
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47815 | Page 1

End to End NLP Implementation with Deployment GitHub Action - Text Summarization

 Mr. SHASHANK TIWARI *1, NASREEN KHATOON*2, M.RISHITHA*3 B.MOUNIKA*4, E.KAVYA PRASANNA*5
 *1Assistant Professor of Department Of CSE (AI & ML) Of ACE Engineering College, India.
 *2,3,4,5 Students Of Department CSE (AI & ML) Of ACE Engineering College, India.

ABSTRACT

The exponential growth of textual data, automatic text summarization has become an essential tool for extracting key
information. It presents an end-to-end implementation of an abstractive text summarization model based on transformer
architectures. The proposed system leverages a pre-trained language model, such as BART or T5 to generate coherent and
concise summaries. The deployment is automated using GitHub Actions, ensuring a seamless CI/CD pipeline for real-world
applications. Experimental results demonstrate the effectiveness of the model in generating high-quality summaries with
improved ROUGE scores compared to baseline methods. This implementation provides a robust and automated solution for
text summarization, making it adaptable for various NLP applications in academia and industry. Hence, automatic text
summarization has become a desirable tool in today’s information age. It produces concise, fluent and readable summaries
from larger bodies of text.

Keywords: NLP, Abstractive Summarization, Transformers, Docker, GitHub-Actions, Cloud Deployment.

I. INTRODUCTION
Background and Motivation:

The explosive growth of unstructured text data, there is a critical demand for intelligent summarization systems that deliver
context-aware, coherent outputs. Transformer-based models like BART and T5 have revolutionized abstractive
summarization, enabling near-human performance. However, real-world deployment remains hindered by challenges in
automation, scalability, and integration.

It proposes a production-ready NLP pipeline that combines fine-tuned transformer models, real-time inference via FastAPI,
and automated CI/CD workflows using GitHub Actions. The system is designed for Deployment in high-impact domains such
as news aggregation, legal tech, customer support, and academic research where rapid, accurate summarization enhances
decision-making and productivity.

1.2 Introduction:

An end-to-end NLP implementation for a text summarization project with deployment using GitHub Actions involves
developing a pipeline that spans from data collection to model training, testing, and deployment. The process begins with
gathering a dataset of text documents, followed by preprocessing steps such as tokenization and removal of irrelevant
information. These preprocessing tasks ensure the data is clean and ready for training. The core task is then training a
summarization model, which could be either extractive or abstractive, using advanced NLP techniques and pre-trained models
like BERT, T5, or GPT.

Once the model is trained, it is evaluated using metrics such as ROUGE scores to assess its performance and ensure that the
generated summaries are of high quality. The next phase is deployment, where the model is made accessible through an API
or a web service, allowing users to input text for summarization. This deployment ensures that the model is operational and
can be used in real-time applications, making the summarization process convenient for end-users.

GitHub Actions plays a crucial role in automating the entire process through Continuous Integration and Continuous
Deployment (CI/CD). This includes automating tasks such as testing the code, retraining the model with new data, and
deploying it to platforms like Heroku or AWS whenever changes are pushed to the repository. By automating these workflows,
GitHub Actions ensures that the model remains up to date with minimal manual intervention. This approach enables efficient
version control, rapid deployment, and a seamless experience for users interacting with the summarization model.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47815 | Page 2

II. LITERTURE SURVEY

2.1. Maryam Azam. [1]

It offers a detailed analysis of extractive text summarization (ETS) techniques. It presents a multi-layered architectural
framework for ETS, categorizes domain-specific summarization methods, and discusses evaluation metrics and benchmark
datasets, thereby serving as a valuable resource for researchers in natural language processing and machine learning.

2.2. Bilal khan. [2]
It introduces a hybrid model combining T5 and LSTM architectures to enhance automatic text summarization in psychological
domains. Evaluated on a dataset of 5,480 records from psychology-related sources, the model demonstrates superior
performance over standalone models like T5, LSTM, BERT, and DistilBERT, achieving notable improvements in precision,
recall, F1-score, and accuracy.

2.3. Adam Hajek. [3]
It introduces CzeGPT-2, a generative language model tailored for the Czech language. Trained on extensive Czech corpora, the
model is evaluated on summarization tasks, demonstrating significant improvements in handling Czech text generation and
summarization compared to existing models.

2.4. Inayat Khan. [4]
Provides an extensive review of Automatic Text Summarization (ATS) techniques, encompassing extractive, abstractive, and
hybrid methods. It delves into the challenges, classifications, processing techniques, linguistic analyses, datasets, and
evaluation metrics associated with ATS, serving as a valuable resource for researchers and practitioners in the field.

