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Abstract - Monitoring urban development and infrastructure 

changes is essential for sustainable city planning and disaster 

management. This paper investigates building change detection 

using two enhanced Siamese U-Net architectures: one utilizing 

feature concatenation and the other leveraging element-wise 

difference between bi-temporal aerial images. The LEVIR-CD 

dataset, comprising high-resolution paired images of urban 

landscapes, is employed to train and evaluate the models. 

Preprocessing includes slicing large images into manageable 

patches, applying augmentation techniques, and normalizing 

inputs. Experimental results demonstrate that the Siamese U-

Net with difference outperforms its concatenation counterpart, 

achieving superior accuracy, F1-score, and intersection-over-

union metrics. The findings highlight the effectiveness of dual-

branch networks, particularly difference-based approaches, in 

capturing subtle structural transformations in complex urban 

environments. These results support the adoption of advanced 

Siamese architectures as robust tools for automated building 

change detection in remote sensing applications. 

 

Key Words:  Building change detection, Siamese U-Net, Aerial 

imagery, Urban monitoring, Remote sensing, Bi-temporal 

analysis. 

 

1. INTRODUCTION  

 
Urban areas undergo continuous transformation due to 

construction, renovation, and demolition of buildings, driven by 

socio-economic, environmental, and political factors. Detecting 

and monitoring these building-level changes is vital for informed 

urban planning, infrastructure management, and post-disaster 

recovery [2], [3]. Remote sensing has emerged as a powerful 

means to observe urban dynamics, providing wide-area, 

repeatable, and objective data about the Earth’s surface [4]. 

Among remote sensing modalities, high-resolution aerial 

imagery is particularly well-suited for building change detection, 

as it captures fine-grained structural details necessary for 

analyzing individual buildings [7]. 

 

Historically, building change detection relied on 

handcrafted features and thresholding techniques combined with 

classical machine learning models, such as Support Vector 

Machines and Random Forests [5]. Although successful in a 

controlled environment, the methods failed in urban settings 

given noise, occlusions and texture heterogeneity. The 

introduction of deep learning specifically convolutional neural 

networks (CNNs) has provided a new edge to the development 

of end-to-end extracted features and semantic segmentation [1], 

[6]. To the best of our knowledge, the U-Net architecture is one 

of the most popular CNN-based architecture used for its 

encoder–decoder structure and skip connections, which help 

preserve spatial information during segmentation tasks [1]. 

Despite the success of U-Net, it does not explicitly model bi-

temporal relationships between pre- and post-change images. To 

address this, Siamese network architectures have been 

developed, in which two parallel branches process image pairs 

and extract comparative features [8]. Such networks can 

highlight subtle structural differences by either concatenating the 

extracted features or computing their element-wise difference 

[6]. 

 

This study investigates and compares two enhanced 

Siamese U-Net variants: Siamese U-Net Concatenation and 

Siamese U-Net Difference, for detecting building changes in 

urban scenes using high-resolution aerial imagery. These models 

were trained and evaluated on the publicly available LEVIR-CD 

dataset [7], which provides a diverse benchmark of urban 

landscapes for change detection. By analyzing their relative 

performance, this work aims to assess the suitability of these 

architectures for accurate and automated building change 

detection in remote sensing applications. 

 

 

2. LITERATURE REVIEW 

 
 Change detection generation in buildings has evolved 

so drastically over the past couple of years through the 

conventional techniques down to the more complex deep 

learning models. Early methods, instead, were focused on 

handmade features, thresholding and, one the conventional 

machine learning techniques, like the Support Vector Machines 

and Random Forests. Though such methods have been 

demonstrated to perform successfully in limited environments, 

they have not been proven effective in the presence of tough 

urban textures, obscures, and corrupted data [5]. A significant 

breakthrough in the field was conditioned by the invention of 

deep learning (more precisely in the convolutional neural 

networks (CNNs) format). The U-Net architecture, presented by 

Ronneberger et al. [1] gave a model framework to the later 

segmentation methods because of its encoder-decoder model 

and its skip connections, the spatial information is retained. U-

Net and its versions have achieved performance satisfaction in 

developing segmentation and change detection task based on 

high-resolution remote sensing imagines [7]. 

 

In order to compensate for the lack of explicitness 

from U-Net with respect to bi-temporal relationships, Siamese 

network architectures were proposed. These architectures use 

parallel branches for pre- and post-change images, and thus 

directly compare feature representations. Peng et al. [8], authors 

introduced a Siamese U-Net with spatial attention for better 

change localization, focusing more on the salient regions. 

