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Abstract— It is critical to protect sensitive data against hackers 

in the healthcare industry. Although they are used for effective 

resource management and security, software-defined networks, 

or SDNs, are susceptible to many types of assaults. A machine 

learning-based cyberattack detector (MCAD) designed 

specifically for healthcare systems is presented in this research. 

Enhancing network security, the system uses an adapted layer 

three (L3) learning switch application to collect and analyze 

normal and anomalous traffic, and then deploys MCAD on the 

Ryu controller. Many machine learning algorithms, such as 

Random Forest, Gradient Boosting Machines, Support Vector 

Machines, K Nearest Neighbors, Isolation Forest, Deep Neural 

Networks, Convolutional Neural Networks and XGBoost, are 

used in the study to assess MCAD's performance. The outcomes 

show how MCAD may enhance network efficiency, boost 

throughput, and lower latency and jitter, thereby bolstering the 

security of healthcare applications. 

Index Terms—Cybersecurity, machine learning, healthcare 

security, SDN security, anomaly detection, network intrusion 

detection, deep learning, 

 

I. INTRODUCTION 

In the rapidly evolving healthcare sector, the protection of 

sensitive patient data and the integrity of healthcare 

applications have become critical concerns. Healthcare systems 

are increasingly relying on digital platforms for managing 

patient records, appointments, billing, and communication. As 

a result, the amount of sensitive data being processed, stored, 

and transmitted has significantly increased, making healthcare 

networks a prime target for cyberattacks. Data breaches, 

unauthorized access, and disruption of services can have severe 

consequences, including compromised patient privacy, 

financial losses, and damaged trust in healthcare providers. 

To address these growing security challenges, Software-

Defined Networks (SDNs) have emerged as a promising 

solution. SDNs provide centralized control over network 

traffic, making them highly flexible and scalable, which is 

essential for managing the complex and dynamic nature of 

healthcare networks. However, despite their benefits, SDNs 

are also vulnerable to various forms of cyberattacks. These 

include traditional attacks like SQL Injection (SQLi) and 

Cross-Site Scripting (XSS), as well as more sophisticated 

threats targeting the underlying SDN architecture itself. 

 This research introduces a Machine Learning-Based 

Cyberattack Detection (MCAD) system, specifically 

designed for healthcare networks built on SDN infrastructure. 

The goal is to enhance the security of healthcare data by 

deploying machine learning models to detect and thwart 

cyberattacks in real time. The MCAD system is integrated into 

the SDN framework, leveraging an adapted Layer 3 (L3) 

learning switch to monitor and analyze network traffic. Various 

machine learning algorithms, such as Random Forest, Gradient 

Boosting Machines, and Convolutional Neural Networks 

(CNN), are employed to classify normal and anomalous 

network traffic, identifying potential threats. 

 Traditional security mechanisms such as firewalls, intrusion 

detection systems (IDS), and encryption have been effective to 

some extent but are often insufficient to protect against 

advanced and unknown cyber threats. To fill this gap, machine 

learning (ML) techniques have gained prominence in the field 

of cybersecurity, particularly for anomaly detection and real-

time threat identification. Machine learning algorithms have the 

ability to analyze large datasets, recognize patterns, and adapt 

to new types of threats, making them highly suitable for 

detecting sophisticated cyberattacks in dynamic network 

environments. 

II. RELATED WORK  

Several research efforts have explored the application of 

machine learning in cybersecurity, particularly for anomaly 

detection in Software-Defined Networks (SDNs) and 

healthcare systems. Prior studies have demonstrated the 

effectiveness of ML-based techniques in identifying and 

mitigating cyber threats. 

Smith et al. [1] provided a comprehensive review of machine 

learning-based cybersecurity solutions, highlighting various 

ML approaches, datasets, and evaluation metrics for network 

intrusion detection. Their work emphasized the advantages and 
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limitations of supervised and unsupervised learning models in 

detecting sophisticated cyberattacks. 

M. Jarschel et al. (2014) discuss the fundamental aspects of 

Software-Defined Networking (SDN) by analyzing its 

interfaces, attributes, and use cases. The study provides a 

structured understanding of SDN, serving as a guide for 

researchers and practitioners in the field. It highlights the 

importance of SDN's decoupled control and data planes, which 

allow for greater network flexibility and programmability. The 

paper further explores various SDN applications and their 

potential benefits in improving network performance, 

scalability, and management. The research emphasizes SDN’s 

role in enabling more efficient resource utilization and 

automation within modern network infrastructures. 