2.5. Nor Hafiza Ali. [5]
It explores various optimization techniques and discusses the trade-offs associated with these approaches, such as
computational complexity and scalability, offering insights into their practical applications and potential for future research.

2.6. Pratik k. Biswas. [6]
Introduces a specialized extractive summarization technique tailored for call transcripts, which often lack proper punctuation
and contain conversational irregularities. By integrating topic modeling, sentence selection, and a customized BERT-based
punctuation restoration module, the method effectively enhances the readability and informativeness of summaries.

2.7. Divakar Yadav. [7]
Investigated the extensive review of feature-based approaches in automatic text summarization. It categorizes various
features—such as statistical, semantic, and structural—and examines their integration into summarization models, providing
insights into their effectiveness and applications across different domains.

2.8. Zhang et al. [8]
Investigated the visualization of attention in abstractive summarization with LLMs. The research showed how the LLMs weigh
various components of the input as they create summaries. The visualization exposed the source-sentence impact on output
quality. Even helpful for interpretability, the visual maps are difficult to quantify and make comparable among models.

2.9. Heewon Jang.[9]
Introduces two novel reward functions—ROUGE-SIM and ROUGE-WMD—that incorporate semantic similarity into
reinforcement learning frameworks for abstractive summarization.

2.10. Jiawen Jiang. [10]
Proposes an improved hybrid summarization model that integrates attention mechanisms with bidirectional LSTM networks.
This approach aims to enhance the quality of generated summaries by effectively capturing contextual information and salient
features from the source text.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47815 | Page 3

2.11. Comparison Table: Literature Review on Attention-Based Models

No. Paper Title / Focus Author(

s)

Year Methodology Key Findings Key Findings

[1] Current Trends and

Advances in Extractive

Text Summarization: A

Comprehensive

Review

Maryam

Azam.

2025

Statistical, fuzzy logic,

rule-based,

optimization, graph-

based, clustering-

based, machine

learning, and deep

learning approaches.

Lack of coherence

and cohesion due

to extraction of

sentences.

Produces

summaries that

are both factually

accurate and

contextually

coherent.

[2] Next-Generation Text

Summarization: A T5-

LSTM Fusion Net

Hybrid Approach for

Psychological Data

Bilal

khan.

2025 T5 (Text-to-Text

Transfer

Transformer) +

LSTM (Long Short-

Term Memory)

Improved

contextual

awareness and

interpretability in

summarization

Overfitting on

small datasets

[3] CzeGPT-2–Training

New Model for Czech

Generative Text

Processing Evaluated

With the

Summarization Task

Adam

Hajek.
2024

SumeCzech dataset

+ pre-training, fine-

tuning, and

evaluation with

ROUGE metrics.

Training and fine-

tuning large

transformer

models require

significant

computational

resources.

Reduce

computational

load.

[4] Exploring the

Landscape of

Automatic Text

Summarization: A

Comprehensive

Survey

Inayat

Khan.
2023

Extractive

Summarization+

Abstractive

Summarization

Produce disjointed

or incoherent

summaries due to

lack of context.

Incorporate

coherence

modeling

techniques to

enhance summary

flow.

[5] A Review on

Optimization-Based

Automatic Text

Summarization

Approach

Nor

Hafiza

Ali.

2023

leveraging

optimization

algorithms to

enhance extractive

summarization

Scalability Issues

with Large

Documents

Hierarchical

Summarization

[6]

Extractive

Summarization of Call

Transcripts

Pratik K.

Biswas
2022 LDA + LSI +HDP

Combination of

multiple models

increases

computational

requirements.

Streamline the

models.

