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Abstract - Accurate electricity consumption forecasting 

is a critical component in ensuring the stability, 

efficiency, and cost- effectiveness of national power 

systems. In Finland, where the electricity sector is shaped 

by nuclear energy, cogeneration, renewable sources like 

black liquor and wood, and significant electricity imports, 

reliable forecasting becomes even more essential. This 

research investigates the application of Long Short- Term 

Memory (LSTM), a type of recurrent neural network 

(RNN) designed for sequential data, in predicting future 

energy consumption trends. A univariate time series 

dataset from Fin- grid, Finland’s transmission system 

operator, encompassing six years of hourly electricity 

consumption data, serves as the basis for model training 

and evaluation. The study aims to assess the model’s 

performance in capturing temporal patterns and 

generating accurate short-term forecasts. Our results 

highlight the capability of LSTM models to effectively 

model complex energy usage patterns and provide 

meaningful insights for energy planning and decision-

making processes. 

Key Words: Long short-term memory (LSTM), Time 

series analysis, Machine learning, Energy prediction, 

Fingrid, Univariate data, Finland electricity sector. 

1.INTRODUCTION  

 

The electricity sector in Finland is characterized by a 

diverse energy mix, including nuclear power, the forest 

industry, black liquor and wood-based fuels, combined 

heat and power (CHP) production, and electricity imports 

from neighboring countries (Electricity Sector in Finland, 

2022). In 2020, Finland's total electricity production 

reached 66.6 terawatt-hours (TWh), of which 34.7 TWh—

approximately 52%—was generated from renewable 

energy sources (Statistics, 2021). 

Accurate forecasting of electricity consumption plays 

a critical role in the efficient operation, planning, and 

economic optimization of power systems. The reliability 

of demand forecasts directly influences the operational 

decisions, grid stability, and long-term investments of 

utility companies. 

In recent years, artificial intelligence (AI) and machine 

learning (ML) techniques have emerged as powerful tools 

for solving a wide range of predictive and analytical 

problems. Among these, Long Short-Term Memory 

(LSTM) networks—a specialized form of recurrent neural 

networks (RNNs)—have proven particularly effective in 

modeling time series data due to their ability to capture 

temporal dependencies and long-range patterns. 

This study explores the feasibility and performance of 

applying LSTM models to forecast electricity 

consumption in Finland. The model is trained on a 

univariate time series dataset provided by Fingrid, 

Finland’s transmission system operator, which comprises 

six years of hourly electricity consumption data. The 

primary objective is to evaluate the LSTM model’s ability 

to generate accurate and reliable forecasts that can aid in 

energy planning and policy-making.   

2. Fundamentals 

2.1 Machine Learning (ML) and Initial Optimizations 

Machine Learning (ML) is the foundation of modern 

artificial intelligence (AI), where systems are trained to 

make decisions or predictions based on data. Early 

machine learning models, such as Linear Regression, 

Support Vector Machines (SVMs), and Decision Trees, 

are designed to handle structured, tabular data. These 

algorithms perform well when the relationship between 

input and output variables is linear or close to linear. 

However, ML models face several limitations when 

dealing with more complex datasets: 

- Feature Engineering: ML algorithms require 

extensive feature engineering to extract relevant patterns 

from raw data. 

Limitations in Handling  

- Complex Data: ML struggles with high-dimensional 

data, such as images or sequential data. 
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- Scalability: With large datasets, traditional ML 

models face computational bottlenecks, requiring 

optimization techniques like regularization and cross-

validation to reduce overfitting and improve 

generalization. 

Despite these limitations, ML provided the 

foundational frameworks that deep learning models would 

later expand upon, particularly by allowing the 

development of more sophisticated techniques for 

handling larger and more complex data. 

 

2.2 Deep Learning (DL) and Feature Hierarchies 

Deep Learning (DL) represents a leap forward 

from traditional ML by utilizing neural networks with 

multiple layers, also known as deep neural networks 

(DNNs). DL models, such as Convolutional Neural 

Networks (CNNs) and Fully Connected Networks 

(FCNs), are capable of learning from large datasets 

without explicit feature engineering. These models 

automatically learn feature hierarchies, which is a major 

advantage over traditional ML models. 

The key benefits of DL include: 

- Automatic Feature Learning: DL models can 

automatically extract meaningful features from raw data, 

which reduces the need for manual intervention. 

- Handling Complex Data Types: DL is capable of 

processing more complex data, such as images, text, and 

unstructured data, making it well-suited for applications 

like image recognition and natural language processing. 

However, as the models grow deeper, challenges emerge: 

- Vanishing Gradient Problem: In very deep networks, the 

gradients used in backpropagation can shrink to near-zero 

values, making training difficult. 

- Computational Expense: DL models require vast 

computational resources and large datasets to train 

effectively, which can be a limitation in certain 

environments. 