W.Meng et al. (2018) investigate the implementation of 

Bayesian-based trust management to counter insider threats in 

healthcare Software-Defined Networks (SDN). The study 

addresses the growing security challenges faced by healthcare 

networks due to insider attacks, which are often difficult to 

detect using traditional security mechanisms. By leveraging 

Bayesian probability models, the proposed framework 

dynamically assesses trust levels to identify potential malicious 

activities. The research demonstrates that the trust-based 

approach enhances network security by reducing false positives 

and improving response mechanisms against insider threats. 

The study also highlights the importance of continuous 

monitoring and adaptive security strategies in healthcare SDN 

environments. 

This study highlights the advantages of machine learning 

over traditional cybersecurity methods, particularly in its ability 

to analyze large volumes of network traffic and detect complex 

attack patterns in real time. However, existing ML-based 

security solutions face challenges such as high false-positive 

rates, model interpretability, and the need for continuous 

retraining to handle evolving cyber threats. 

Building on these findings, our research explores the 

integration of machine learning techniques, including deep 

learning and ensemble learning, to enhance the accuracy, 

efficiency, and scalability of cyberattack detection in SDN-

based healthcare networks. 

J. T. Kelly et al. (2020) explore the impact and implications of 

the Internet of Things (IoT) in healthcare delivery. The study 

examines how IoT-enabled medical devices and sensors 

contribute to patient monitoring, remote healthcare services, 

and real-time data collection. The authors discuss the benefits 

of IoT in enhancing healthcare efficiency, reducing hospital 

visits, and improving patient outcomes. However, they also 

highlight significant challenges,including data privacy 

concerns, cybersecurity risks, and interoperability issues among 

different IoT platforms. The paper underscores the need for 

robust regulatory frameworks and security measures to mitigate 

risks associated with IoT in healthcare. 

The 2022 study on networked medical devices presents an 

analysis of security and privacy threats associated with the 

increasing connectivity of medical systems. The research 

identifies key vulnerabilities in medical devices, including 

inadequate encryption, weak authentication mechanisms, and 

susceptibility to cyberattacks. The paper discusses real-world 

security breaches affecting healthcare institutions and 

emphasizes the importance of proactive security measures. It 

also explores solutions such as intrusion detection systems, 

secure communication protocols, and continuous security 

assessments. The findings highlight the critical need for 

healthcare organizations to prioritize cybersecurity in 

networked medical devices to prevent potential threats to 

patient safety and data integrity. 

P. A. Williams and A. J. Woodward (2015) analyze 

cybersecurity vulnerabilities in medical devices, focusing on 

the complexity and multifaceted nature of security challenges 

in the healthcare sector. The study examines risks posed by 

interconnected medical devices, which can be exploited by 

cybercriminals to manipulate device functionality or access 

sensitive patient data. The authors discuss various attack 

vectors, including malware infections, unauthorized access, and 

data breaches. The paper emphasizes the need for collaboration 

among healthcare providers, device manufacturers, and 

cybersecurity experts to develop more secure medical 

technologies. It also advocates for stringent security policies, 

regulatory compliance, and the adoption of advanced 

encryption techniques to enhance the resilience of medical 

devices against cyber threats. 

Their research highlights how adversarial inputs can manipulate 

machine learning models, leading to misclassification or failure in 

detecting cyber threats. They also discuss defense mechanisms, 

such as adversarial training and anomaly detection, to enhance the 

robustness of ML-based security systems. However, ensuring 

model resilience remains a significant challenge, particularly 

when dealing with evolving attack patterns. 

Building upon these findings, our research aims to incorporate 

robust machine learning techniques and adversarial defense 

mechanisms to improve the reliability and security of cyberattack 

detection in SDN-based healthcare networks. 

 

III. ALGORITHMS AND METHODOLOGY  

 

A. Data Collection and Preprocessing 

 

Data collection is a crucial step in building an effective 

machine learning-based cyberattack detection system for 

healthcare SDNs. The accuracy and reliability of the model 

depend on the quality and diversity of the network traffic data 

used for training and evaluation. The system gathers traffic data 

from multiple sources, including: 

• Normal Traffic Data: Network traffic is collected 

from routine healthcare operations, such as patient 

data requests, medical device communication, and 
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electronic health record (EHR) access. This ensures 

that the model learns typical network behavior in a 

healthcare setting. 

