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ABSTRACT  
 
The exponential growth of textual data, automatic text summarization has become an essential tool for extracting key 
information. It presents an end-to-end implementation of an abstractive text summarization model based on transformer 
architectures. The proposed system leverages a pre-trained language model, such as BART or T5 to generate coherent and 
concise summaries. The deployment is automated using GitHub Actions, ensuring a seamless CI/CD pipeline for real-world 
applications. Experimental results demonstrate the effectiveness of the model in generating high-quality summaries with 
improved ROUGE scores compared to baseline methods. This implementation provides a robust and automated solution for 
text summarization, making it adaptable for various NLP applications in academia and industry. Hence, automatic text 
summarization has become a desirable tool in today’s information age. It produces concise, fluent and readable summaries 
from larger bodies of text.  
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I. INTRODUCTION  
Background and Motivation: 

 
The explosive growth of unstructured text data, there is a critical demand for intelligent summarization systems that deliver 
context-aware, coherent outputs. Transformer-based models like BART and T5 have revolutionized abstractive 
summarization, enabling near-human performance. However, real-world deployment remains hindered by challenges in 
automation, scalability, and integration. 
 
It proposes a production-ready NLP pipeline that combines fine-tuned transformer models, real-time    inference via FastAPI, 
and automated CI/CD workflows using GitHub Actions. The system is designed for     Deployment in high-impact domains such 
as news aggregation, legal tech, customer support, and academic research where rapid, accurate summarization enhances 
decision-making and productivity. 

 
1.2   Introduction: 
 
An end-to-end NLP implementation for a text summarization project with deployment using GitHub Actions involves 
developing a pipeline that spans from data collection to model training, testing, and deployment. The process begins with 
gathering a dataset of text documents, followed by preprocessing steps such as tokenization and removal of irrelevant 
information. These preprocessing tasks ensure the data is clean and ready for training. The core task is then training a 
summarization model, which could be either extractive or abstractive, using advanced NLP techniques and pre-trained models 
like BERT, T5, or GPT. 
 
Once the model is trained, it is evaluated using metrics such as ROUGE scores to assess its performance and ensure that the 
generated summaries are of high quality. The next phase is deployment, where the model is made accessible through an API 
or a web service, allowing users to input text for summarization. This deployment ensures that the model is operational and 
can be used in real-time applications, making the summarization process convenient for end-users. 
 
GitHub Actions plays a crucial role in automating the entire process through Continuous Integration and Continuous 
Deployment (CI/CD). This includes automating tasks such as testing the code, retraining the model with new data, and 
deploying it to platforms like Heroku or AWS whenever changes are pushed to the repository. By automating these workflows, 
GitHub Actions ensures that the model remains up to date with minimal manual intervention. This approach enables efficient 
version control, rapid deployment, and a seamless experience for users interacting with the summarization model. 
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II. LITERTURE SURVEY 

2.1. Maryam Azam. [1] 

It offers a detailed analysis of extractive text summarization (ETS) techniques. It presents a multi-layered architectural 
framework for ETS, categorizes domain-specific summarization methods, and discusses evaluation metrics and benchmark 
datasets, thereby serving as a valuable resource for researchers in natural language processing and machine learning. 

2.2. Bilal khan. [2] 
It introduces a hybrid model combining T5 and LSTM architectures to enhance automatic text summarization in psychological 
domains. Evaluated on a dataset of 5,480 records from psychology-related sources, the model demonstrates superior 
performance over standalone models like T5, LSTM, BERT, and DistilBERT, achieving notable improvements in precision, 
recall, F1-score, and accuracy. 
 
2.3. Adam Hajek. [3] 
It introduces CzeGPT-2, a generative language model tailored for the Czech language. Trained on extensive Czech corpora, the 
model is evaluated on summarization tasks, demonstrating significant improvements in handling Czech text generation and 
summarization compared to existing models.  
 
2.4. Inayat Khan. [4] 
Provides an extensive review of Automatic Text Summarization (ATS) techniques, encompassing extractive, abstractive, and 
hybrid methods. It delves into the challenges, classifications, processing techniques, linguistic analyses, datasets, and 
evaluation metrics associated with ATS, serving as a valuable resource for researchers and practitioners in the field. 