[7] Feature Based

Automatic Text

Summarization

Methods: A

Comprehensive State-

of-the-Art Survey

Divakar

Yadav.
2022

Feature-Based

Classification +

Evaluation Metrics+

Standard Datasets

Lack of

Generalization

Develop Domain-

Adaptive Models

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47815 | Page 4

[8] Abstractive

Summarization with

MHA

Zhang et

al.
2021

Transformer +

attention

visualization

Identified input

prioritization

patterns in

summaries

Overfitting on

small data

[9] Reinforced

Abstractive Text

Summarization With

Semantic Added

Reward

Heewon

Jang.
2021

ROUGE-SIM and

ROUGE-WMD

Dependency on

Pre-trained Models
Enhance

Pre-training

[10] Enhancements of

Attention-Based

Bidirectional LSTM

for Hybrid Automatic

Text Summarization

Jiawen

Jiang.
2021 Seq2Seq+ Bi-LSTM

Limited Feature

Exploration

Incorporate

Additional

Linguistic

Features

2.12 Research Gaps

The central development in this pipeline is building a robust text summarization model. This includes sourcing quality data,
preprocessing it effectively, and selecting powerful transformer-based models like BART, T5. These models are trained using
libraries like Hugging Face Transformers, with performance evaluated via metrics such as ROUGE. Once trained and validated,
the model is saved in a serialized format for later integration into a production-ready application. The key advancement in
deployment is the creation of a CI/CD pipeline using GitHub Actions. This automates the process of building, testing, and
deploying the application. The model is wrapped in an FastAPI, containerized using Docker, and linked to GitHub Actions
through a YAML workflow. The pipeline ensures that every code push triggers automatic builds, tests, and deployment to cloud
platforms making the entire NLP system seamless, scalable, and production-ready.

 III. Proposed Methodology

The project recommends an end-to-end methodology for improving the explainability of large documents into small

summarization activities. We first start with the selection and tuning of the models, employing powerful pre-trained

transformer-based models like BERT, T5. These pre-trained models are then fine-tuned on specific domain datasets to perform

translation and summarization activities with high accuracy. Then, we move on data collection and preprocessing, where raw

text is cleaned through tokenization, stop-word removal, and normalization to prepare it for model training. A transformer-

based model, such as T5 or BART, is then fine-tuned specifically for the text summarization task using curated datasets. The

performance of the model is evaluated using metrics like ROUGE to ensure the quality and relevance of the generated

summaries. Once validated, the trained model is deployed using a web framework like FastAPI to create a real-time inference.

Finally, GitHub Actions is employed to automate the CI/CD pipeline, enabling seamless deployment and updates to platforms

like Heroku.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47815 | Page 5

3.1 Key Features

1. Transformer-Based Models: Utilizes state-of-the-art models such as Pegasus for effective abstractive text
summarization.

2. Modular Code Structure: Implements a modularized coding approach, enhancing code readability and maintainability.

3. Trainer Class Integration: Leverages the Trainer class from the Hugging Face transformers library for streamlined
model training.

4. CI/CD Pipeline with GitHub Actions: Integrates continuous integration and continuous deployment pipelines for
seamless development and deployment processes.

5. Web Application Interface: Develops a user-friendly web application using FastAPI for real-time text summarization
prediction.

6. Docker Containerization: Employs Docker for containerizing the application, ensuring consistency across different
deployment environments.

7. AWS Deployment: Deploys the application on AWS, utilizing services like EC2 and ECR for hosting and container registry.

8. Comprehensive Pipeline: Covers the entire pipeline from data ingestion, validation, transformation, model training,
evaluation, to prediction.

9. Logging and Monitoring: Implements logging mechanisms to monitor the application's performance and facilitate
debugging.

10. Parameter Configuration: Utilizes configuration files (e.g., params.yaml) to manage model parameters and settings
efficiently.

3.2 Architecture

The architecture of follows a modular and layered design for flexibility, scalability, and user-friendliness. It is composed of
three primary layers:

1. Frontend Layer (User Interface)
Technology Stack: HTML, CSS, JavaScript
Functionality:
Allows users to input text for summarization.

Displays the summarized output generated by the model.

Provides interactive visualizations such as attention maps to enhance interpretability.

2. Backend Layer (Processing Engine)
Technology Stack: Python (using frameworks like Flask or Django)
Modules:
API Layer: Handles HTTP requests and routes them to appropriate services.
Model Manager: Loads and manages pre-trained transformer models (e.g., BART, T5).
Gradient Analyzer: Utilizes techniques like Grad-CAM or Integrated Gradients to identify important tokens
Interpretability Engine: Combines attention information with linguistic features to generate comprehensive explanations.

3. NLP Model Layer
Models Used: Transformer-based models such as BERT, T5, LSTM.
Tasks Handled:
Translation and Summarization
Attention weight extraction for interpretability
Gradient-based contribution scoring.