Zhang et al. [6] proposed SMD-Net, a Siamese multi-scale 

difference-enhancement network focusing on subtle structural 
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differences by enhancing multi-scale features. Recent studies 

have incorporated attention mechanisms and transformer-based 

components to further improve performance. Feng et al. [3] 

introduced SGNet, a semantic-guided transformer-based 

network that achieved high accuracy in complex urban 

environments by integrating semantic guidance and multi-stage 

fusion. Chen et al. [9] proposed SMADNet, which combined 

multiscale decoding with attention modules in a Siamese 

framework, demonstrating superior results on the LEVIR-CD 

dataset. 

 

Additional advancements have focused on improving 

data efficiency and robustness. Benchabana et al. [2] employed 

enhanced super-pixel segmentation alongside deep learning 

models to better preserve object boundaries in high-resolution 

imagery. Sirko [4] explored the use of medium-resolution 

Sentinel-2 data for scalable building detection, offering a more 

accessible alternative to high-resolution datasets. Corley et al. 

[5] conducted a critical evaluation of recent change detection 

methods, emphasizing the importance of reproducibility and 

realistic benchmarking. Cui et al. [10] introduced a Siamese 

Swin-Unet, combining Swin Transformers with the Siamese 

architecture to improve accuracy and contextual understanding 

in change detection tasks. 

 

Overall, these studies demonstrate the evolving trends from 

traditional methods to modern deep learning frameworks, in 

which the efficacy of Siamese networks and attention 

mechanisms for capturing temporal dynamics is emphasized. 

However, the choice of feature fusion strategy in Siamese U-

Nets (e.g., concatenation vs. element-wise difference) is still an 

open question. This paper fills this gap by conducting a 

comprehensive comparison of the two approaches of building 

change detection over high-resolution aerial imagery. 

 

3. METHODOLOGY  

The methodology describes the dataset, and preprocessed 

activity, model architectures, training, and evaluation metrics 

used to compare two Siamese U-Net models on an application 

for building change detection.  

In this paper, there is a comparative study of the 

performance of Siamese U-Net Concatenation and Siamese U-

Net Difference architectures based on high-resolution aerial 

imagery. 

3.1.  Dataset 

The LEVIR-CD dataset [7] was chosen as reference for this 

work. It consists of 637 pairs of high-resolution aerial images 

(also known as orthophotos) with a spatial resolution of 0.5 

meters and the size of 1024×1024 pixels. 

The two datasets have different urban or suburban imagery 

and are paired with binary change masks of building level 

changes between two times. To adapt the data for training, the 

images were divided into non-overlapping patches of size 

256×256 pixels, ensuring manageable input dimensions while 

preserving spatial context. 

 

3.2. Preprocessing 

To enhance model generalization and address data 

imbalance, several augmentation techniques were applied 

during training. These included random horizontal and vertical 

flips to introduce variability, random cropping at multiple scales 

to simulate different spatial resolutions, and normalization of 

pixel intensities to a standardized range. The dataset was 

partitioned into training, validation, and test sets in proportions 

of 70%, 10%, and 20% respectively, ensuring unbiased 

evaluation. 

3.3. Model Architectures 

Two Siamese U-Net variants [6], [8] were implemented to 

perform building change detection by comparing bi-temporal 

aerial image pairs. Both architectures employ dual-branch 

encoders and a shared decoder. Each encoder processes one 

image from the input pair, extracting hierarchical feature 

representations independently. The outputs of the two encoders 

are then combined and passed to the decoder, which generates a 

pixel-wise binary change mask delineating areas of structural 

transformation. In Siamese U-Net Concatenation, both the 

encoder feature maps are concatenated in terms of the channels 

followed by feeding the concatenated feature maps into the 

decoder. This methodology conserves feature diversity because 

all the data in both the images remains so that the decoder gets 

to learn intricate interactions between the unmodified portions 

and the altered. Siamese U-Net Difference, contrastingly, 

calculates absolute difference between feature maps of the two 

encoders prior to decoding. These highlights areas of non-

agreement thus becoming more responsive to small structural 

variation and masks overrepresented data residing in areas 

lacking structural change. 