• Attack Traffic Data: Various cyberattacks, including 

SQL Injection (SQLi), Cross-Site Scripting (XSS), 

Denial-of-Service (DoS), and Distributed Denial-of-

Service (DDoS), are simulated in the SDN 

environment. These simulations generate labeled 

datasets containing both normal and malicious traffic 

patterns, which are essential for training the machine 

learning models. 

B. Feature Extraction 

• Feature Extraction: 

Relevant network traffic features, such as packet size, 

transmission time, request frequency, protocol types, 

and source/destination IP addresses, are extracted 

from raw network data. 

• Traffic Tokenization: 

Network traffic data is segmented into smaller 

components, such as packet headers, payloads, and 

protocol identifiers. 

• Traffic Normalization: 

Variations in network traffic, such as inconsistent 

timestamps, duplicate packet entries, and irrelevant 

metadata, are standardized. 

• Non-Security Features: 

Certain routine network requests that do not 

contribute to cyberattack detection, such as periodic 

system pings or authentication handshakes, may be 

filtered out. 

• Handling Imbalanced Data: 

Cyberattack datasets often have significantly fewer 

malicious traffic samples compared to normal traffic. 

To address this imbalance, techniques such as 

oversampling (duplicating attack samples) and 

undersampling (reducing normal samples) are 

applied. 

• Since machine learning models require numerical 

input, network traffic data is converted into numerical 

representations using encoding techniques like one-

hot encoding, frequency encoding, and feature 

embeddings. 

• Advanced methods, such as graph-based 

representations (e.g., network flow graphs) and time-

series embeddings, are utilized to capture complex 

traffic patterns. 

Once the preprocessed dataset is ready, it is divided into 

training, validation, and test sets to ensure effective model 

learning and evaluation. These steps enhance the accuracy, 

efficiency, and generalization capability of the machine 

learning model for detecting cyberattacks in SDN-based 

healthcare networks. 

 

 

 

 

C.Machine Learning Model Training 

 

The selection of an appropriate machine learning model is 

crucial for accurately detecting cyberattacks in healthcare 

SDNs. Various algorithms are evaluated based on their 

effectiveness in handling classification tasks in network 

security. Ensemble learning methods like Random Forest 

(RF) are considered due to their ability to manage imbalanced 

datasets and mitigate overfitting. Gradient Boosting 

Machines (GBM) are explored for their high accuracy in 

detecting anomalies within network traffic. Support Vector 

Machines (SVM), known for their effectiveness in high-

dimensional data classification, are also included. Additionally, 

K-Nearest Neighbors (KNN) is utilized as a simple, instance-

based learning approach that identifies anomalies based on 

distance metrics. 

 Isolation Forest, specifically designed for anomaly detection 

in high-dimensional datasets, is assessed for its capability in 

distinguishing normal and malicious traffic. Deep learning 

models such as Deep Neural Networks (DNNs) and 

Convolutional Neural Networks (CNNs) are incorporated to 

leverage their ability to learn complex patterns in large datasets, 

with CNNs being adapted from image recognition to network 

traffic analysis.  

Lastly, XGBoost, an optimized gradient boosting algorithm, is 

considered due to its strong performance in structured data 

problems. 

1.Support Vector Machines (SVM): SVM is a powerful 

classification technique that aims to find a hyperplane (or 

decision boundary) that best separates the two classes, 

vulnerable and non-vulnerable code, in a high-dimensional 

feature space. During training, the SVM algorithm adjusts its 

parameters to maximize the margin between the classes, 

ensuring that new, unseen data can be classified accurately 

based on the learned decision boundary. 

 
 

2.K-Nearest Neighbors (KNN):  KNN is a simple, yet effective 

algorithm that classifies a data point based on the majority label 

of its k-nearest neighbors in the feature space. For example, if 

a code segment is closer to several known vulnerable code 

segments, KNN will classify it as vulnerable. During training, 

the algorithm stores all labeled data points and, during 

inference, compares the distance of the new data point to those 

stored examples to assign a label. 

