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Abstract—Modern applications change over time, with more 
features modified or added as new products are launched and 
existing features are improved. Applications should aim to build 
systems that make it easy to adapt to changes. In most cases, a 
change to an application’s features also requires a change in the 
data it stores, and a new field or record type must be captured or 
perhaps existing data must be presented in a new way. In order 
for the system to continue running smoothly, we need to maintain 
compatibility in both directions – backward compatibility and 
forward compatibility. Backward compatibility is normally not 
hard to achieve as an author of the newer code knows the format 
of data written by the older code, and so user can explicitly 
handle it (if necessary by simply keeping the old code to read 
the old data). Forward compatibility can be trickier because it 
requires older code to ignore additions made by a newer version 
of the code. In this paper, we will deep dive into formats for 
encoding data and look into how they handle schema changes 
and how they support systems where old and new data and 
code need to coexist. We will then discuss how those formats are 
used for data storage and for communication in web services, 
representational state transfer (REST) [2], and remote procedure 
calls (RPC) [3], as well as message-passing systems such as actors 
and message queues 
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I. INTRODUCTION 

Modern applications usually store data in two types of 

representation, memory and disk. In memory, data are kept in 

objects, structs, lists, arrays, hash tables. These data structures 

are optimized for efficient access and manipulation by the 

CPU typically using pointers. When we want to write data 

to a file or send it over the network, we need to encode 

it as some kind of self-contained sequence of bytes, like 

JSON. Since the pointer does not make sense in this case, 

bytes representation in this case is different from the data 

structures used in memory. Hence, translation is required from 

in-memory representation to a byte sequence, which is called 

encoding or serialization. Many programming languages come 

with built-in support for encoding in-memory objects into 

byte sequences. For example, Java has java.io.Serializable 

[1], Ruby has Marshal [8], Python has pickle [9], and so 

on. Many third-party libraries also exist, such as Kryo for 

Java. Encoding libraries of programming languages are very 

appropriate as they allow in-memory objects to be saved and 

can be restored with minimal additional code. Though in- 

built programming languages have advantages, they also have 

few problems. The encoding is tied to programming language 

which will lead to reading in another programming language 

difficult. If we store or transmit data in such an encoding, we 

need to commit to current programming language for a very 

long time and building new applications in same programming 

language as they need communication. Versioning data is 

often an afterthought in these libraries: as they are intended 

for quick and easy encoding of data, they often neglect the 

inconvenient problems of forward and backward compatibility. 

In-built programming languages encoding formats are very bad 

at performance and provides more data through encoding like 

Java’s serialization. 

In next sections, we discuss various encoding formats start- 

ing from JSON, XML to Thrift [5], Protobuf [6] and Avro 

[4] and deep dive into how encoding works for these formats, 

how much data is generated by encoding using these formats, 

and how backward and forward compatibility works in these 

formats. 

II. STANDARD ENCODING 

Standard encodings can be written and read by many 

programming languages and the obvious ones are JSON, 

XML and CSV in some cases. These encoding formats are 

widely known and are very easy to adapt, but are disliked 

and not used for being too verbose and complicated. JSON’s 

popularity is mainly due to its built-in support in web browsers 

and simplicity relative to XML. JSON, XML, and CSV are 

textual formats, and thus human-readable, but has some subtle 

problems with these formats. There is a lot of ambiguity 

around the encoding of numbers. In XML and CSV, you 

cannot distinguish between a number and a string that happens 

to consist of digits. JSON distinguishes strings and numbers, 

but it does not distinguish integers and floating-point numbers, 

and it does not specify a precision. This is a problem when 

dealing with large numbers. For example, integers greater than 

253 cannot be exactly represented in an IEEE 754 double- 

precision floating- point number, so such numbers become 

inaccurate when parsed in a language that uses floating-point 

numbers. This can be addressed by storing IDs twice, once as 

a JSON number and once as a decimal string, to work around 

the fact that the numbers are not correctly parsed by JavaScript 

applications. JSON and XML have good support for Unicode 

character strings, but they don’t support binary strings. Binary 

strings are a useful feature, so people get around this limitation 

by encoding the binary data as text using Base64. The schema 

is then used to indicate that the value should be interpreted 

as Base64-encoded. CSV does not have any schema, so it is 

up to the application to define the meaning of each row and 

column. If an application change adds a new row or column, 

change needs to be handled manually. Although its escaping 

rules have been formally specified, not all parsers implement 

them correctly. 
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Despite these flaws, JSON, XML, and CSV are good enough 

for many purposes. It’s likely that they will remain popular, 

especially as data interchange formats. In these situations, as 

long as people agree on what the format is, it often doesn’t 

matter how pretty or efficient the format is. 

