero	Not Specified	13	1299.08	Cook	Illinois	60601	consumer	office supplies	storage & organization	plymouth boxed rubber bands b	tablet	ios	view	Product_c chrome	5 2560 x 1	4 UTC	English
mm2@example.net	333333333	8 muhammedd macintyre	High	6	10123.02	Orange	California	92801	smallbusiness	office supplies	storage & organization	eldon base for stackable storag	mobile	android	buy	Confirmat mozilla	5 1920×10	JEUTC	English
mm@example.net	11111111	muhammed macintyre	Low	6	10123.02	Orange	California	92801	smallbusiness	office supplies	storage & organization	eldon base for stackable storag	mobile	android	view	Home mozilla	5 1920×10	JEUTC	English
mm@example.net	22222222	muhammed macintyree	High	6	10123.02	Orange	California	92801	small husiness	office supplies	storage & organization	eldon base for stackable storag	mobile	android	add to ca	Product c mozilla	5 1920x10	JULIC	English

Deterministic Match:

In the deterministic match step, records are matched based on exact attributes such as email or phone number. When records share the same email or phone number, they are considered a 100% match, and thus assigned the same deterministic ID. This process ensures that matching records are accurately identified and linked, relying on precise, unambiguous data points to establish a direct and definitive connection between records.

Output:

······							-	14	-		
email	phone	customername	Deterministic_match_rules	deterministic_id	orderpriotority	orderquantity	productprice	county_name	state_name	zip_code	custor
sylvia@example.org	32124246	sylviafoulston		133	Critical	44	4462.23	Davidson	Tennessee	37201	home
sylvia@example.org	32124247	sylviafoulston	email871432_1734345792	133	Critical	11	4500.99	Davidson	Tennessee	37201	home
sylvia_test@example.org	8707042810	sylviafoulston		134	Critical	5	4944.33	Davidson	Tennessee	37201	home
carlos11@example.net	32124251	carlossolttero		17	Not Specified	21	1200	Cook	Illinois	60601	consu
carlos1990@example.net	32124253	carlossolteroo		18	Not Specified	21	1009.08	Cook	Illinois	60601	consu
carlos32@example.net	32124252	carlosssoltero		19	Not Specified	21	1100.12	Cook	Illinois	60601	consu
carlos@example.net	32124250	carlossoltero		20	Not Specified	13	1299.08	Cook	Illinois	60601	consu
mm2@example.net	333333333	muhammeddmacintyre		114	High	6	10123.02	Orange	California	92801	small I
mm@example.net	11111111	muhammedmacintyre		115	Low	6	10123.02	Orange	California	92801	small I
mm@example.net	22222222	muhammedmacintyree	email871429_1734345792	115	High	6	10123.02	Orange	California	92801	small I

Feature Extraction and Vectorization:

In the feature extraction and vectorization step, we selected several relevant features to accurately represent the data: county name, state name, product name, product category, product subcategory, device category, device platform, browser type, and time zone. To optimize search performance, the data is partitioned based on county name before being inserted into the vector database.

These features are combined to provide contextual meaning. For example, consider a person residing in Davidson County, Tennessee, who ordered a product: "HON 4-Shelf Metal Bookcases," categorized under "Furniture" and subcategorized as "Bookcases." The device details associated with this order include device category: mobile, device platform: Android, browser type: Chrome, and time zone: UTC.

This combined information is then transformed into a single, context-rich text string. To generate a vector representation of the data, we use a sentence transformer model, which converts the text into an embedding that captures the underlying semantics. The vectorization process allows us to represent the data in a high-dimensional space, where similar data points can be identified through similarity searches, enabling more effective matching and retrieval.

The data is inserted into the vector database, and an index is created to enhance search performance. To ensure efficient and fast searches, we have utilized the HNSW (Hierarchical Navigable Small World) algorithm, which significantly improves the speed and accuracy of similarity searches within the database.

Below is a screenshot from Attu, illustrating how the records are stored in the vector database.

