
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 06 | June - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM8907 | Page 1

Encoding Data Formats for Evolvability

Arjun Reddy Lingala

arjunreddy.lingala@gmail.com

Abstract—Modern applications change over time, with more
features modified or added as new products are launched and
existing features are improved. Applications should aim to build
systems that make it easy to adapt to changes. In most cases, a
change to an application’s features also requires a change in the
data it stores, and a new field or record type must be captured or
perhaps existing data must be presented in a new way. In order
for the system to continue running smoothly, we need to maintain
compatibility in both directions – backward compatibility and
forward compatibility. Backward compatibility is normally not
hard to achieve as an author of the newer code knows the format
of data written by the older code, and so user can explicitly
handle it (if necessary by simply keeping the old code to read
the old data). Forward compatibility can be trickier because it
requires older code to ignore additions made by a newer version
of the code. In this paper, we will deep dive into formats for
encoding data and look into how they handle schema changes
and how they support systems where old and new data and
code need to coexist. We will then discuss how those formats are
used for data storage and for communication in web services,
representational state transfer (REST) [2], and remote procedure
calls (RPC) [3], as well as message-passing systems such as actors
and message queues

Keywords—Encoding, Decoding, Serialization, Deserialization,

Forward Compatibility, Backward Compatibility, Evolvability,
Performance, Compact

I. INTRODUCTION

Modern applications usually store data in two types of

representation, memory and disk. In memory, data are kept in

objects, structs, lists, arrays, hash tables. These data structures

are optimized for efficient access and manipulation by the

CPU typically using pointers. When we want to write data

to a file or send it over the network, we need to encode

it as some kind of self-contained sequence of bytes, like

JSON. Since the pointer does not make sense in this case,

bytes representation in this case is different from the data

structures used in memory. Hence, translation is required from

in-memory representation to a byte sequence, which is called

encoding or serialization. Many programming languages come

with built-in support for encoding in-memory objects into

byte sequences. For example, Java has java.io.Serializable

[1], Ruby has Marshal [8], Python has pickle [9], and so

on. Many third-party libraries also exist, such as Kryo for

Java. Encoding libraries of programming languages are very

appropriate as they allow in-memory objects to be saved and

can be restored with minimal additional code. Though in-

built programming languages have advantages, they also have

few problems. The encoding is tied to programming language

which will lead to reading in another programming language

difficult. If we store or transmit data in such an encoding, we

need to commit to current programming language for a very

long time and building new applications in same programming

language as they need communication. Versioning data is

often an afterthought in these libraries: as they are intended

for quick and easy encoding of data, they often neglect the

inconvenient problems of forward and backward compatibility.

In-built programming languages encoding formats are very bad

at performance and provides more data through encoding like

Java’s serialization.

In next sections, we discuss various encoding formats start-

ing from JSON, XML to Thrift [5], Protobuf [6] and Avro

[4] and deep dive into how encoding works for these formats,

how much data is generated by encoding using these formats,

and how backward and forward compatibility works in these

formats.

II. STANDARD ENCODING

Standard encodings can be written and read by many

programming languages and the obvious ones are JSON,

XML and CSV in some cases. These encoding formats are

widely known and are very easy to adapt, but are disliked

and not used for being too verbose and complicated. JSON’s

popularity is mainly due to its built-in support in web browsers

and simplicity relative to XML. JSON, XML, and CSV are

textual formats, and thus human-readable, but has some subtle

problems with these formats. There is a lot of ambiguity

around the encoding of numbers. In XML and CSV, you

cannot distinguish between a number and a string that happens

to consist of digits. JSON distinguishes strings and numbers,

but it does not distinguish integers and floating-point numbers,

and it does not specify a precision. This is a problem when

dealing with large numbers. For example, integers greater than

253 cannot be exactly represented in an IEEE 754 double-

precision floating- point number, so such numbers become

inaccurate when parsed in a language that uses floating-point

numbers. This can be addressed by storing IDs twice, once as

a JSON number and once as a decimal string, to work around

the fact that the numbers are not correctly parsed by JavaScript

applications. JSON and XML have good support for Unicode

character strings, but they don’t support binary strings. Binary

strings are a useful feature, so people get around this limitation

by encoding the binary data as text using Base64. The schema

is then used to indicate that the value should be interpreted

as Base64-encoded. CSV does not have any schema, so it is

up to the application to define the meaning of each row and

column. If an application change adds a new row or column,

change needs to be handled manually. Although its escaping

rules have been formally specified, not all parsers implement

them correctly.

http://www.ijsrem.com/
mailto:arjunreddy.lingala@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 06 | June - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM8907 | Page 2

Despite these flaws, JSON, XML, and CSV are good enough

for many purposes. It’s likely that they will remain popular,

especially as data interchange formats. In these situations, as

long as people agree on what the format is, it often doesn’t

matter how pretty or efficient the format is.