III. BINARY ENCODING 

Data that is used only internally within the organization, 

there is less pressure to use a common encoding format, an 

encoding format that is more compact or faster to parse can 

be used. Gains are negligible for small datasets, but once the 

data size gets into terabytes, data encoding format makes huge 

difference. JSON is less verbose than XML, but both still use 

a lot of space compared to binary formats. This observation 

led to the development of a binary encodings for JSON and 

for XML. These formats have been adopted in various niches, 

but none of them are as widely adopted as the textual versions 

of JSON and XML. Some of the binary formats of standard 

encoding formats extend the set of datatypes, but keeping the 

data model of JSON or XML unchanged. In particular, since 

they don’t prescribe a schema, they need to include all the 

object field names within the encoded data. Lets take below 

example object and understand how the data is stored, how 

many bytes it takes for storage in various formats. 

{ 
” name ” : ” Arjun ” , 

” i d ” : 1234 , 

” s p o r t s ” :  [ ” c r i c k e t ” ] 

} 

MessagePack [7] is a binary encoding format of JSON and 

the above example object is encoded using MessagePack. At 

first it explains that an object is stored 0x80 and the number 

of fields the object contains 0x03, combined together first 

byte contains 0X 83. The second byte, 0xa8, indicates that 

what follows is a string. The next eight bytes are the field 

name userName in ASCII. Since the length was indicated 

previously. Following this approach, above object takes 34 

bytes to store including the key names which is only little 

less than textual JSON encoding format with the cost of loss 

of human readability. In next sections we look into encoding 

formats Thrift, Protobuf approaches, same obeject can be 

stored in less number of bytes. 

IV. THRIFT AND PROTOBUF 

Apache Thrift [5] and Protocol Buffers (protobuf) [6] are 

binary encoding libraries that are based on the same principle. 

Protocol Buffers was originally developed at Google, Thrift 

was originally developed at Facebook, and both were made 

open source in 2007–08. Both Thrift and Protocol Buffers 

require a schema for any data that is encoded. Schema for 

above object in Thrift is defined in Thrift interface definition 

language as below: 

s t r u c t  P e r s o n { 
1 :  r e q u i r e d  s t r i n g name , 

2 :  r e q u i r e d  i 6 4 id , 

3 :  o p t i o n a l  l i s t <s t r i n g > s p o r t s 

} 

and the equivalent schema definition for Protocol Buffer looks 

as below: 

message  P e r s o n { 
r e q u i r e d  s t r i n g  name = 1 , 

r e q u i r e d i 6 4 i d = 2 , 

o p t i o n a l  l i s t <s t r i n g > s p o r t s = 3 

} 

Thrift and Protocol Buffers each come with a code gener- 

ation tool that takes a schema definition like the ones shown 

here, and produces classes that implement the schema in 

various programming languages which can be called from 

application code to encode or decode records of the schema. 

The main difference Thrift and Protobuf has compared to 

standard encoding data formats is that there are no field names 

stored with data as we have schema. Instead, the encoded data 

contains field tags, which are numbers (1, 2, and 3). Those are 

the numbers that appear in the schema definition. Field tags 

are like aliases for fields—they are a compact way of saying 

what field we are talking about, without having to spell out 

the field name. Same object which took 35 bytes for storage 

takes only 20 bytes of storage in Thirft protocol. It does this 

by packing the field type and tag number into a single byte, 

and by using variable-length integers. In thrift, for first field 

it take a byte for field tag and data type of the field, another 

byte for defining the length of the string and 5 bytes for the 

name field value. Next, field tag and data type takes a byte, 

integer value is stored in 2 bytes. Next, field tag and data type 

takes a byte, another byte to define the number of items in 

the list, a byte for the length of the value of the string and 7 

bytes for the value of the field in the list. combining to a total 

of 20 bytes. 