The two architectures use ResNet-50 backbone encoder 

since it has already shown to extract rich and multi-scale 

features in high-resolution imagery. The decoder is a 

conventional U-Net structure [1], and the transposed 

convolutional layers and skip links are sequentially used to 

restore the spatial information, and feature information of the 

earlier encoder stages are added. Through such an arrangement 

they can define boundaries of change accurately and less spatial 

information is lost in down-sampling. Both fusion strategies 

concatenation and difference are introduced to be compared as 

both of them are radically different ways of modeling change in 

terms of carrying all the information about features or focusing 

on differences. The relative comparison in terms of their 

effectiveness provides details in regard to feature fusion and 

how it impacts the accuracy of building change detection [6], 

[8]. 

3.4. Training and Evaluation 

The corresponding models were trained with the framework 

of PyTorch, and the objective was cross-entropy loss. The 

model was optimized using stochastic gradient descent (learning 

rate = 0.01) and the model parameters were iteratively set and 

optimized until the validation performance stabilized. The 

performance metrics were accuracy, F1 score, intersection-over-

union (IoU), precision, and recall that were computed on the 

held-out test set to evaluate the detection comprehensively [5]. 
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The inclusion of IoU provides insight into the spatial overlap 

between predicted and actual change regions, complementing 

other metrics. 

 

4. RESULTS AND DISCUSSION  

 
The performance of the Siamese U-Net Concatenation and 

Siamese U-Net Difference models was evaluated using five 

standard metrics: accuracy, precision, recall, F1-score, and 

intersection over union (IoU). These metrics are mathematically 

defined as follows: 

 

Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

Precision 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

       Recall 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(3) 

       F1-Score 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
(4) 

     Intersection over Union (IoU) 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (5) 

where TP, TN, FP, and FN represent true positives, true 

negatives, false positives, and false negatives, respectively. 

Together, these metrics provide a comprehensive view of model 

performance, capturing overall correctness (Eq. (1)), ability to 

avoid false positives (Eq. (2)), sensitivity to true changes (Eq. 

(3)), harmonic balance between precision and recall (Eq. (4)), 

and spatial overlap with the ground truth (Eq. (5)). 
4.1. Overall Performance  

 Table 1 presents the overall test-set performance of the 

two Siamese U-Net variants. The Siamese U-Net Difference 

outperformed the concatenation model across all evaluation 

metrics defined in Eqs. (1)–(5). Specifically, the difference 

model achieved an accuracy of 94.25%, an F1-score of 95.23%, 

and an IoU of 0.9124, compared to the concatenation model’s 

accuracy of 88.21%, F1-score of 91.12%, and IoU of 0.8457. 

The difference model also exhibited higher precision and recall, 

indicating better capability in identifying changed regions while 

minimizing false alarms. 

Table 1- Overall performance metrics of Siamese U-Net 

variants. 

 

The superior performance of the difference model can 

be attributed to its explicit modeling of change through element-

wise difference of feature maps, which enhances discrimination 

between changed and unchanged areas. This aligns with 

findings from prior studies [6], [8], where difference-based 

fusion was shown to emphasize subtle structural variations 

more effectively than concatenation. Furthermore, the 

difference model achieved an IoU (Eq. (5)) exceeding 0.91, 

suggesting strong spatial alignment of predicted change regions 

with the ground truth masks, a critical requirement in practical 

urban analysis applications. 

The concatenation model, while outperforming 

baseline U-Net variants (not shown here for brevity), was less 

sensitive to fine-grained changes. This may be due to its 

strategy of preserving full feature information from both images 

without explicitly emphasizing differences, which can lead to 

retention of redundant information from unchanged areas. 

4.2. Sample-wise Analysis: Siamese U-Net 

Concatenation 

To better understand the models’ behavior on individual 

test samples, results for three representative image pairs are 

presented in Table 2. The concatenation model demonstrated 

consistent performance across the samples, achieving accuracy 

(Eq. (1)) values between 97.8% and 99.0%, with F1-scores (Eq. 

(4)) above 89.6% and IoU (Eq. (5)) above 80%. 

 

Visual inspection of the results revealed that while most 

major changes were correctly detected, the model tended to 

over-segment regions in cluttered areas, leading to minor false 

positives. This tendency can be linked to its fusion strategy, 

which retains all feature information without explicitly 

suppressing irrelevant patterns. Nevertheless, the high precision 

(Eq. (2)) observed in all three samples suggests that when it 

predicts a change, it is generally correct. 

In Sample 1, which contains moderately dense urban 

development with clear change boundaries, the model achieved 

an accuracy of 98.1% and an IoU of 82.1% (Eq. (5)). The 

predicted change mask captured the major transformations but 

included some over segmentation at building edges. This 

suggests that while concatenation retains rich feature 

representations, it may struggle to suppress fine-grained 

irrelevant textures. 