~	\rightarrow	C	○ 👌 172.17.	.0.4:3000/#/databases/defau	lt/user_data/data					☆		⊚ ±	ڭ 🕲	=
4	Datal defa	uase ult *	user_data									-☆- 172.: runni	7.0.2:19530 ng	Ð
Ŷ	б	Schema	Vector Search	Data Partitions	Segments Propertie	s								
8		🕑 Edit 💡	🛃 Export 🕞 Copy as	JSON 📋 Delete										
~~~		Please enter	your query expression, eg: id >	0				Ŧ	Consistency Bounded	<ul> <li>Outputs</li> <li>18 Fields</li> </ul>	-	C Reset	Query	
		id 🥃	D	region ()		embedding ()		combined_text ①		persistentID	D			
		29	0	Davidson 🖺		[-0.010597274638712406, -0.072065100073	. 0	A person residing in Davidson cour	nty of Tenn 🕲	962ac54d-ac	9b-4fbb-bd	lad-098bdd43f	6c6 🖆	
								A person residing i having following d table center table tables. Device deta android , browser b	in Davidson count etails, product na corner table , pro ails are as follows, type: chrome , tim	y of Tennessee stal me: lesro sheffield duct category: furn device category: n e zone: UTC	ie , had ori collection iture , pro iobile , de	dered a produ a coffee table iduct subcate vice platform	uct end gory: :	

#### **Querying and Matching:**

We have employed the Euclidean distance algorithm to identify similar customers, with a threshold distance set at 0.2. As shown in the screenshot below, customers with similar attributes, whose distance is within this threshold, are assigned the same match ID, ensuring accurate and efficient identification of related records.

email	phone 📑	customername 🛛 🍷	match_id 🖵	distance 🗾	orderpriotority 🝸	orderquantity 🔻	productprice 🔻	county_name	state_name 💌	zip_code 🔻
sylvia@example.org	32124247	sylviafoulston	194	0.14067016541957855	Critical	11	4500.99	Davidson	Tennessee	37201
sylvia@example.org	32124246	sylviafoulston	183	0.15	Critical	44	4462.23	Davidson	Tennessee	37201
sylvia_test@example.org	8.707E+09	sylviafoulston	183	0.14067016541957855	Critical	5	4944.33	Davidson	Tennessee	37201
carlos11@example.net	32124251	carlossolttero	187	0.05	Not Specified	21	1200	Cook	Illinois	60601
carlos1990@example.net	32124253	carlossolteroo	187	0.00	Not Specified	21	1009.08	Cook	Illinois	60601
carlos32@example.net	32124252	carlosssoltero	187	0.00	Not Specified	21	1100.12	Cook	Illinois	60601
carlos@example.net	32124250	carlossoltero	187	0.00	Not Specified	13	1299.08	Cook	Illinois	60601
mm2@example.net	333333333	muhammeddmacintyre	198	0.00	High	6	10123.02	Orange	California	92801
mm@example.net	22222222	muhammedmacintyree	198	0.00	High	6	10123.02	Orange	California	92801
mm@example.net	11111111	muhammedmacintyre	257	0.00	Low	6	10123.02	Orange	California	92801

#### Merging:

We assign the same persistent ID to records that either match deterministically or have been identified as similar through the vector database. This persistent ID indicates that these records correspond to the same customer, ensuring a unified and consistent customer profile across the system.