Protobuf does the encoding quite similar to Thrift protocol, 

but does the bit packing slightly differently for lists with 

providing field tag multiple times instead of providing the data 

type. One detail to note, in the schemas shown earlier, each 

field was marked either required or optional, but this makes no 

difference to how the field is encoded (nothing in the binary 

data indicates whether a field was required). The difference is 

simply that required enables a runtime check that fails if the 

field is not set, which can be useful for catching bugs. 

A. Field Tags 

Field tags are critical to the meaning of the encoded data. 

Each field is identified by its tag number (the numbers 1, 2, 

3 in the schema) and annotated with a datatype. If a field 

value is not set, it is simply omitted from the encoded record. 

We can change the name of a field in the schema, since the 

encoded data never refers to field names, but we cannot change 

a field’s tag, since that would make all existing encoded data 

invalid. We can add new fields to the schema, provided that 

we give each field a new tag number. If old code tries to 

read data written by new code, including a new field with a 

tag number it does not recognize, it can simply ignore that 
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field. The datatype annotation allows the parser to determine 

how many bytes it needs to skip. This maintains forward 

compatibility: old code can read records that were written by 

new code. As long as each field has a unique tag number, 

new code can always read old data, because the tag numbers 

still have the same meaning. The only detail is that if we add 

a new field, we cannot make it required. If we were to add 

a field and make it required, that check would fail if new 

code read data written by old code, because the old code will 

not have written the new field that we added. Therefore, to 

maintain backward compatibility, every field we add after the 

initial deployment of the schema must be optional or have 

a default value. Removing a field is just like adding a field, 

with backward and forward compatibility concerns reversed. 

That means we can only remove a field that is optional, a 

required field can never be removed, and we can never use 

the same tag number again because we may still have data 

written somewhere that includes the old tag number, and that 

field must be ignored by new code. 

{ 
” t y p e ” :  ” r e c o r d ” , 

” name ” : ” P e r s o n ” , 

” f i e l d s ” : [ 

{ 
” name ” :  ” name ” , 

” t y p e ” :  ” s t r i n g ” 

} , 
{ 

” name ” :  ” i d ” , 

” t y p e ” : [ ” n u l l ” , ” l on g ” ] , 

” d e f a u l t ” : n u l l 

} , 
{ 

” name ” : ” s p o r t s ” , 

” t y p e ” : { 
” t y p e ” :  ” a r r a y ” , 

” i t e m s ” :  ” s t r i n g ” 

} 
} 

B. Data types ] 

With changing data types there is a risk that values will lose } 
precision or get truncated. For example, say you change a 32- 

bit integer into a 64-bit integer, new code can easily read data 

written by old code, because the parser can fill in any missing 

bits with zeros. However, if old code reads data written by 

new code, the old code is still using a 32-bit variable to hold 

the value. If the decoded 64-bit value won’t fit in 32 bits, it 

will be truncated. Protocol Buffers does not have a list or array 

datatype, but instead has a repeated marker for fields. This has 

the nice effect that it’s okay to change an optional field into a 

repeated field. New code reading old data sees a list with zero 

or one elements, and old code reading new data sees only the 

last element of the list. Thrift has a dedicated list datatype, 

which is parameterized with the datatype of the list elements. 

This does not allow the same evolution from single-valued to 

multi-valued as Protocol Buffers does, but it has the advantage 

of supporting nested lists. 

V. AVRO 

Apache Avro [4] is another binary encoding format that 

is interestingly different from Protocol Buffers and Thrift. It 

was started as a subproject of Hadoop, as a result of Thrift 

not being a good fit for Hadoop’s use cases. Avro also uses 

a schema to specify the structure of the data being encoded. 