While deep learning significantly improved model 

performance, these challenges led to the need for 

specialized architectures to handle sequential and time-

series data more effectively. 

2.3 Recurrent Neural Networks (RNNs): Addressing 

Sequential Data 

Recurrent Neural Networks (RNNs) were 

developed as a solution to the problem of modeling 

sequential data, such as time series, speech, and text. 

Unlike traditional feed-forward networks, RNNs have 

feedback connections, allowing information to persist in 

the model, making them ideal for tasks where the current 

output depends on previous inputs. 

RNNs are effective for: 

- Modeling Sequential Data: RNNs can process inputs in 

sequences and maintain context across timesteps. 

- Handling Variable-Length Inputs: Unlike traditional 

ML models that require fixed-size inputs, RNNs can 

handle inputs of varying lengths, making them versatile 

for many real-world applications. 

However, RNNs still face some critical challenges: 

- Vanishing Gradient Problem: When training on long 

sequences, the gradients can diminish, making it difficult 

for the network to learn long-term dependencies. 

- Exploding Gradient Problem: In contrast, the gradients 

can also become too large, causing instability during 

training. 

Despite these issues, RNNs represented a significant 

advancement in deep learning, especially for applications 

requiring the processing of temporal or sequential data. 

2.4 Long Short-Term Memory (LSTM): Overcoming 

RNN Limitations 

To address the limitations of traditional RNNs, 

Long Short-Term Memory (LSTM) networks were 

introduced. LSTMs are a specialized type of RNN 

designed to capture long-term dependencies and mitigate 

the vanishing and exploding gradient problems. By 

introducing gates (input, output, and forget gates), 

LSTMs are able to control the flow of information more 

effectively over time, allowing them to remember 

important information for longer periods. 

The key improvements of LSTMs over traditional RNNs 

include: 

- Long-Term Memory: LSTMs can capture long-term 

dependencies in sequential data, allowing them to 

remember information for much longer than traditional 

RNNs. 

http://www.ijsrem.com/
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- Stability in Training: The gating mechanism ensures 

that gradients remain stable during backpropagation, 

preventing the vanishing and exploding gradient 

problems. 

- Improved Performance on Sequential Tasks: LSTMs 

have become the go-to architecture for tasks like speech 

recognition, machine translation, and time series 

forecasting, where long-range dependencies are crucial. 

LSTMs have revolutionized how we approach 

sequential data, offering significant improvements over 

both ML and traditional DL models. 

3. Time Series Forecasting 

3.1 Time Series 

Time series data refers to a sequence of data 

points measured at successive, evenly spaced points in 

time. The primary goal of time series analysis is to 

forecast future values based on previously observed data, 

identifying patterns and trends over time. Time series can 

be categorized based on the time variable and dependent 

variables: 

- Continuous Time Series: Data is measured in 

continuous time, such as temperature measurements. 

- Discrete Time Series: Data is measured at specific 

intervals, such as daily, weekly, or yearly records of 

energy consumption or population changes. 

Time series data can also be split into: 

- Univariate Time Series: A single variable is measured 

over time (e.g., daily stock prices). 

- Multivariate Time Series: Multiple variables are 

measured over time (e.g., forecasting sales based on 

multiple factors like marketing expenditure and 

seasonality). 

While time series analysis focuses on extracting 

meaningful statistics from the data, forecasting is aimed 

at predicting future values by leveraging past 

observations. 

3.2 Time Series Characteristics 

Autocorrelation: This measures the relationship between 

a variable's current value and its past values. High 

autocorrelation indicates a strong dependency on 

previous time points. 

Seasonality: This represents patterns that repeat at regular 

intervals (e.g., monthly, quarterly). For example, sales 

data may exhibit higher values during holiday seasons. 

Stationarity: A time series is considered stationary if its 

statistical properties (mean, variance, and covariance) do 

not change over time. Non-stationary data needs to be 

transformed (e.g., differencing) to become stationary for 

better forecasting accuracy. 

3.3 Time Series Forecast Methods 

Time series forecasting aims to predict future 

values by learning from historical patterns in the data. 

Classical time series forecasting methods include: 

- Autoregressive Moving Average (ARMA): A model 

that combines autoregressive and moving average 

components for stationary time series. 

- Autoregressive Integrated Moving Average (ARIMA): 

An extension of ARMA, which includes differencing to 

handle non-stationary time series data. 

Seasonal ARIMA (SARIMA): An enhancement of 

ARIMA to capture seasonality in the data. 

In addition to these classical methods, machine 

learning techniques have emerged as powerful tools for 

time series forecasting. These techniques can better 

capture non-linearities and complex patterns in the data: 

- Multi-Layer Perceptron (MLP): A type of feed-forward 

neural network used for regression and forecasting. 