4. Database Layer (Optional, if logging is required)
Stores: user inputs, model outputs, attention visualizations, and logs.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47815 | Page 6

5. Containerization Layer:
Tools: Docker

6. Deployment Layer:
Platforms: Cloud services like AWS, Google Cloud Run

7. Monitoring & Logging Layer:
Tools: Prometheus, Grafana, ELK Stack.

System Architecture:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47815 | Page 7

III. REQUIREMENTS
1. Functional Requirements

User Input Interface: Allow users to input text (via file upload or direct text entry) for summarization.
Text Summarization: Process and generate concise summaries from the input text using NLP models.
Model Management: Load and manage pre-trained transformer models (e.g., BERT, T5, GPT) for summarization tasks.
API Endpoints: Provide RESTful API endpoints to handle requests and deliver summarized content.
Logging and Monitoring: Record user interactions and system performance metrics for analysis and improvement.
Deployment Automation: Automate testing, building, and deployment processes using GitHub Actions

2. Non-Functional Requirements

Performance: Ensure quick response times for summarization requests to provide a seamless user experience.
 Scalability: Design the system to handle increasing numbers of concurrent users and large volumes of text data.
Reliability: Maintain consistent system uptime and handle errors gracefully to prevent disruptions.
Usability: Develop an intuitive and user-friendly interface that simplifies the summarization process.
Security: Protect user data and ensure secure communication between system components.
Maintainability: Structure the code base and system architecture to facilitate easy updates and maintenance.

3. Software Requirements

Web Framework: Flask or Django for backend development
Frontend Technologies: HTML, CSS, JavaScript (with frameworks like React or Angular)
NLP Libraries: Hugging Face Transformers, NLTK, SpaCy
Machine Learning Frameworks: PyTorch or TensorFlow
Containerization: Docker for creating consistent deployment environments
Version Control and CI/CD: GitHub with GitHub Actions for automated workflows
Database: PostgreSQL or MongoDB for storing user data and logs (if needed)

4. Hardware Requirements

Development Environment:
Processor: Quad-core CPU
RAM: 8 GB or higher
Storage: At least 100 GB of free disk space
Production/Deployment Environment:
Processor: Multi-core CPU
RAM: 16 GB or higher
GPU: NVIDIA GPU with at least 8 GB VRAM (e.g., NVIDIA Tesla T4) for efficient model inference
Storage: SSD with sufficient capacity to store models and logs
Cloud Hosting (Optional):
Platforms like AWS, Google Cloud Run can be used to deploy and scale the application as needed

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47815 | Page 8

IV. CONCLUSION
The advancement of end-to-end NLP text summarization systems has significantly enhanced the ability to distill vast textual
information into concise summaries, proving invaluable across various real-world applications such as news aggregation, legal
document analysis, academic research synthesis, and customer support. An end-to-end NLP text summarization system with
GitHub Actions facilitates efficient automation of model training, testing, and deployment. By leveraging transformer-based
models like BERT or T5, even with limited data, effective summarization can be achieved through techniques such as transfer
learning and data augmentation. This approach streamlines the development process, enhances scalability, and ensures
continuous integration and delivery, making it practical for real-world applications where data resources may be constrained.

V. REFERENCES

[1]. Shah Khalid, Sulaiman Almutairi, Abdallah Namoun (2025). Current Trends and Advances in Extractive Text

Summarization: A Comprehensive Review.

[2]. Muhammad Usman, Inayat Khan, Jawad Khan (2025). Next-Generation Text Summarization: A T5-LSTM FusionNet

Hybrid Approach for Psychological Data.

[3]. Muhammad Hafizul H. Wahab, Nor Hafiza Ali, Nor Asilah Wati Abdul Hamid (2024). A Review on Optimization-Based

Automatic Text Summarization Approach.

[4]. Zohaib Ali Shah, Muhammad Usman, Inayat Khan (2023) Exploring the Landscape of Automatic Text Summarization:

A Comprehensive Survey.

 [5]. Adam Hajek, Ales Horak (2024). Wang, T., Liu, X., & Han, Q. (2022). CzeGPT-2–Training New Model for
 Czech Generative Text Processing Evaluated With the Summarization Task.

[6]. Pratik k. Biswas, Aleksandr Iakubovich. (2022). Extractive Summarization of Call Transcripts.

 [7]. Rishabh Katna, Arun Kumar Yadav, Jorge Morato. (2022). Feature Based Automatic Text Summarization Methods: A

Comprehensive State-of-the-Art Survey.

[8]. Zhang, L., Wu, Y., & Chen, Z. (2021). Visualizing multi-head attention in abstractive summarization. Transactions of the

Association for Computational Linguistics.

[9]. Hwweon Jang, Wooju Kim (2021). Reinforced Abstractive Text Summarization With Semantic Added Reward.

[10]. Haiyang Zhang, Chenxu Dai, Qingjuan Zhao (2021). Enhancements of Attention-Based Bidirectional LSTM for Hybrid

Automatic Text Summarization.

http://www.ijsrem.com/