email	phone 💌	customername 🔻	match_id _₹ 1	distance 🔻	persistent_id	county_name 🔻	state_name 💌	orderpriotority 🔻
sylvia@example.org	32124247	sylviafoulston	194	0.14067016541957855	962ac54d-ac9b-4fbb-bdad-098bdd43f6c6	Davidson	Tennessee	Critical
sylvia@example.org	32124246	sylviafoulston	183	0.15	962ac54d-ac9b-4fbb-bdad-098bdd43f6c7	Davidson	Tennessee	Critical
sylvia_test@example.org	8.707E+09	sylviafoulston	183	0.14067016541957855	962ac54d-ac9b-4fbb-bdad-098bdd43f6c8	Davidson	Tennessee	Critical
carlos11@example.net	32124251	carlossolttero	187	0.05	c1ad6a41-eb5c-4463-b815-a1d3809628c9	Cook	Illinois	Not Specified
carlos1990@example.net	32124253	carlossolteroo	187	0.00	c1ad6a41-eb5c-4463-b815-a1d3809628c1	Cook	Illinois	Not Specified
carlos32@example.net	32124252	carlosssoltero	187	0.00	c1ad6a41-eb5c-4463-b815-a1d3809628c1	Cook	Illinois	Not Specified
carlos@example.net	32124250	carlossoltero	187	0.00	c1ad6a41-eb5c-4463-b815-a1d3809628c1	Cook	Illinois	Not Specified
mm2@example.net	333333333	muhammeddmacintyre	198	0.00	ecc2b92d-0b6d-4401-b802-dd913b8972d	Orange	California	High
mm@example.net	22222222	muhammedmacintyree	198	0.00	ecc2b92d-0b6d-4401-b802-dd913b8972d	Orange	California	High
mm@example.net	11111111	muhammedmacintyre	257	0.00	ecc2b92d-0b6d-4401-b802-dd913b8972d	Orange	California	Low



### Example of Unstructured data

In the example below, similar sentences are assigned shorter distances when searched in the vector database, demonstrating how unstructured data is processed and matched based on semantic similarity.

	Similar unstructured data found using	
Source unstructured data	vector query	distance
Sarah, a marketing professional based in Chicago, enjoys traveling to Paris for work. She frequently posts product reviews on Instagram, particularly about eco-friendly beauty products she loves. Her followers often engage with her content about sustainability and new beauty trends.	Sarah, a marketing professional based in Chicago, enjoys traveling to Paris for work. She frequently posts product reviews on Instagram, particularly about eco-friendly beauty products she loves. Her followers often engage with her content about sustainability and new beauty trends.	(
Sarah, a marketing professional based in Chicago, enjoys traveling to Paris for work. She frequently posts product reviews on Instagram, particularly about eco-friendly beauty products she loves. Her followers often engage with her content about sustainability and new beauty trends.	A marketing professional from Chicago travels to Paris on business trips several times a year. She shares beauty product reviews on Instagram, focusing on sustainable brands. Many of her followers are passionate about eco-friendly beauty options.	0.44360318779945374
Sarah, a marketing professional based in Chicago, enjoys traveling to Paris for work. She frequently posts product reviews on Instagram, particularly about eco-friendly beauty products she loves. Her followers often engage with her content about sustainability and new beauty trends.	Sophia, a photographer from Chicago, specializes in urban photography and often posts her work on Instagram. She loves capturing the dynamics of city life, from bustling streets to quiet corners. Her Instagram feed is a visual journey through the heart of urban landscapes.	0.8299462795257568
Amit Kumar, a software engineer from Bangalore, enjoys spending his free time gaming. He regularly buys the latest tech gadgets from online stores. Amit also participates in online gaming tournaments and has a strong following among his gaming community.	Amit Kumar, a software engineer from Bangalore, enjoys spending his free time gaming. He regularly buys the latest tech gadgets from online stores. Amit also participates in online gaming tournaments and has a strong following among his gaming community.	(
Amit Kumar, a software engineer from Bangalore, enjoys spending his free time gaming. He regularly buys the latest tech gadgets from online stores. Amit also participates in online gaming tournaments and has a strong following among his gaming community.	A software engineer from Bangalore enjoys coding and gaming in his spare time. He frequently shops for tech gadgets, often upgrading his setup. His interest in the latest technology trends keeps him active in online tech forums.	0.8274768590927124
Amit Kumar, a software engineer from Bangalore, enjoys spending his free time gaming. He regularly buys the latest tech gadgets from online stores. Amit also participates in online gaming tournaments and has a strong following among his gaming community.	Kevin Scott, a tech enthusiast from Seattle, enjoys buying new gadgets and often shares his thoughts on the latest tech trends. He has a growing presence on LinkedIn where he engages with other tech professionals. Kevin loves discussing the newest gadgets and innovations in technology.	1.1788885593414307

## Vector database comparison

Vector D	B Name	Strengths	Weaknesses	Use Cases
FAISS AI Search) (Open So	(Facebook Similarity purce)	Performance: FAISS is renowned for its high performance and is optimized for speed. It supports various indexing structures and distance metrics, which allows for a high degree of flexibility in search tasks. Scalability: It can handle large datasets efficiently, especially with its support for GPU acceleration, making it a strong choice for very large-scale applications.	Complexity: Its advanced features and multiple indexing options can be complex to configure and tune effectively, particularly for users who are new to vector databases.	Suitable for applications requiring high performance and flexibility, such as large- scale recommendation systems, search engines, and similarity search.