- Bayesian Neural Networks (BNN): A probabilistic 

neural network that incorporates uncertainty into 

predictions, making it more robust. 

- Generalized Regression Neural Networks (GRNN): A 

type of radial basis network that can model complex 

relationships in the data. 

More recently, Recurrent Neural Networks 

(RNN) and Long Short-Term Memory (LSTM) networks 

have become popular for time series forecasting due to 

their ability to capture long-term dependencies and 

temporal patterns. 

3.4 RNN and LSTM for Time Series Forecasting 

Recurrent Neural Networks (RNN) are designed 

to handle sequential data by maintaining hidden states 

that capture information from previous time steps. This 

makes RNNs particularly suitable for time series 

http://www.ijsrem.com/
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forecasting, where the sequence of past values is crucial 

for predicting future ones. However, RNNs suffer from 

the problem of vanishing gradients, making them less 

effective at capturing long-term dependencies. 

Long Short-Term Memory (LSTM) networks 

were introduced to overcome the limitations of traditional 

RNNs. LSTMs are designed to retain information for 

longer periods, making them ideal for modeling time 

series data with long-term dependencies. By using 

memory cells and gates (input, forget, and output gates), 

LSTMs are able to selectively retain and forget 

information, allowing them to make more accurate 

predictions over long sequences. 

 

3.5 Comparison of Classical and Modern Time Series 

Forecasting Techniques 

The evolution of time series forecasting from 

classical statistical models to modern machine learning 

methods has significantly improved forecasting accuracy 

and scalability: 

Classical Methods (ARMA, ARIMA, SARIMA): These 

methods are effective for stationary data and datasets with 

clear linear patterns. However, they often struggle with 

non-linear relationships, large datasets, and data with 

complex dependencies. 

Machine Learning Methods (MLP, BNN, GRNN): These 

methods can capture more complex, non-linear patterns 

but may require more computational resources, especially 

for large datasets. 

RNN and LSTM: These deep learning models excel in 

capturing long-term dependencies and non-linearities in 

time series data. They are particularly effective when 

dealing with large datasets with complex temporal 

patterns, but they require substantial computational 

power and are more challenging to interpret. 

4. Visualizations 

4.1 Data 

The objective of this study is to develop a Long 

Short-Term Memory (LSTM) model for forecasting 

future energy consumption. The dataset utilized for this 

purpose was obtained from Finland’s transmission 

system operator and comprises 52,965 observations 

across five variables. Initial data quality assessments 

revealed no missing or duplicate values. The energy 

consumption values range between 5,341 MWh and 

15,105 MWh, with an average consumption of 9,488.75 

MWh. 

The dataset records start and end timestamps in 

both Coordinated Universal Time (UTC) and Helsinki 

local time (UTC+3). For the purposes of this study, the 

analysis was centered on the Helsinki local time and 

corresponding energy consumption data. 

Comprehensive exploratory data analysis was 

conducted to understand the underlying structure and 

trends within the dataset. Visualizations and descriptive 

statistics indicated a clear seasonal pattern, with energy 

consumption peaking during the winter months and 

declining during the summer. The distribution of 

consumption values appeared unimodal with a slight right 

skew, and no significant outliers were detected. The 

dataset spans a six-year period, from 2016 to 2021. 

For pre-processing, the dataset was refined to 

align with complete weekly periods, starting on Monday, 

4 December 2016, and concluding on Sunday, 26 

February 2021. This adjustment necessitated the removal 

of 71 observations at the beginning and 121 observations 

at the end of the dataset. The final dataset retained two 

primary columns, 'Date Time' and 'Consumption,' from 

which additional temporal features such as Month, Year, 

Date, Week, and Day were extracted to enhance 

subsequent analysis and visualization processes. Null 

value analysis confirmed the absence of missing entries, 

thus validating the dataset’s integrity for use in model 

development and evaluation. 

4.2 Graphs 

The hourly analysis of energy consumption 

reveals distinct intraday patterns. During the early 

morning hours (00:00–05:00), consumption remains 

relatively low, reflecting minimal residential and 

industrial activity. A noticeable increase is observed 

starting around 06:00, corresponding to the beginning of 

daily operations in households and workplaces. 

Throughout the midday hours (10:00–17:00), 

consumption levels remain relatively stable, coinciding 

with typical working periods. In the evening (18:00–

21:00), there is a secondary rise in energy usage, likely 

driven by residential demand as people return home, 

followed by a gradual decline during the late evening and 

nighttime. 
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Fig -1: Energy consumption VS Hour 

 

The hourly analysis of energy consumption 

reveals distinct intraday patterns. During the early 

morning hours (00:00–05:00), consumption remains 

relatively low, reflecting minimal residential and 

industrial activity. A noticeable increase is observed 

starting around 06:00, corresponding to the beginning of 

daily operations in households and workplaces. 