Model Name 
Accuracy 

(%) 

F1- 

Score 

(%) 

IoU 

(%) 

Precision 

(%) 

Recall 

(%) 

Siamese U-Net 

Concatenation 
88.21% 91.12% 84.57% 97.95% 99.30% 

Siamese U-Net 

Difference 
94.25% 95.23% 91.24% 99.10% 99.45% 
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In Sample 2, representing a suburban area with smaller and 

more dispersed structures, the model recorded the lowest F1-

score (89.6%) and IoU (81.1%) among the three samples. 

Visual inspection of the predictions indicates that the model 

failed to completely capture several small-scale changes, likely 

due to its tendency to preserve all feature information, including 

redundant or misleading patterns from unchanged areas. 

Table 2- Sample-wise results of Siamese U-Net Concatenation. 

 

In contrast, Sample 3, which featured a relatively open 

area with a few isolated structures, yielded the highest accuracy 

(99.0%) and a comparable IoU of 80.1%. In this case, the model 

effectively identified the changed regions with minimal false 

positives, reflecting its strength in less cluttered scenes where 

preserved feature diversity is advantageous. 

Across all three samples, the model consistently achieved 

high precision (Eq. (2)), exceeding 92%, which indicates a low 

rate of false positives. However, the comparatively lower recall 

(Eq. (3)) in Samples 2 and 3 suggests that some true changes 

were missed, a common limitation of concatenation-based 

fusion. This behavior is consistent with findings in the literature 

[8], which reported that concatenation retains more complete 

information but lacks the explicit focus on differences that aids 

in detecting subtle changes. Furthermore, the relatively stable 

performance in various conditions proves the high degree of 

uniformity in the use of concatenation strategy as the measure 

of maintaining the general proportion of accuracy high, and 

overidentifications of the unchanged areas and under detections 

of minor changes prove the types of improvement that are to be 

made. These findings are confirmed by the fact that Siamese U-

Net Concatenation provides a satisfactory level of feature 

diversity once more they can be reliably used to perform 

acceptably with open or simply complex city views though their 

performance is less impressive when they are dealing with 

dense or fine-grained scenes. This appears to indicate the trade-

off in the capability of retaining features richness and outlining 

the structural variations in change detection tasks. 

4.3. Sample-wise Analysis: Siamese U-Net 

Difference 

And to be able to extend such comparison of the 

effectiveness of the Siamese U-Net Difference model, Table 3 

provides us with the results that the same three examples of the 

test samples take. This review enables us to know the nature of 

the model in different urban cases as well as the whereabouts 

and how it is superior to the concatenation one. 

Table 3- Sample-wise results of Siamese U-Net Difference. 

            

 

In Sample 1, corresponding to a highly built-up urban 

region with strict boundaries between change, the Difference 

model provided an accuracy of 99.3% as well as an IoU of 

85.2% (Eq. (5)). The model was able to identify most change 

areas with less false positive outcomes than the concatenation 

model. The improved IoU recommends that the absolute 

difference computation of encoder features will effectively 

discard irrelevant information resulting in the ability to provide 

more accurate change localization. 

In Sample 2, a residential part with scattered, low-level 

modifications, the model showed that its performances were 

robust at an accuracy of 98.6% and an IoU of 84.1%. 

Interestingly, F1-score (Eq. (4)) went up to 92.1% compared to 

that of concatenation model, which showed that it was more 

balanced between precision (Eq. (2)) and recall (Eq. (3)). Visual 

evaluation showed that the difference model identified some 

slight variations that could not be identified by the 

concatenation model and that the former was more sensitive to 

smaller structural modifications. 

Among the three samples, the highest scores were recorded 

on the sample 3 that had an open area and less density of 

buildings 99.4%, F1-score 93.8%, and IoU 84.9% according to 

the difference model. The mask of detection was similar to the 

ground truth with well-marked contours and had limited 

numbers of false positives. It means that the difference model 

does more than excelling in cluttered conditions as it also 

exhibits a high level of robustness in rich scenes. The difference 

http://www.ijsrem.com/
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model yielded improved performance in all three of the samples 

in comparison to their concatenation model analog further 

regarding the value of the IoU (Eq. (5)), i.e., direct overlapping 

measure of predictions against the ground truth. The enhanced 

recollection (Eq. (3)) in every instance demonstrates the 

enhanced potential to identify the actual alterations and does not 

disregard the essential regions which is one of the most vital 

limitations which have been pointed to the concatenation 

method. These values stand by the hypothesis that features level 

of emphasis guarantees that the model focuses more on the 

region of change boundaries and more briefly interrupted by 

constant regions.  