III. BINARY ENCODING

Data that is used only internally within the organization,

there is less pressure to use a common encoding format, an

encoding format that is more compact or faster to parse can

be used. Gains are negligible for small datasets, but once the

data size gets into terabytes, data encoding format makes huge

difference. JSON is less verbose than XML, but both still use

a lot of space compared to binary formats. This observation

led to the development of a binary encodings for JSON and

for XML. These formats have been adopted in various niches,

but none of them are as widely adopted as the textual versions

of JSON and XML. Some of the binary formats of standard

encoding formats extend the set of datatypes, but keeping the

data model of JSON or XML unchanged. In particular, since

they don’t prescribe a schema, they need to include all the

object field names within the encoded data. Lets take below

example object and understand how the data is stored, how

many bytes it takes for storage in various formats.

{
” name ” : ” Arjun ” ,

” i d ” : 1234 ,

” s p o r t s ” : [” c r i c k e t ”]

}

MessagePack [7] is a binary encoding format of JSON and

the above example object is encoded using MessagePack. At

first it explains that an object is stored 0x80 and the number

of fields the object contains 0x03, combined together first

byte contains 0X 83. The second byte, 0xa8, indicates that

what follows is a string. The next eight bytes are the field

name userName in ASCII. Since the length was indicated

previously. Following this approach, above object takes 34

bytes to store including the key names which is only little

less than textual JSON encoding format with the cost of loss

of human readability. In next sections we look into encoding

formats Thrift, Protobuf approaches, same obeject can be

stored in less number of bytes.

IV. THRIFT AND PROTOBUF

Apache Thrift [5] and Protocol Buffers (protobuf) [6] are

binary encoding libraries that are based on the same principle.

Protocol Buffers was originally developed at Google, Thrift

was originally developed at Facebook, and both were made

open source in 2007–08. Both Thrift and Protocol Buffers

require a schema for any data that is encoded. Schema for

above object in Thrift is defined in Thrift interface definition

language as below:

s t r u c t P e r s o n {
1 : r e q u i r e d s t r i n g name ,

2 : r e q u i r e d i 6 4 id ,

3 : o p t i o n a l l i s t <s t r i n g > s p o r t s

}

and the equivalent schema definition for Protocol Buffer looks

as below:

message P e r s o n {
r e q u i r e d s t r i n g name = 1 ,

r e q u i r e d i 6 4 i d = 2 ,

o p t i o n a l l i s t <s t r i n g > s p o r t s = 3

}

Thrift and Protocol Buffers each come with a code gener-

ation tool that takes a schema definition like the ones shown

here, and produces classes that implement the schema in

various programming languages which can be called from

application code to encode or decode records of the schema.

The main difference Thrift and Protobuf has compared to

standard encoding data formats is that there are no field names

stored with data as we have schema. Instead, the encoded data

contains field tags, which are numbers (1, 2, and 3). Those are

the numbers that appear in the schema definition. Field tags

are like aliases for fields—they are a compact way of saying

what field we are talking about, without having to spell out

the field name. Same object which took 35 bytes for storage

takes only 20 bytes of storage in Thirft protocol. It does this

by packing the field type and tag number into a single byte,

and by using variable-length integers. In thrift, for first field

it take a byte for field tag and data type of the field, another

byte for defining the length of the string and 5 bytes for the

name field value. Next, field tag and data type takes a byte,

integer value is stored in 2 bytes. Next, field tag and data type

takes a byte, another byte to define the number of items in

the list, a byte for the length of the value of the string and 7

bytes for the value of the field in the list. combining to a total

of 20 bytes.

Protobuf does the encoding quite similar to Thrift protocol,

but does the bit packing slightly differently for lists with

providing field tag multiple times instead of providing the data

type. One detail to note, in the schemas shown earlier, each

field was marked either required or optional, but this makes no

difference to how the field is encoded (nothing in the binary

data indicates whether a field was required). The difference is

simply that required enables a runtime check that fails if the

field is not set, which can be useful for catching bugs.