T



SJIF Rating: 8.448

ISSN: 2582-3930

	<b>Flexibility</b> : It provides multiple indexing algorithms (e.g., IVF, HNSW, PQ) and distance metrics (e.g., L2, inner product), catering to diverse application needs.		
Annoy (Approximate Nearest Neighbors Oh Yeah) (Open Source)	Simplicity: Annoy is designed to be easy to use and integrate, with a straightforward API and minimal configuration required. Efficiency: It's efficient for approximate nearest neighbor search and can handle very large datasets, making it suitable for scenarios with billions of	Limited Functionality: Annoy focuses mainly on nearest neighbor search, so it lacks some of the advanced features and flexibility found in FAISS and Milvus.	Ideal for applications that require a simple, efficient solution for approximate nearest neighbor search, such as recommendation systems and search applications where ease of use and minimal setup
	vectors. Memory Usage: It is designed to work well with limited memory, making it more resource-efficient compared to some other options.	for very large datasets.	are priorities.
Milvus (Open Source)	<b>Distributed Capabilities:</b> Milvus supports distributed indexing, allowing it to scale horizontally across multiple nodes, which is beneficial for very large datasets and high availability.	Complexity and Overhead: Its advanced features and distributed nature can introduce complexity in setup and maintenance. There may also be overhead associated with its distributed	Best suited for applications requiring a robust, scalable, and feature-rich vector database, such as enterprise- level search engines, recommendation systems with real-time data and large-scale
	<b>Real-Time Updates</b> : It supports real-time updates, making it suitable for applications where the data is frequently updated.	architecture.	analytics.



SJIF Rating: 8.448

ISSN: 2582-3930

	AdvancedFeatures:Offers features like faulttoleranceandvariousindexingalgorithms,giving it a broad set ofcapabilitiesfor complexapplications.		
Pinecone (Not an Open Source)	Fully Managed Service:Pineconehandlesallaspects of the vector searchinfrastructure,includingscaling,maintenance,andoperations,whichcansignificantlyreducetheoverheadfordevelopmentand operations teams.AdvancedFeatures:AdvancedFeatures:Itoffersfeaturessuchhybridsearch(combiningvectorsearchwithtraditionalkeywordsearch),anomalydetection,andupdates.Thesecanaddsubstantialvaluedependingonyourapplicationneeds.Itsuser-friendlyinterfaceandanagement,makingiteasiertogetstartedandmanagecomplexsearchfunctionalities.	Cost: While Pinecone has a generous free tier, costs can escalate depending on the scale of usage and additional features required. This might be a consideration for budget- conscious projects. Vendor Lock-In: As a cloud- based service, using Pinecone means being dependent on their platform and pricing model, which might be a concern for some organizations.	Ideal for organizations looking for a robust, scalable vector search solution with advanced features without the need to manage the underlying infrastructure. Great for applications with a focus on real-time updates, hybrid search capabilities, and advanced analytics.

