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Abstract—The rapid growth of Large Language Models 
(LLMs) has revolutionized the field of natural language process- 
ing (NLP), achieving unparalleled levels of linguistic nuance and 
precision. The debut of ChatGPT, a cutting-edge LLM, has cat- 
alyzed widespread adoption across diverse applications. Built on 
the GPT-3.5 architecture, ChatGPT’s 175 billion parameters were 
honed through reinforcement learning from human feedback, 
yielding remarkable performance. Nevertheless, the escalating 
scale and intricacy of LLMs, epitomized by ChatGPT’s substan- 
tial parameter count, have sparked pressing concerns regarding 
their ecological footprint and energy expenditure. As demand for 
LLMs continues to surge, developing sustainable, energy-efficient 
solutions is crucial to mitigating their environmental impact. 
This paper undertakes a comprehensive examination of energy 
consumption monitoring, challenges, and areas for improvement 
necessary for the development of energy efficient Large Language 
Models. 

Index Terms—BERT, Large Language Model, Energy-aware 
training, GPU, Footprint, GPT-3, Profiling, CO2 emissions 

 

I. INTRODUCTION 

Large Language Models (LLMs) have revolutionized ar- 

tificial intelligence by enabling groundbreaking applications 

in natural language processing, such as chatbots, translation 

systems, content generation, and semantic search. However, 

the extraordinary capabilities of these models come with a 

significant trade-off: their energy consumption. Training and 

deploying LLMs require immense computational resources, 

which contribute to high electricity use and a substantial car- 

bon footprint. As the global demand for AI-powered solutions 

grows, the environmental and economic costs associated with 

running these models are becoming increasingly unsustainable. 

Training a state-of-the-art LLM, such as GPT or similar 

models, often involves billions of parameters and requires 

petabytes of data processed over weeks or months on power- 

hungry GPUs or TPUs. For instance, training a model like 

GPT-3 reportedly consumes as much energy as powering 

several households for a year, generating tens or even hundreds 

of metric tons of CO2 emissions. Beyond training, deploying 

these models at scale—serving billions of queries daily—adds 

a continuous energy burden. 

The carbon emissions from AI training and inference con- 

tribute to climate change, especially when energy is sourced 

from non-renewable resources. High energy consumption 

translates to significant operational costs, limiting accessibility 

for smaller organizations and researchers. As models grow 

larger and more sophisticated, their energy demands scale 

disproportionately, challenging the feasibility of developing 

and deploying next-generation models. 

II. RELATED WORK 

Recent research has highlighted the significant energy con- 

sumption and environmental impact of training large AI mod- 

els, particularly in the field of Natural Language Processing 

(NLP) and Large Language Models (LLMs). This section 

discusses key studies that have quantified these costs and 

proposed methods for addressing them. 

Strubell et al[8] conducted a comprehensive analysis of the 

computational and environmental costs associated with train- 

ing deep learning models for NLP tasks. Their study examined 

four popular off-the-shelf NLP models: Tensor2Tensor (T2T), 

ELMo, BERT, and GPT-2. The authors estimated the energy 

consumption and carbon footprint of training these models 

by measuring power draw during training and extrapolating 

to full training time. They found that training a single BERT 

base model on GPUs consumed approximately 1507 kWh and 

emitted 719 lbs of CO2 equivalent. 

To estimate the CO2 emissions of GPT-3, we can extrapolate 

from the findings by [8] regarding BERT, considering key 

differences in the scale and computational requirements of the 

models. Strubell’s study provided detailed energy consumption 

and carbon footprint data for BERT base, which consists of 

110 million parameters, while GPT-3, with its 175 billion 

parameters, represents a much larger computational effort. 

 

A. Key Factors in Estimating GPT-3’s CO2 Emissions 

Following are the key factors: 

• Model Size: GPT-3 is roughly 1,590 times larger than 

BERT base in terms of parameters.This scale dramatically 

increases the computational complexity, as the number 

of computations required for training scales non-linearly 

with the number of parameters. 

• Training Iterations: BERT was trained on a corpus of 

16 GB of text data, while GPT-3 was trained on a 

significantly larger dataset of 570 GB, approximately 36 

times more data. This alone implies that GPT-3’s training 

required far more compute cycles. 