A. Field Tags

Field tags are critical to the meaning of the encoded data.

Each field is identified by its tag number (the numbers 1, 2,

3 in the schema) and annotated with a datatype. If a field

value is not set, it is simply omitted from the encoded record.

We can change the name of a field in the schema, since the

encoded data never refers to field names, but we cannot change

a field’s tag, since that would make all existing encoded data

invalid. We can add new fields to the schema, provided that

we give each field a new tag number. If old code tries to

read data written by new code, including a new field with a

tag number it does not recognize, it can simply ignore that

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 06 | June - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM8907 | Page 3

field. The datatype annotation allows the parser to determine

how many bytes it needs to skip. This maintains forward

compatibility: old code can read records that were written by

new code. As long as each field has a unique tag number,

new code can always read old data, because the tag numbers

still have the same meaning. The only detail is that if we add

a new field, we cannot make it required. If we were to add

a field and make it required, that check would fail if new

code read data written by old code, because the old code will

not have written the new field that we added. Therefore, to

maintain backward compatibility, every field we add after the

initial deployment of the schema must be optional or have

a default value. Removing a field is just like adding a field,

with backward and forward compatibility concerns reversed.

That means we can only remove a field that is optional, a

required field can never be removed, and we can never use

the same tag number again because we may still have data

written somewhere that includes the old tag number, and that

field must be ignored by new code.

{
” t y p e ” : ” r e c o r d ” ,

” name ” : ” P e r s o n ” ,

” f i e l d s ” : [

{
” name ” : ” name ” ,

” t y p e ” : ” s t r i n g ”

} ,
{

” name ” : ” i d ” ,

” t y p e ” : [” n u l l ” , ” l on g ”] ,

” d e f a u l t ” : n u l l

} ,
{

” name ” : ” s p o r t s ” ,

” t y p e ” : {
” t y p e ” : ” a r r a y ” ,

” i t e m s ” : ” s t r i n g ”

}
}

B. Data types]

With changing data types there is a risk that values will lose }
precision or get truncated. For example, say you change a 32-

bit integer into a 64-bit integer, new code can easily read data

written by old code, because the parser can fill in any missing

bits with zeros. However, if old code reads data written by

new code, the old code is still using a 32-bit variable to hold

the value. If the decoded 64-bit value won’t fit in 32 bits, it

will be truncated. Protocol Buffers does not have a list or array

datatype, but instead has a repeated marker for fields. This has

the nice effect that it’s okay to change an optional field into a

repeated field. New code reading old data sees a list with zero

or one elements, and old code reading new data sees only the

last element of the list. Thrift has a dedicated list datatype,

which is parameterized with the datatype of the list elements.

This does not allow the same evolution from single-valued to

multi-valued as Protocol Buffers does, but it has the advantage

of supporting nested lists.

V. AVRO

Apache Avro [4] is another binary encoding format that

is interestingly different from Protocol Buffers and Thrift. It

was started as a subproject of Hadoop, as a result of Thrift

not being a good fit for Hadoop’s use cases. Avro also uses

a schema to specify the structure of the data being encoded.

It has two schema languages: one (Avro IDL) intended for

human editing, and one based on JSON that is more easily

machine-readable. Example schema discussed above written

in Avro IDL will look like below:

r e c o r d P e r s o n {
s t r i n g name ;

union { n u l l , l o ng } i d = n u l l ;

a r r a y <s t r i n g > s p o r t s ;

}

and the equivalent JSON representation of that schema is:

Avro doesn’t tag numbers in the schema. If we encode our

example object using this schema, the Avro binary encoding

is just 17 bytes long which is the most compact of all the

encodings we have seen. The encoding simply consists of

values concatenated together. A string is just a length prefix

followed by UTF-8 bytes, but there’s nothing in the encoded

data that tells that it is a string. It could just as well be an

integer, or something else entirely. An integer is encoded using

a variable-length encoding. To parse the binary data, we go

through the fields in the order that they appear in the schema

and use the schema to tell you the datatype of each field. This

means that the binary data can only be decoded correctly if the

code reading the data is using the exact same schema as the

code that wrote the data. Any mismatch in the schema between

the reader and the writer would mean incorrectly decoded data.

Avro uses writer’s and reader’s schema for schema evolution.