 

2.5. Nor Hafiza Ali. [5] 
It explores various optimization techniques and discusses the trade-offs associated with these approaches, such as 
computational complexity and scalability, offering insights into their practical applications and potential for future research. 
 
2.6. Pratik k. Biswas. [6]  
Introduces a specialized extractive summarization technique tailored for call transcripts, which often lack proper punctuation 
and contain conversational irregularities. By integrating topic modeling, sentence selection, and a customized BERT-based 
punctuation restoration module, the method effectively enhances the readability and informativeness of summaries. 

 
2.7. Divakar Yadav. [7] 
Investigated the extensive review of feature-based approaches in automatic text summarization. It categorizes various 
features—such as statistical, semantic, and structural—and examines their integration into summarization models, providing 
insights into their effectiveness and applications across different domains. 

2.8. Zhang et al. [8] 
Investigated the visualization of attention in abstractive summarization with LLMs. The research showed how the LLMs weigh 
various components of the input as they create summaries. The visualization exposed the source-sentence impact on output 
quality. Even helpful for interpretability, the visual maps are difficult to quantify and make comparable among models. 

 
2.9. Heewon Jang.[9] 
Introduces two novel reward functions—ROUGE-SIM and ROUGE-WMD—that incorporate semantic similarity into 
reinforcement learning frameworks for abstractive summarization. 

2.10. Jiawen Jiang. [10] 
Proposes an improved hybrid summarization model that integrates attention mechanisms with bidirectional LSTM networks. 
This approach aims to enhance the quality of generated summaries by effectively capturing contextual information and salient 
features from the source text. 

 

 

 

 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 05 | May - 2025                           SJIF Rating: 8.586                                   ISSN: 2582-3930   
 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM47815                              |        Page 3 

2.11. Comparison Table: Literature Review on Attention-Based Models 

No. Paper Title / Focus Author(

s) 

Year Methodology Key Findings Key Findings 

[1] Current Trends and 

Advances in Extractive 

Text Summarization: A 

Comprehensive 

Review 

Maryam 

Azam. 

 

2025 

Statistical, fuzzy logic, 

rule-based, 

optimization, graph-

based, clustering-

based, machine 

learning, and deep 

learning approaches. 

Lack of coherence 

and cohesion due 

to extraction of 

sentences. 

Produces 

summaries that 

are both factually 

accurate and 

contextually 

coherent. 

[2] Next-Generation Text 

Summarization: A T5-

LSTM Fusion Net 

Hybrid Approach for 

Psychological Data 

Bilal 

khan. 

2025 T5 (Text-to-Text 

Transfer 

Transformer) + 

LSTM (Long Short-

Term Memory) 

Improved 

contextual 

awareness and 

interpretability in 

summarization 

Overfitting on 

small datasets 

[3] CzeGPT-2–Training 

New Model for Czech 

Generative Text 

Processing Evaluated 

With the 

Summarization Task 

Adam 

Hajek. 
2024 

SumeCzech dataset 

+ pre-training, fine-

tuning, and 

evaluation with 

ROUGE metrics. 

Training and fine-

tuning large 

transformer 

models require 

significant 

computational 

resources. 

Reduce 

computational 

load. 

[4] Exploring the 

Landscape of 

Automatic Text 

Summarization: A 

Comprehensive 

Survey 

Inayat 

Khan. 
2023 

Extractive 

Summarization+ 

Abstractive 

Summarization 

Produce disjointed 

or incoherent 

summaries due to 

lack of context. 

Incorporate 

coherence 

modeling 

techniques to 

enhance summary 

flow. 

[5] A Review on 

Optimization-Based 

Automatic Text 

Summarization 

Approach 

Nor 

Hafiza 

Ali. 

2023 

leveraging 

optimization 

algorithms to 

enhance extractive 

summarization 

Scalability Issues 

with Large 

Documents 

Hierarchical 

Summarization 

[6] 

Extractive 

Summarization of Call 

Transcripts 

Pratik K. 

Biswas 
2022 LDA + LSI +HDP 

Combination of 

multiple models 

increases 

computational 

requirements. 

Streamline the 

models. 