• Training Infrastructure: Strubell’s analysis assumed the 

use of GPUs, while OpenAI used supercomputing clusters 

with thousands of NVIDIA V100 GPUs or similar hard- 

ware to train GPT-3.The efficiency of modern hardware 

could slightly mitigate energy consumption per computa- 

tion, but the sheer scale of GPT-3’s requirements would 

still dominate the total energy usage. 

• Training Time: Training GPT-3 reportedly took weeks or 

months, with continuous utilization of tens of thousands 

of GPUs. This represents orders of magnitude more en- 

ergy use than the relatively smaller-scale BERT training. 

We can estimate power draw of GPUs based on these 

factors. The GPUs used for GPT-3 training, such as NVIDIA 

V100, have a TDP (thermal design power) of around 300 

watts per card. A supercomputing cluster with thousands of 
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such GPUs operating for months would lead to massive energy 

consumption. 

Hence, approximate calculation of GPT-3’s CO2 emissions 

would look something like this: 

1) If BERT base training consumed 1,507 kWh, we 

can extrapolate based on model size and data scale. 

GPT-3 is 1,590 times larger, but due to efficiencies in 

scaling, let’s conservatively assume energy consumption 

grows at a non-linear factor of 1,000.Additionally, 

GPT-3 uses 36 times more training data than BERT 

base, further increasing energy demands.Thus, we 

estimate the energy required for GPT-3 training as: 

1,507kWh×1,000×36=54,252,000kWh(conservatively) 

 

2) The carbon footprint depends on the energy 

source mix for the data center where GPT-3 was 

trained.Assuming the average carbon intensity of 

electricity in the U.S. is around 0.41 kg CO2 

per kWh: 54,252,000 kWh x 0.41 kg CO2 per 

kWh = 22,243,320 , kg CO2 (22,243 metric tons) 

 

3) Contextualizing  Emissions:  22,243  metric  tons 

of CO2 is equivalent to driving approximately 

4,800 passenger vehicles for a year. The annual 

energy consumption of around 2,000 U.S. homes. 

 

Even though, the specific figures provided above is only 

a rough estimate, as the energy consumption and carbon 

emissions of LLMs can vary widely based on factors such 

as model architecture, training techniques, hardware efficiency, 

and energy sources used, It gives us key insight that The jump 

in energy use and emissions from BERT to GPT-3 underscores 

the exponential costs of scaling LLMs, emphasizing the ur- 

gency of pursuing energy-efficient model architectures. 

Given that GPT-4 and other advanced models are even larger 

than GPT-3, their environmental footprint is likely to be even 

greater unless significant efficiency gains or renewable energy 

solutions are implemented. 

This analysis highlights the pressing need for energy- 

efficient training methods, model optimization, and renewable 

energy integration to make the future of AI development 

more sustainable. Complementing the work on AI energy 

consumption, Almeida et al [1] focused on energy monitoring 

in Ultra Scale Systems (USS). 

Their paper discusses the challenges of energy monitoring in 

large-scale parallel and distributed computing systems, which 

are often used for training and deploying LLMs. The authors 

highlight the importance of developing standardized APIs and 

tools for energy monitoring, which could be adapted for more 

precise energy monitoring in LLM training and inference. 

Patterson et al. [6] conducted a comprehensive study on the 

emissions and energy consumption of large neural network 

training, focusing on natural language processing models. 

Their work, ”Emissions and Large Neural Network Training,” 

provides valuable insights into the environmental impact of 

training large language models and proposes strategies for 

reducing their carbon footprint.The authors analyzed several 

recent large models, including T5, Meena, GShard, Switch 

Transformer, and GPT-3, calculating their energy use and CO2 

equivalent emissions (CO2e). They identified three key areas 

for improving energy efficiency: the use of sparsely activated 

neural networks, strategic geographic placement of ML 

workloads, and leveraging efficient datacenter infrastructure 

and ML-oriented accelerators.Patterson et al. demonstrated 

that combining these strategies could lead to a 100-1000 

X reduction in carbon footprint. Their work emphasizes 

the importance of considering energy consumption and 

CO2e as crucial metrics in model evaluation, aligning with 

our research on energy-efficient large language models. 

The paper also highlights the need for transparency in 

reporting energy usage and emissions in ML research, 

which is a valuable consideration for future work in this field. 