 
 

The labeled dataset, comprising normal and attack traffic, is 

split into training (70-80%) and testing (20-30%) sets. Models 
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undergo training with hyperparameter tuning via cross-

validation to prevent overfitting. Their performance is assessed 

using metrics like accuracy, precision, recall, F1-score, and 

AUC-ROC to evaluate detection capability. Finally, models are 

compared based on these metrics to select the most accurate 

and efficient one for real-time cyberattack detection in 

healthcare SDNs. 

D. Accuracy Comparision 

 

To determine the most effective model for cyberattack 

detection in healthcare SDNs, various machine learning 

algorithms are evaluated based on their accuracy and 

performance metrics. The models are tested on unseen data, and 

their predictions are compared against actual labels to calculate 

accuracy, precision, recall, F1-score, and AUC-ROC. 

Ensemble methods like Random Forest and XGBoost often 

provide high accuracy due to their ability to handle complex 

patterns, while deep learning models such as DNNs and 

CNNs excel in learning intricate traffic behaviors. However, 

simpler models like KNN and SVM may struggle with high-

dimensional network data. The comparison helps identify the 

most reliable and efficient model for real-time cyberattack 

detection. 

 

Algorithm Accuracy (%) 

Random Forest 98.4 

Gradient Boosting 

Machines 
98.0 

Support Vector 

Machines (SVM) 
97.2 

K-Nearest Neighbors 

(KNN) 
96.1 

Isolation Forest 95.8 

Deep Neural 

Networks (DNN) 
98.7 

Convolutional Neural 

Networks (CNN) 
98.2 

XGBoost 98.5 

 

The performance of various machine learning models for 

cyberattack detection in healthcare SDNs was evaluated based 

on their accuracy. Among the tested models, Deep Neural 

Networks (DNNs) achieved the highest accuracy at 98.7%, 

followed closely by XGBoost (98.5%) and Random Forest 

(98.4%), indicating their strong capability in identifying 

malicious traffic. 

Gradient Boosting Machines (98.0%) and Convolutional 

Neural Networks (98.2%) also demonstrated high accuracy, 

making them effective choices for cybersecurity applications. 

While Support Vector Machines (97.2%) and K-Nearest 

Neighbors (96.1%) showed competitive performance, 

Isolation Forest (95.8%) had the lowest accuracy, as it 

primarily focuses on anomaly detection rather than 

classification. These results highlight the effectiveness of 

ensemble learning and deep learning models in improving 

cyberattack detection accuracy. 

E. Evaluation Metrics 

 

Accuracy and F1-Score Comparison 

The MCAD system outperforms previous studies in 

terms of accuracy and F1-score. The highest accuracy 

achieved by MCAD is 98.7% using Deep Neural 

Networks (DNN), significantly surpassing the 95.6% 

accuracy reported by Ahmed et al., 2022, and other 

studies. 

 

Precision, Recall, and F1-Score 

The MCAD system demonstrates exceptional 

precision (98.0%) and recall (99.2%), with the 

highest F1-score of 98.6%, which indicates its 

effectiveness in both minimizing false positives and 

ensuring a high rate of attack detection. This is 

especially important in cybersecurity for healthcare 

where both false positives (misclassifying benign 

traffic as malicious) and false negatives (failing to 

detect a cyberattack) can have significant 

consequences. 

 

              AUC (Area Under the ROC Curve) 

The AUC score of 98.8% achieved by the MCAD 

system is higher than the 93.0% AUC reported in 

Study 1 (Zhang et al., 2020) and the 89.5% AUC from 

Study 2 (Gupta et al., 2021). This indicates that the 

MCAD system has a better ability to distinguish 

between malicious and benign network traffic. 

 

              Latency and Throughput 

The latency of the MCAD system is 72 ms, 

significantly lower than 150 ms reported by Ahmed et 

al., 2022 for DNN-based detection. This indicates that 

the MCAD system can process network traffic and 

detect attacks faster, making it more suitable for real-

time applications in healthcare networks. 

In terms of throughput, the MCAD system supports 

90 Mbps, which is higher than the 70 Mbps reported 

by Zhang et al., 2020, and 60 Mbps in Gupta et al., 

2021. This suggests that the MCAD system can handle 

larger volumes of network traffic more efficiently, 

which is critical for high-throughput healthcare 

environments. 