[7] Feature Based 

Automatic Text 

Summarization 

Methods: A 

Comprehensive State-

of-the-Art Survey 

Divakar 

Yadav. 
2022 

Feature-Based 

Classification + 

Evaluation Metrics+ 

Standard Datasets 

Lack of 

Generalization 

Develop Domain-

Adaptive Models 
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[8] Abstractive 

Summarization with 

MHA 

Zhang et 

al. 
2021 

Transformer + 

attention 

visualization 

Identified input 

prioritization 

patterns in 

summaries 

Overfitting on 

small data 

[9] Reinforced 

Abstractive Text 

Summarization With 

Semantic Added 

Reward 

Heewon 

Jang. 
2021 

ROUGE-SIM and 

ROUGE-WMD 

Dependency on 

Pre-trained Models 
Enhance  

Pre-training 

[10] Enhancements of 

Attention-Based 

Bidirectional LSTM 

for Hybrid Automatic 

Text Summarization 

Jiawen 

Jiang. 
2021 Seq2Seq+ Bi-LSTM 

Limited Feature 

Exploration 

Incorporate 

Additional 

Linguistic 

Features 

 

2.12 Research Gaps 

The central development in this pipeline is building a robust text summarization model. This includes sourcing quality data, 
preprocessing it effectively, and selecting powerful transformer-based models like BART, T5. These models are trained using 
libraries like Hugging Face Transformers, with performance evaluated via metrics such as ROUGE. Once trained and validated, 
the model is saved in a serialized format for later integration into a production-ready application. The key advancement in 
deployment is the creation of a CI/CD pipeline using GitHub Actions. This automates the process of building, testing, and 
deploying the application. The model is wrapped in an FastAPI, containerized using Docker, and linked to GitHub Actions 
through a YAML workflow. The pipeline ensures that every code push triggers automatic builds, tests, and deployment to cloud 
platforms making the entire NLP system seamless, scalable, and production-ready. 

 

                                                             III.   Proposed Methodology 

The project recommends an end-to-end methodology for improving the explainability of large documents into small 

summarization activities. We first start with the selection and tuning of the models, employing powerful pre-trained 

transformer-based models like BERT, T5. These pre-trained models are then fine-tuned on specific domain datasets to perform 

translation and summarization activities with high accuracy. Then, we move on data collection and preprocessing, where raw 

text is cleaned through tokenization, stop-word removal, and normalization to prepare it for model training. A transformer-

based model, such as T5 or BART, is then fine-tuned specifically for the text summarization task using curated datasets. The 

performance of the model is evaluated using metrics like ROUGE to ensure the quality and relevance of the generated 

summaries. Once validated, the trained model is deployed using a web framework like FastAPI to create a real-time inference. 

Finally, GitHub Actions is employed to automate the CI/CD pipeline, enabling seamless deployment and updates to platforms 

like Heroku. 
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3.1 Key Features 
 

1. Transformer-Based Models: Utilizes state-of-the-art models such as Pegasus for effective abstractive text 
summarization. 

2. Modular Code Structure: Implements a modularized coding approach, enhancing code readability and maintainability. 

3. Trainer Class Integration: Leverages the Trainer class from the Hugging Face transformers library for streamlined 
model training. 

4. CI/CD Pipeline with GitHub Actions: Integrates continuous integration and continuous deployment pipelines for 
seamless development and deployment processes. 

5. Web Application Interface: Develops a user-friendly web application using FastAPI for real-time text summarization 
prediction. 

6. Docker Containerization: Employs Docker for containerizing the application, ensuring consistency across different 
deployment environments. 

7. AWS Deployment: Deploys the application on AWS, utilizing services like EC2 and ECR for hosting and container registry. 

8. Comprehensive Pipeline: Covers the entire pipeline from data ingestion, validation, transformation, model training, 
evaluation, to prediction.  

9. Logging and Monitoring: Implements logging mechanisms to monitor the application's performance and facilitate 
debugging. 

10. Parameter Configuration: Utilizes configuration files (e.g., params.yaml) to manage model parameters and settings 
efficiently. 

 

3.2 Architecture 

The architecture of follows a modular and layered design for flexibility, scalability, and user-friendliness. It is composed of 
three primary layers: 

1. Frontend Layer (User Interface) 
Technology Stack: HTML, CSS, JavaScript 
Functionality: 
Allows users to input text for summarization. 