For **identity resolution in big data**, **Milvus** offers significant advantages in terms of scalability, performance, flexibility, and ease of integration with machine learning workflows. It is well-suited for handling large-scale, highdimensional datasets and can support real-time updates, making it an ideal choice for dynamic identity resolution tasks that require continuous data processing. While **Faiss** and **Annoy** have their own merits, **Milvus** is a more robust and comprehensive solution for large-scale IDR applications, offering features and scalability that make it the preferred choice when dealing with massive datasets.



# **Milvus Architecture**

Milvus architecture is designed to handle large-scale, high-dimensional vector data efficiently, and it consists of several key components working in unison:

1. **Client**: The interface through which users interact with Milvus, sending queries and data operations like inserting, querying, and deleting vectors.

2. **Query Node**: Handles query processing, performing vector similarity searches (e.g., cosine similarity, Euclidean distance) based on search parameters and incoming requests.

3. **Data Node**: Responsible for storing and managing the vector data and metadata. It handles the actual data storage, retrieval, and indexing processes, ensuring distributed data handling.

4. **Index Node**: Dedicated to creating and managing indexes that optimize the vector search process. Indexes like IVF (Inverted File) and HNSW (Hierarchical Navigable Small World) are used to speed up search queries by reducing the number of vectors compared during searches.

5. **Coordinator**: Oversees the entire system, managing query distribution, load balancing, and efficient routing of operations to query and data nodes. It ensures that the distributed system functions cohesively.

6. **Storage**: Milvus supports distributed and scalable storage backends (such as local file systems, cloud storage, or distributed storage solutions), enabling the management of large datasets across multiple nodes.

The **distributed indexing** mechanism allows Milvus to scale horizontally. By partitioning the vector data and distributing the index across multiple nodes, Milvus ensures efficient vector retrieval, even for massive datasets, enhancing speed and performance. This architecture provides flexibility, scalability, and high-performance search for complex machine learning and AI workloads.

# **Indexing Options in Milvus**

Milvus provides various indexing options to optimize search performance, allowing users to choose the best method based on their specific data and query requirements.

Indexing Method	Description	Key Features				
IVF (Inverted File System)	Divides vectors into clusters to speed up the search process.	Efficient for large datasets, improves search speed by clustering vectors.				
HNSW (Hierarchical Navigable Small World)	Uses graph-based indexing for fast, accurate similarity searches.	Offers high search accuracy and efficiency, particularly for high-dimensional data.				
PQ (Product Quantization)	Compresses and indexes high- dimensional vectors to reduce storage and improve search efficiency.	Reduces memory usage, speeds up searches, suitable for large-scale datasets.				



SJIF Rating: 8.448

ISSN: 2582-3930

ANNOY

Supports Annoy's indexing method for approximate nearest neighbor search.

Efficient for approximate searches, handles large datasets well with lower memory usage.

# **Embedding Models**

Here's a comparison of some popular models:

Model	Training Objective	Strengths	Weaknesses	Typical Use Cases
Word2Vec	Word co-occurrence	Fast, efficient, captures semantic similarity	Static embeddings, struggles with polysemy	Basic word-level embeddings, simple semantic tasks, word similarity
GloVe	Word co-occurrence	Incorporates global context, interpretable embeddings	Static embeddings, limited handling of polysemy	Word similarity, basic text representation, topic modeling
Sentence Transformer	Sentence-level context (e.g., BERT- based)	Captures full sentence meaning, contextualized embeddings	Larger models, computationally intensive	Sentence similarity, semantic search, paraphrase detection, text classification

Here's a comparison of some popular models of **Sentence Transformers**:

Model	Training Objective	Strengths	Weaknesses	Typical Use Cases
bert-base-nli- mean-tokens	Fine-tuned on Natural Language Inference (NLI) tasks	General-purpose, well-balanced, good for various tasks	Slower inference time compared to smaller models	Semantic search, text similarity, NLI, classification
roberta-base- nli-mean- tokens	Fine-tuned on Natural Language Inference (NLI) tasks	More powerful than BERT for many tasks, captures nuances	Larger model, higher computational requirements	Text similarity, paraphrase detection, NLI