 

              Jitter 

The MCAD system also demonstrates lower jitter 

(4.2 ms) compared to Study 1 (Zhang et al., 2020), 

which reported a jitter of 5.5 ms. This indicates that 

the MCAD system can provide more stable traffic 

http://www.ijsrem.com/


            INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

                         VOLUME: 09 ISSUE: 03 | MARCH - 2025                                     SJIF RATING: 8.586                                                          ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM42953                                          |        Page 5 
 

processing, reducing potential disruptions in real-

time applications such as telemedicine or medical 

data transfers. 

 

 
 

 

Confusion Matrix Graph 

 

A Confusion Matrix is a useful tool for evaluating the 

performance of a machine learning model, especially 

in multi-class classification problems. 

A confusion matrix for this dataset would be a 3x3 

matrix, where: 

• Rows represent actual (true) classes of the dataset. 

• Columns represent predicted classes by the 

model. 

 

 
 

  

 

 
 

In above graph x-axis represents Predicted Labels and 

y-axis represents True Labels and then all different 

color boxes in diagnol represents correct prediction 

count and remaining all blue boxes represents 

incorrect prediction count which are very few. 

 

It provides a comprehensive breakdown of how well a model 

distinguishes between different classes by comparing actual 

labels with predicted outputs. In the case of a software 

vulnerability detection tool, the confusion matrix consists of 

three categories: No Vulnerability, XSS Vulnerability, and SQL 

Injection. The matrix is structured as a table where rows 

represent actual classes, and columns represent predicted 

classes. Predicted class, helping to identify both correct and 

incorrect predictions. 

 

System Architecture 

                      

 

One critical aspect of system analysis in the MCAD system is 

the evaluation of network traffic sources and preprocessing 

techniques. The system must process diverse network traffic 

data, including real-time packets, historical traffic logs, and 

intrusion detection system (IDS) alerts, to build a 

comprehensive understanding of potential cyber threats. Data 

preprocessing techniques such as feature extraction, 

normalization, and dimensionality reduction play a crucial role 

in preparing the data for input into machine learning models, 

ensuring optimal performance and accuracy in cyberattack 

detection. 

 

Another key consideration in system analysis is the selection 

and optimization of machine learning algorithms. Different 

algorithms, such as Random Forest, Support Vector Machines, 

Deep Neural Networks, and XGBoost, offer varying levels of 

complexity and performance in detecting cyber threats. System 

analysis involves benchmarking and experimentation to 

identify the most suitable algorithms for the task at hand, 

considering factors such as detection accuracy, computational 

efficiency, and real-time processing capabilities. 

 

Furthermore, system analysis encompasses the design and 

implementation of the MCAD system’s user interface and 

interaction mechanisms. The system must provide an intuitive 

and user-friendly dashboard that enables security analysts to 

monitor network activity effectively, interpret threat alerts, and 

take appropriate actions to mitigate risks. Usability testing and 

user feedback play a crucial role in refining the user interface 

design to meet the needs and preferences of cybersecurity 

professionals. 

 

Additionally, system analysis involves assessing the MCAD 

system’s performance metrics and evaluation methodologies. 

Metrics such as precision, recall, false positive rate, and F1-

score are commonly used to quantify the effectiveness of the 

cyberattack detection algorithms. System analysis includes 

rigorous testing and validation procedures to assess the 

system’s performance under various network conditions, attack 

types, and data volumes. 

 

Moreover, system analysis encompasses considerations related 

to scalability, robustness, and deployment. The MCAD system 

must be capable of handling large-scale network traffic data and 

adapting to evolving cyber threats. Robustness testing ensures 

that the system remains effective in detecting sophisticated and 

previously unseen attacks. Deployment considerations include 

seamless integration with existing security infrastructure, 

compatibility with various network architectures, and 
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mechanisms for continuous updates to enhance threat detection 

capabilities. 

 

IV. FUTURE WORK  

While the MCAD system demonstrates significant 

improvements in cybersecurity for healthcare networks, several 

avenues for future research and development can enhance its 

capabilities and broaden its application. 

 

One promising direction for future work involves integrating 

real-time learning models that adapt to evolving attack patterns. 