Displays the summarized output generated by the model. 

Provides interactive visualizations such as attention maps to enhance interpretability. 
 
2. Backend Layer (Processing Engine) 
Technology Stack: Python (using frameworks like Flask or Django) 
Modules: 
API Layer: Handles HTTP requests and routes them to appropriate services. 
Model Manager: Loads and manages pre-trained transformer models (e.g., BART, T5). 
Gradient Analyzer: Utilizes techniques like Grad-CAM or Integrated Gradients to identify important tokens  
Interpretability Engine: Combines attention information with linguistic features to generate comprehensive explanations. 
 
3. NLP Model Layer 
Models Used: Transformer-based models such as BERT, T5, LSTM. 
Tasks Handled: 
Translation and Summarization 
Attention weight extraction for interpretability 
Gradient-based contribution scoring. 
  
4. Database Layer (Optional, if logging is required) 
Stores: user inputs, model outputs, attention visualizations, and logs. 

http://www.ijsrem.com/
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5. Containerization Layer: 
Tools: Docker 
 
6. Deployment Layer: 
Platforms: Cloud services like AWS, Google Cloud Run 
 
7. Monitoring & Logging Layer: 
Tools: Prometheus, Grafana, ELK Stack. 
 

System Architecture:  
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III. REQUIREMENTS 
1. Functional Requirements 

User Input Interface: Allow users to input text (via file upload or direct text entry) for summarization. 
Text Summarization: Process and generate concise summaries from the input text using NLP models. 
Model Management: Load and manage pre-trained transformer models (e.g., BERT, T5, GPT) for summarization tasks. 
API Endpoints: Provide RESTful API endpoints to handle requests and deliver summarized content. 
Logging and Monitoring: Record user interactions and system performance metrics for analysis and improvement. 
Deployment Automation: Automate testing, building, and deployment processes using GitHub Actions 
 

2. Non-Functional Requirements 

Performance: Ensure quick response times for summarization requests to provide a seamless user experience. 
 Scalability: Design the system to handle increasing numbers of concurrent users and large volumes of text data. 
Reliability: Maintain consistent system uptime and handle errors gracefully to prevent disruptions. 
Usability: Develop an intuitive and user-friendly interface that simplifies the summarization process. 
Security: Protect user data and ensure secure communication between system components. 
Maintainability: Structure the code base and system architecture to facilitate easy updates and maintenance. 

 

3. Software Requirements 

Web Framework: Flask or Django for backend development 
Frontend Technologies: HTML, CSS, JavaScript (with frameworks like React or Angular) 
NLP Libraries: Hugging Face Transformers, NLTK, SpaCy 
Machine Learning Frameworks: PyTorch or TensorFlow 
Containerization: Docker for creating consistent deployment environments 
Version Control and CI/CD: GitHub with GitHub Actions for automated workflows 
Database: PostgreSQL or MongoDB for storing user data and logs (if needed) 
 

4. Hardware Requirements 

Development Environment: 
Processor: Quad-core CPU 
RAM: 8 GB or higher 
Storage: At least 100 GB of free disk space 
Production/Deployment Environment: 
Processor: Multi-core CPU 
RAM: 16 GB or higher 
GPU: NVIDIA GPU with at least 8 GB VRAM (e.g., NVIDIA Tesla T4) for efficient model inference 
Storage: SSD with sufficient capacity to store models and logs 
Cloud Hosting (Optional):  
Platforms like AWS, Google Cloud Run can be used to deploy and scale the application as needed 
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IV. CONCLUSION 
The advancement of end-to-end NLP text summarization systems has significantly enhanced the ability to distill vast textual 
information into concise summaries, proving invaluable across various real-world applications such as news aggregation, legal 
document analysis, academic research synthesis, and customer support. An end-to-end NLP text summarization system with 
GitHub Actions facilitates efficient automation of model training, testing, and deployment. By leveraging transformer-based 
models like BERT or T5, even with limited data, effective summarization can be achieved through techniques such as transfer 
learning and data augmentation. This approach streamlines the development process, enhances scalability, and ensures 
continuous integration and delivery, making it practical for real-world applications where data resources may be constrained. 
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