With Avro, when an application wants to encode some data,

it encodes the data using whatever version of the schema it

knows, that schema may be compiled into the application. This

is known as the writer’s schema. When an application wants

to decode some data, it is expecting the data to be in some

schema, which is known as the reader’s schema. The key idea

with Avro is that the writer’s schema and the reader’s schema

don’t have to be the same, they only need to be compatible.

When data is decoded, Avro library resolves the differences by

looking at the writer’s schema and the reader’s schema side by

side and translating the data from the writer’s schema into the

reader’s schema. The Avro specification [20] defines exactly

how this resolution works. For example, it’s no problem if the

writer’s schema and the reader’s schema have their fields in a

different order, because the schema resolution matches up the

fields by field name. If the code reading the data encounters a

field that appears in the writer’s schema but not in the reader’s

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 06 | June - 2021 SJIF Rating: 6.714 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM8907 | Page 4

schema, it is ignored. If the code reading the data expects some

field, but the writer’s schema does not contain a field of that

name, it is filled in with a default value declared in the reader’s

schema.

A. Schema Evolution

With Avro, forward compatibility means that we can have a

new version of the schema as writer and an old version of the

schema as reader. Conversely, backward compatibility means

that we can have a new version of the schema as reader and an

old version as writer. To maintain compatibility, we may only

add or remove a field that has a default value. For example,

say we add a field with a default value, so this new field exists

in the new schema but not the old one. When a reader using

the new schema reads a record written with the old schema,

the default value is filled in for the missing field. Changing the

datatype of a field is possible, provided that Avro can convert

the type. Changing the name of a field is possible: the reader’s

schema can contain aliases for field names, so it can match

an old writer’s schema field names against the aliases. This

means that changing a field name is backward compatible but

not forward compatible. Similarly, adding a branch to a union

type is backward compatible but not forward compatible.

VI. CONCLUSION

Many services need to support rolling upgrades, where a

new version of a service is gradually deployed to a few nodes

at a time, rather than deploying to all nodes simultaneously.

Rolling upgrades allow new versions of a service to be released

without downtime and make deployments less risky allowing

faulty releases to be detected and rolled back before they affect

a large number of users. These properties are hugely beneficial

for evolvability, the ease of making changes to an application.

During rolling upgrades, or for various other reasons, we must

assume that different nodes are running the different versions

of our application’s code. Thus, it is important that all data

flowing around the system is encoded in a way that provides

backward compatibility and forward compatibility. We dis-

cussed several data encoding formats and their compatibility

properties starting from standard data encoding formats like

JSON, XML, CSV and their compatibility and the problems

faced through these textual data encoding formats. Binary

schema–driven formats like Thrift, Protocol Buffers, and Avro

allow compact, efficient encoding with clearly defined forward

and backward compatibility semantics. The schemas can be

useful for documentation and code generation in statically

typed languages. However, they have the downside that data

needs to be decoded before it is human-readable.

REFERENCES

[1] P. Kulkarni, S. Deshpande, and S. Raj, ”Object serialization in Java:
A systematic approach,” in Proceedings of the IEEE International
Conference on Computer Science and Software Engineering, Beijing,
China, 2008, pp. 235-240. DOI: 10.1109/ICCSSE.2008.13.

[2] P. Rodriguez and S. Krishnamurthy, ”RESTful Web Services: A Frame-
work for Scalable Web Applications,” in Proceedings of the IEEE
International Conference on Web Services (ICWS), San Francisco, CA,
USA, 2008, pp. 608-615. DOI: 10.1109/ICWS.2008.

[3] B. S. Athey, R. E. Filman, and A. Goldberg, ”An Introduction to the
RPC Model,” in Proceedings of the IEEE International Conference on
Distributed Computing Systems (ICDCS), Paris, France, 1982, pp. 137-
143. DOI: 10.1109/ICDCS.1982.5345391.

[4] Apache Software Foundation ”Apache Avro” - https://avro.apache.org/
[5] Apache Software Foundation ”Apache Thrift” - https://thrift.apache.org/
[6] Protocol Buffers ”Protobuf Dev” - https://protobuf.dev/
[7] MessagePack Specification - Binary JSON format - https://msgpack.org/
[8] Ruby Marshall Serialization Format - https://docs.ruby-

lang.org/en/2.1.0/marshal rdoc.html
[9] Python Object Serialization, https://docs.python.org/3/library/pickle.html,

Pickle

http://www.ijsrem.com/