It has two schema languages: one (Avro IDL) intended for 

human editing, and one based on JSON that is more easily 

machine-readable. Example schema discussed above written 

in Avro IDL will look like below: 

r e c o r d  P e r s o n { 
s t r i n g name ; 

union { n u l l ,  l o ng } i d = n u l l ; 

a r r a y <s t r i n g > s p o r t s ; 

} 

and the equivalent JSON representation of that schema is: 

Avro doesn’t tag numbers in the schema. If we encode our 

example object using this schema, the Avro binary encoding 

is just 17 bytes long which is the most compact of all the 

encodings we have seen. The encoding simply consists of 

values concatenated together. A string is just a length prefix 

followed by UTF-8 bytes, but there’s nothing in the encoded 

data that tells that it is a string. It could just as well be an 

integer, or something else entirely. An integer is encoded using 

a variable-length encoding. To parse the binary data, we go 

through the fields in the order that they appear in the schema 

and use the schema to tell you the datatype of each field. This 

means that the binary data can only be decoded correctly if the 

code reading the data is using the exact same schema as the 

code that wrote the data. Any mismatch in the schema between 

the reader and the writer would mean incorrectly decoded data. 

Avro uses writer’s and reader’s schema for schema evolution. 

With Avro, when an application wants to encode some data, 

it encodes the data using whatever version of the schema it 

knows, that schema may be compiled into the application. This 

is known as the writer’s schema. When an application wants 

to decode some data, it is expecting the data to be in some 

schema, which is known as the reader’s schema. The key idea 

with Avro is that the writer’s schema and the reader’s schema 

don’t have to be the same, they only need to be compatible. 

When data is decoded, Avro library resolves the differences by 

looking at the writer’s schema and the reader’s schema side by 

side and translating the data from the writer’s schema into the 

reader’s schema. The Avro specification [20] defines exactly 

how this resolution works. For example, it’s no problem if the 

writer’s schema and the reader’s schema have their fields in a 

different order, because the schema resolution matches up the 

fields by field name. If the code reading the data encounters a 

field that appears in the writer’s schema but not in the reader’s 
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schema, it is ignored. If the code reading the data expects some 

field, but the writer’s schema does not contain a field of that 

name, it is filled in with a default value declared in the reader’s 

schema. 

A. Schema Evolution 

With Avro, forward compatibility means that we can have a 

new version of the schema as writer and an old version of the 

schema as reader. Conversely, backward compatibility means 

that we can have a new version of the schema as reader and an 

old version as writer. To maintain compatibility, we may only 

add or remove a field that has a default value. For example, 

say we add a field with a default value, so this new field exists 

in the new schema but not the old one. When a reader using 

the new schema reads a record written with the old schema, 

the default value is filled in for the missing field. Changing the 

datatype of a field is possible, provided that Avro can convert 

the type. Changing the name of a field is possible: the reader’s 

schema can contain aliases for field names, so it can match 

an old writer’s schema field names against the aliases. This 

means that changing a field name is backward compatible but 

not forward compatible. Similarly, adding a branch to a union 

type is backward compatible but not forward compatible. 

VI. CONCLUSION 

Many services need to support rolling upgrades, where a 

new version of a service is gradually deployed to a few nodes 

at a time, rather than deploying to all nodes simultaneously. 

Rolling upgrades allow new versions of a service to be released 

without downtime and make deployments less risky allowing 

faulty releases to be detected and rolled back before they affect 

a large number of users. These properties are hugely beneficial 

for evolvability, the ease of making changes to an application. 

During rolling upgrades, or for various other reasons, we must 

assume that different nodes are running the different versions 

of our application’s code. Thus, it is important that all data 

flowing around the system is encoded in a way that provides 

backward compatibility and forward compatibility. We dis- 

cussed several data encoding formats and their compatibility 

properties starting from standard data encoding formats like 

JSON, XML, CSV and their compatibility and the problems 

faced through these textual data encoding formats. Binary 

schema–driven formats like Thrift, Protocol Buffers, and Avro 

allow compact, efficient encoding with clearly defined forward 

and backward compatibility semantics. The schemas can be 

useful for documentation and code generation in statically 

typed languages. However, they have the downside that data 

needs to be decoded before it is human-readable. 
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