distilbert- base-nli-stsb- mean-tokens	Fine-tuned on STS-B (Semantic Textual Similarity) task	Faster than BERT and RoBERTa, retains most of the accuracy	Slightly less accurate than full BERT/RoBERTa models	Text similarity, paraphrase detection, semantic search



SJIF Rating: 8.448

ISSN: 2582-3930

paraphrase- MiniLM-L6-v2	Fine-tuned on paraphrase datasets	Extremely fast, smaller model with good performance	Less powerful than larger transformer models	Semantic search, sentence similarity, quick inference
paraphrase- distilroberta- base-v2	Fine-tuned on paraphrase datasets	Fast, robust for paraphrase tasks, more efficient than large models	May lose nuance in certain complex tasks	Paraphrase detection, text classification, quick semantic search
all-MiniLM- L6-v2	Fine-tuned on a variety of general text tasks	Small and efficient, great for resource- constrained environments	Slightly less accurate for complex tasks	Fast semantic search, sentence similarity, basic NLP tasks
all-MiniLM- L12-v2	Fine-tuned on a variety of general text tasks	Offers a good balance of speed and accuracy	Larger than L6, higher memory requirements	Sentence similarity, search, general- purpose embedding
paraphrase- xlm-r- multilingual- v1	Fine-tuned on paraphrase datasets in multiple languages	Supports multiple languages, good for cross-lingual tasks	Slower inference compared to monolingual models	Cross-lingual semantic search, paraphrase detection
stsb-roberta- large	Fine-tuned on the STS- B (Semantic Textual Similarity) task	Very high accuracy, captures deeper semantic meaning	Large and slow, high computational resources	Semantic textual similarity, fine- grained semantic tasks

# **Optimizing Search Performance**

Milvus, a leading vector database, provides several optimization features to improve search performance:

#### • Partitioning:

Milvus improves query performance by using partitioning, which divides data into smaller, more manageable subsets. During data insertion, records are organized into partitions based on specific criteria, such as time, category, or geography. During search operations, queries are directed to the relevant partitions, reducing the volume of data that needs to be searched. This selective querying speeds up searches and reduces computational load, allowing for more efficient and faster results, particularly when working with massive datasets. Partitioning also helps in load balancing and can improve both insert and query performance in large-scale deployments.

#### • Index Optimization:

Milvus offers a variety of indexing methods to optimize search performance. By switching from an Inverted File (IVF) index to a Hierarchical Navigable Small World (HNSW) index, search efficiency improves



dramatically. IVF indexes partition data into clusters, which works well for large datasets, but HNSW indexes provide superior performance for high-dimensional data, particularly when searching for nearest neighbors. HNSW reduces the number of comparisons during searches, significantly speeding up the search process without sacrificing accuracy. This optimization makes Milvus suitable for time-sensitive applications requiring fast retrieval and high-precision results.

#### • PCA Implementation:

Principal Component Analysis (PCA) is a dimensionality reduction technique implemented by Milvus to improve both storage efficiency and search performance. By reducing the number of dimensions in a dataset while retaining most of the variance, PCA enables Milvus to store and process vector data more efficiently. Dimensionality reduction also improves search performance by decreasing the complexity of distance calculations, speeding up similarity searches. While maintaining the accuracy of the search results, PCA helps in reducing the computational resources required, which can be especially beneficial in environments with large-scale, high-dimensional data.

#### • Cluster Mode Deployment:

Milvus supports clustered deployments, ensuring higher availability, fault tolerance, and scalability for large-scale applications. In a cluster setup, multiple nodes work together, sharing the workload of storing, indexing, and querying vector data. This architecture allows for horizontal scaling, meaning the system can handle growing data volumes by simply adding more nodes. Additionally, a clustered deployment ensures that if one node fails, other nodes in the cluster can take over, maintaining continuous availability. This capability is crucial for applications that require uninterrupted service and high reliability, such as real-time search or recommendation systems.