This is in agreement with the literature in the past findings 

that the difference-based fusion strategies have been reported as 

performing excellently in the complex urban settings [6], [9]. 

The gradual enhancements of the chaotic, scattered and free 

urban landscapes youth the soundness of difference model and 

corroborate the proper decision to employ it to the practice of 

building change detection in buildings. Though it has some 

portion of excessive segmentation as well in very intricate areas, 

the results are significantly better than those of fusion using 

concatenation. 

4.4. Comparative Analysis of Models 

The contrast analysis of the two versions of the Siamese U-

Net shows that difference model responded mostly efficiently 

on all the measures of evaluation provided in Eqs. (1)-(5) and 

within any situations tested. According to Table 1, the 

difference model output had an overall accuracy of 94.25% and 

IoU of 91.24%, which was better than that of concatenation 

model with accuracy value of 88.21% and IoU of 84.57%.  

This tendency was also observed in the sample-wise 

analysis given at Tables 2 and 3 whereby the difference model 

was the superior performer on various urban scenes, such as 

densely populated ones, suburban areas, and open territories. 

The enhanced performance can be explained by the fact that the 

difference model attaches an explicit emphasis on structural 

inconsistency in the feature space that allows one to eliminate 

redundant information in the stable areas and improve change 

detection of weak differences.  

These results ensure that difference-based feature fusion is 

a more certain and accurate method of constructing change 

detection in high-resolution aerial images, and therefore it is a 

more effective alternative in real-life use of the situation in 

actual cities surveillance. 

 

5. CONCLUSION  

This paper did a thorough benchmarking experiment of the 

two Siamese U-Net architectures, Siamese U-Net Concatenation 

and Siamese U-Net Difference, to generate building change 

detection in high resolution aerial imagery. The benchmark was 

the publicly available LEVIR-CD dataset that depicts a multi-

various urban and suburban environment. The fair and 

transparent evaluation was carried out using standard 

preprocessing methods as well as stringent evaluation metrics as 

stated in Eqs. (1)–(5), were employed to ensure fair and 

transparent assessment. 

Both models proved to be very efficient regarding their 

possibility to discover building-level changes, which proves that 

Siamese architectures are appropriate to detect changes. In all 

the metrics, the difference model had surpassed the 

concatenation model in all forms of accuracy, F1-score, and IoU 

at both the overall and sample-wise levels. In particular, the 

difference model achieved an IoU of 0.9124, representing 

accurate spatial correspondence of the inferred and truth change 

area and pointing out strong results under many urban settings 

such as dense, cluttered, scattered landscapes. 

 These results are consistent with the fact that predicting a 

difference in features between bi-temporal images via direct 

modeling of the difference facilitates the network to concentrate 

on the areas of real change and ignore the insignificant data on 

areas that have not changed. The analysis further revealed that 

the concatenation model retained more feature diversity, which 

was beneficial in simpler scenes but led to over segmentation 

and false positives in more complex environments. In contrast, 

the difference model maintained high precision and recall across 

all samples, demonstrating its robustness and reliability. The 

results align with observations from prior studies that have 

emphasized the advantages of difference-based fusion in 

accurately detecting subtle and localized structural changes. 

Although results of this study are encouraging a number of 

opportunities on further improvement exist. The two models 

had problems of being ineffective in highly congested urban 

environments, especially in environments where tiny small-

scale changes occurred and were not captured. Future study of 

the insertion of attention mechanisms [9], [10], that would allow 

the network to pay special attention to the eye-catching areas 

and enhance sensitivity in detecting the changes could be 

discussed to overcome these challenges. Also, inclusion of 

transformer-based architecture, that are feature known to 

identify long-range dependencies and contextual relations, 

could also help in improving the model capacity to work with 

complex spatial patterns [3]. The other area of improvement is 

to use self-supervised learning that may minimize the need to 

use concern labels and improve generalization to unseen 

settings. 

Lastly, this area can be further expanded to multi-classes 

change detection and real-time inference that can expand its 

applicability to real-time-monitoring and humanitarian-based 

urban-monitoring situations. Altogether, the results of the study 

indicate the high efficiency of Siamese U-Net Difference 

architectures in the development of change detection and 

support several promising avenues of further development of 

deep learning-based change detection methods in remote 

sensing. 
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