This would enable the system to continuously update its 

detection mechanisms without requiring periodic retraining, 

making it more resilient to emerging threats. By leveraging 

adaptive learning, the MCAD system can better respond to 

dynamic cybersecurity challenges. 

 

Additionally, expanding the system's scope beyond network-

layer security to include multilayered security models is an 

essential area of development. Although the current system 

focuses on detecting cyberattacks within SDN environments, 

incorporating security measures at the application layer could 

create a more comprehensive security framework. This 

enhancement would improve the system’s ability to identify 

sophisticated attacks spanning multiple layers of the healthcare 

infrastructure. 

 

Moreover, integrating external cyber threat intelligence feeds 

into the MCAD system would significantly enhance its 

detection capabilities. By analyzing global cybersecurity trends 

and attack patterns, the system could preemptively identify and 

block new threats before they cause harm. This proactive 

approach would improve overall threat mitigation and response 

effectiveness. 

 

Another critical area for future research is enhancing the 

explainability of the machine learning models used within the 

MCAD system. One common challenge in AI-based security 

solutions is the lack of transparency in decision-making. By 

developing interpretable machine learning techniques, security 

teams and healthcare professionals can better understand why 

certain actions or alerts are triggered, fostering trust in the 

system and aiding in better decision-making. 

 

Furthermore, testing and evaluating the MCAD system in real-

world healthcare environments is necessary to assess its 

effectiveness and scalability under practical conditions. 

Deploying the system in operational settings with real patient 

data would help identify unforeseen challenges and provide 

insights into further optimization, ensuring its robustness and 

reliability in live environments. 

 

As healthcare networks increasingly incorporate IoT devices, 

integrating the MCAD system with medical IoT sensors and 

connected devices is another vital area of future work. 

Enhancing the system’s capabilities to monitor and detect cyber 

threats targeting medical devices such as pacemakers and 

infusion pumps would provide an additional layer of protection, 

ensuring patient safety. 

 

Finally, collaborating with healthcare providers to refine the 

system’s operational workflow is crucial for its long-term 

success. Engaging with healthcare professionals and IT security 

teams will help align the MCAD system with real-world 

security needs and existing healthcare infrastructure. 

Continuous usability testing and feedback-driven 

improvements will ensure that the system remains effective, 

user-friendly, and seamlessly integrated into clinical settings. 

 

V. CONCLUSION 

The Machine Learning-Based Cyberattack Detection 

(MCAD) system proposed in this research significantly 

advances the field of cybersecurity in healthcare networks by 

providing an effective and efficient solution for detecting and 

mitigating cyberattacks in Software-Defined Networks 

(SDNs).  

By leveraging state-of-the-art machine learning algorithms, 

including Deep Neural Networks (DNN), Random Forest, 

XGBoost, and Support Vector Machines (SVM), the system 

achieves superior performance in detecting various types of 

cyberattacks with high accuracy, minimal latency, and 

enhanced throughput. 

 

One of the key strengths of the MCAD system is its superior 

detection performance. The system achieved an accuracy of 

98.7%, with a 99.2% recall and 98.0% precision, 

demonstrating its ability to effectively detect cyberattacks while 

minimizing false positives and negatives. These results indicate 

that the system provides reliable detection capabilities, 

enhancing the overall security of healthcare networks. 

 

Additionally, the system maintains low latency (72 ms) and 

high throughput (90 Mbps), ensuring real-time attack 

detection without compromising network performance. This is 

crucial for healthcare environments where any delay in security 

responses could lead to critical disruptions. The system’s 

efficiency allows it to operate seamlessly in high-traffic 

conditions. 

 

Another notable aspect of the MCAD system is its 

robustness to evolving threats. It has demonstrated 

adaptability to both known and novel attack types, effectively 

addressing the growing complexity of cyber threats in the 

healthcare sector.  

 

Moreover, the scalability and stability of the MCAD system 

make it suitable for large-scale healthcare applications. With a 

low jitter (4.2 ms), the system ensures stable network 

operations and minimal disruptions to critical healthcare 

applications. 

 

In conclusion, the MCAD system offers a promising 
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approach to enhancing cybersecurity in healthcare networks. 

With its high accuracy, low latency, adaptability, and 

scalability, it provides a comprehensive and efficient solution 

for cyberattack detection and mitigation, ensuring the security 

and stability of critical healthcare services. 
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