Throughout the midday hours (10:00–17:00), 

consumption levels remain relatively stable, coinciding 

with typical working periods. In the evening (18:00–

21:00), there is a secondary rise in energy usage, likely 

driven by residential demand as people return home, 

followed by a gradual decline during the late evening and 

nighttime. 

 

Fig -2: Energy consumption VS Month 

 

Monthly patterns of energy consumption 

demonstrate a pronounced seasonality. Consumption 

peaks during the winter months, particularly between 

November and February, which can be attributed to 

increased heating requirements during colder weather. In 

contrast, energy usage declines significantly during the 

summer months of June through August, when milder 

temperatures and extended daylight hours reduce heating 

and lighting demands. Transitional months such as 

March, April, September, and October display moderate 

consumption values, reflecting the gradual shift between 

winter and summer energy needs. 

A broader examination of yearly energy 

consumption from 2016 to 2021 reveals a consistent 

seasonal pattern, yet certain deviations are observed. 

While most years exhibit stable annual energy demand 

cycles, a noticeable decline is observed in 2020, aligning 

with the global impact of the COVID-19 pandemic. The 

reduction in energy consumption during 2020 is likely 

attributable to decreased industrial activity, remote 

working policies, and reduced public mobility, leading to 

lower overall energy demand. In 2021, a partial recovery 

in energy consumption can be seen, suggesting a rebound 

in economic and social activities. 

 

 

 

 

 

 

 

 

 

Fig -3: Energy consumption VS Year 

 

In conclusion, the analysis of energy 

consumption trends across different time frames 

highlights clear seasonal patterns, with consumption 

peaking during winter months and dipping in summer. 

The hourly data reveals a distinct daily cycle, with higher 

consumption during peak hours in the evening, while the 

monthly breakdown demonstrates the prominence of 

winter as the primary driver of increased demand. The 

yearly analysis further underscores these seasonal 

fluctuations, with a noticeable dip in 2020, likely due to 

the economic effects of the COVID-19 pandemic. These 

insights provide a strong foundation for modeling energy 

consumption patterns, offering valuable context for 

forecasting future energy demand. 
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5. Predictions 

The LSTM model for predicting daily energy 

consumption was built using down-sampled data from 

hourly to daily frequency, reducing the dataset from 

52,774 rows to 2,184. To prepare the data for the LSTM 

model, normalization was performed using the Min-Max 

Scaler function, ensuring the values were scaled between 

0 and 1. The dataset was split into training (80%), testing 

(20%), and validation sets (20% of the training data). The 

LSTM model was reshaped into a 3D array with time 

steps of 100 and features representing consumption. 

A stacked LSTM model with four hidden layers, 

each containing 50 units, was created. A dropout layer 

was added to prevent overfitting, while the Adam 

optimizer and RMSE were used to evaluate the model's 

performance. The model was trained for 60 epochs with 

a batch size of 20, and during training, the loss values 

were monitored for both training and validation data to 

prevent overfitting. 

The trained model's predictions were then tested 

on the training, validation, and test datasets, showing the 

model's ability to predict consumption values effectively. 

Figures depicting predictions on these datasets further 

illustrate the model's accuracy and its application to 

future consumption forecasts. 

This section highlights the predictive power of 

the LSTM model, providing valuable insights for future 

energy consumption trends based on historical data. 

 

 

 

 

 

 

 

 

Fig -4: Actual vs train predictions 

 

6. CONCLUSIONS 

 

This study focused on analyzing and forecasting 

Finland’s energy consumption using Long Short-Term 

Memory (LSTM) networks. Exploratory data analysis 

revealed distinct temporal patterns: energy usage 

exhibited clear hourly peaks during early mornings and 

evenings, monthly seasonality with higher consumption 

during winter months and lower during summers, and a 

relatively stable yearly trend except for a decline in 2020, 

attributed to the COVID-19 pandemic. These 

observations underline the importance of temporal 

dependencies in modeling energy demand accurately. 

To capture these patterns, an LSTM-based deep 

learning model was developed. The dataset was 

resampled from hourly to daily frequency, normalized, 

and structured into training, validation, and testing 

subsets. A stacked LSTM architecture, enhanced with 

dropout regularization and trained using the Adam 

optimizer, was employed. The model demonstrated 

strong predictive performance with low training and 

validation errors and no significant overfitting, validating 

its capability to learn complex temporal relationships 

within the data. 

Overall, the integration of time series analysis 

with deep learning proved to be effective in forecasting 

energy consumption trends. The findings emphasize that 

leveraging seasonal, daily, and yearly patterns through 

advanced neural network models can significantly 

enhance the accuracy of energy demand forecasting, 

supporting better energy planning and sustainable 

resource management. 
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