 

III. MAIN CHALLENGES OF ENERGY EFFICIENT LLMS 

Here are the main challenges of energy-efficient Large 

Language Models: 

1) Lack of research : Despite the growing concern about 

the energy consumption of LLMs, there is a lack of re- 

search focused on monitoring and improving the energy 

efficiency of these models. The development of energy- 

efficient LLMs requires a comprehensive understanding 

of the factors that contribute to their energy consump- 

tion, including: 

a) Model architecture: The design of the LLM archi- 

tecture, including the number of layers, parameters, 

and activations, significantly impacts energy con- 

sumption. 

b) Computational intensity: The computational inten- 

sity of LLMs, including the number of floating- 

point operations (FLOPs) and memory accesses, 

contributes to energy consumption. 

c) Hardware and software platforms: The choice of 

hardware and software platforms, including GPUs, 

TPUs, and CPUs, as well as frameworks and 

libraries, affects energy consumption. 

d) Data characteristics: The characteristics of the in- 

put data, including size, complexity, and distribu- 

tion, influence energy consumption. 

2) Lack of transparency from AI companies:This is a 

significant deterrent to research on energy efficiency in 

Large Language Models (LLMs). Here are some points 

highlighting this issue: 

a) Many AI companies develop proprietary LLM ar- 

chitectures and models. This makes it challenging 

for researchers to study and optimize energy effi- 

ciency, as the underlying architectures and models 

are not publicly disclosed. 

b) Many AI companies use closed-source software 

stack, which can make it difficult for researchers to 

optimize energy efficiency. Open-source software, 
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on the other hand, allow researchers to modify and 

optimize the code for energy efficiency. 

c) AI companies often patent their innovations, in- 

cluding LLM architectures and optimization tech- 

niques. This can limit the ability of researchers 

to study and build upon existing work, hindering 

progress in energy efficiency research. 

3) Limited access to computational resources: AI com- 

panies often have access to large-scale computational 

resources, including custom-built hardware accelerators 

like TPUs and GPUs. However, these resources are 

typically not available to researchers, making it difficult 

to replicate and study the energy efficiency of LLMs. 

IV. POTENTIAL SOLUTIONS 

1) Shared responsibility:BIG AI companies, such as 

Google, Facebook, Microsoft, and Amazon, have a sig- 

nificant share of the responsibility for the environmental 

impact of LLMs. Their collective contribution can help 

mitigate this issue.Collective contribution from these 

companies can facilitate standardization and collabora- 

tion, enabling the development of more efficient and 

sustainable LLMs. 

2) Energy monitoring and profiling: Creating efficient tools 

like machine learning emissions calculator [4] and 

methodologies for monitoring [3] and profiling the en- 

ergy consumption of LLMs, including hardware-based 

and software-based approaches. 

3) Energy-aware training methods: Developing training 

methods that incorporate energy efficiency as a primary 

objective[7], including energy-constrained optimization 

and green AI. 

4) Energy-efficient model design: Investigating techniques 

for designing energy-efficient LLM architectures, in- 

cluding model pruning, quantization, and knowledge 

distillation. 

5) Nudging Energy Efficiency in Large Language Models 

using Model Cards: Model cards are documentation that 

provides detailed information about a Large Language 

Model’s performance, energy consumption, and envi- 

ronmental impact. By presenting this information in a 

clear and concise manner or in other words eco-labeling 

[2], developers and users can be ”nudged” [5] towards 

making more energy-efficient choices when selecting or 

designing LLMs. 

V. CONCLUSION 

Research in energy-efficient LLMs is essential not only for 

reducing their environmental and economic costs but also for 

ensuring equitable access to AI. Without significant strides 

in this area, the benefits of LLMs may remain restricted 

to large corporations with the resources to afford their high 

costs. Moreover, improving energy efficiency aligns with 

broader global sustainability goals, such as the United Nations’ 

Sustainable Development Goals (SDGs), particularly those 

addressing climate action and affordable, clean energy. 

By focusing on monitoring and improving the energy ef- 

ficiency of LLMs, the AI community can ensure that inno- 

vation remains sustainable, accessible, and environmentally 

responsible. As AI continues to shape the future of technology, 

addressing its energy demands will be critical to maximizing 

its benefits while minimizing its ecological and societal costs. 
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