### **Performance Enhancement Measures**

#### MapPartitions:

The MapPartitions technique enhances the processing efficiency of large datasets by optimizing the way data is handled during the vectorization or embedding process. Instead of processing records one by one, MapPartitions enables parallel processing by partitioning data into smaller subsets and processing them simultaneously. This significantly reduces the time required to compute embeddings, as multiple partitions can be handled concurrently. For example, processing 100,000 records was reduced from 90 minutes to just 55 minutes. This approach accelerates data transformation, which is particularly valuable for applications involving large-scale machine learning tasks that require quick, efficient processing.

#### • Normalization Techniques:

Normalization techniques like Z-score Scaling and Log Scaling are crucial for standardizing data and ensuring that features with different ranges or units are comparable. Z-score scaling transforms the data to have a mean of zero and a standard deviation of one, making it easier to compare features that may vary significantly in magnitude. Log Scaling, on the other hand, reduces the impact of outliers and compresses large values, which is useful for skewed datasets. By applying these normalization techniques, the dataset



becomes more uniform, leading to more accurate and relevant similarity searches when working with highdimensional vector data.

## **Future Directions and Next Steps**

The future of identity resolution using vector databases looks promising. Some key areas for improvement and innovation include:

• **Integration with Other Vector Databases**: The future of our identity resolution system will require smooth integration between multiple vector database systems to harness their respective strengths. Different vector databases may offer optimized solutions for specific tasks, like fast retrieval, high-dimensional data processing, or complex relationships. Ensuring seamless interaction between systems will allow businesses to choose the best tool for each scenario, while also enabling data sharing and synchronization across platforms. This integration would simplify workflows, enhance flexibility, and ensure that businesses can leverage cutting-edge technologies without being restricted to a single database solution.

• **Handling Attribute Changes**: One of the ongoing challenges in identity resolution is managing changes in data attributes over time. As new information is added or existing data evolves, it's crucial to re-embed the updated data to maintain accurate identity profiles. Solutions that allow for seamless re-embedding during incremental data flows are needed to ensure that updates don't disrupt the identity resolution process. This capability would help businesses adapt quickly to changes in customer behavior or other attributes, enabling the continuous refinement of identity profiles. Effective handling of attribute changes ensures consistency and accuracy in dynamic datasets.

# Conclusion

Vector databases are set to revolutionize Identity Resolution by delivering faster, more accurate, and scalable solutions than traditional methods. By harnessing the capabilities of semantic similarity, real-time querying, and machine learning models, organizations can achieve more efficient identity resolution, enhancing their ability to provide highly personalized customer experiences. As data complexity continues to grow, vector databases will become crucial in managing large-scale datasets, significantly boosting the effectiveness of modern machine learning applications. This white paper emphasizes the transformative potential of vector databases in addressing identity resolution challenges, as well as their broader influence on data management in the era of Generative AI and big data.

This white paper explores the role of vector databases in identity resolution, offering a detailed analysis of their impact on modern data processing workflows. It highlights the advantages of using vector databases over



traditional methods, emphasizing their ability to handle complex, high-dimensional data with greater accuracy, scalability, and speed. The paper delves into how vector databases enhance identity resolution by leveraging semantic similarity, real-time querying, and machine learning models. It also outlines the benefits for businesses seeking to improve data management, personalization, and customer experience in the age of big data and advanced analytics.

### **References:**

- <u>https://www.youtube.com/watch?v=3zYtfqxi6EU</u>
- <u>https://www.youtube.com/watch?v=tjo9NJBmExM</u>
- <u>https://www.youtube.com/watch?v=ySZp0rcGr4A</u>
- <u>https://milvus.io/docs/architecture_overview.md</u>
- <u>https://milvus.io/docs/four_layers.md</u>
- <u>https://milvus.io/blog/understanding-consistency-levels-in-the-milvus-vector-database-2.md</u>