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Abstract- This research proposes a hybrid deep learning 

model for automated rice leaf disease detection, addressing the 

limitations of traditional methods. A pre-trained ResNet50V2 

CNN is combined with a custom fully connected network, 

enhanced with batch normalization, dropout, and L2 

regularization. Trained on 15,023 images from nine disease 

classes and healthy leaves, the model utilizes extensive data 

augmentation techniques such as rotation, shifts, zoom, and 

flipping to improve robustness. The model achieved 99.53% 

accuracy, surpassing existing benchmarks, and provides a 

reliable system for timely disease detection, enhancing rice crop 

management and yield. 

Keywords- Hybrid deep learning model, Rice leaf disease 

detection, Fully connected layer, Data augmentation, Dropout, 
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I. INTRODUCTION 

Addressing the issues of feeding a growing global 
population requires innovative strategies, particularly in the 
agricultural sector, where climate variability and resource 
constraints pose increasing threats. Among these challenges, 
plant diseases are a significant concern, as they directly 
contribute to reduced crop yields, economic losses, and 
disruptions in food supply chains (FAO, 2022). Identifying 
and managing these diseases early is vital for mitigating their 
impact and ensuring stable agricultural productivity (Smith et 
al., 2021). 

Rice is a cornerstone of global food security, serving 
as a primary dietary staple for billions worldwide. However, 
rice crops are highly susceptible to a range of diseases, which 
can severely impact both yield and the livelihoods of farmers 
(IRRI, 2021). Conventional methods for detecting rice 
diseases often involve manual visual assessments conducted 
by agricultural specialists. Although these approaches have 
been widely practiced, they are frequently constrained by 
their reliance on human expertise, making them time- 
intensive, labor-heavy, and prone to errors that can delay 
critical interventions (John et al., 2020). 

This study represents a novel deep learning 
framework to automate the detection of rice leaf diseases, 
offering a faster, more accurate alternative to conventional 
methods. The system leverages advanced machine learning 
techniques to enhance disease identification, enabling timely 
interventions to minimize crop damage and improve farm 
management. The paper highlights the urgent need for 
advanced methods to combat the devastating impact of rice 
diseases, proposing a hybrid deep learning approach that 
leverages CNNs and machine learning algorithms for 
accurate, scalable, and efficient rice disease detection. 

1.1 Global Significance of Rice Production: 

 

Rice cultivation is a cornerstone of global food security 

and economic stability, particularly in Asia, which accounts 

greater than 90% of “global rice production and 

consumption”. In 2022, “global rice production” was around 

512.1 million metric tons, with China and India contributing 

over half of the total output (FAO, 2022). Other key 

producers, including Indonesia, Vietnam, and Bangladesh, 

play significant roles in meeting global rice demand. 

Meanwhile, regions such as Sub-Saharan Africa are 

increasingly investing in rice cultivation to address growing 

domestic consumption needs (FAO, 2022). Rice's importance 

in global nutrition is evident, as it provides approximately 

20% of the world’s caloric intake, making it an essential 

staple food for billions (IRRI, 2021, Section 2.3). 

 

1.2 The Promise of Deep Learning in Agriculture: 

 

The application of deep learning (DL) techniques has 

transformed many domains, including agriculture, by 

addressing long-standing challenges with exceptional 

accuracy and efficiency. In the context of rice disease 

detection, convolutional neural networks (CNNs) a 

fundamental component of DL stand out as a strong tool. 

Their capacity to examine and uncover complex patterns 

from image data exceeds traditional diagnostic methods, 

enabling exact recognition and organization of plant diseases. 

 

One of the primary advantages of CNNs is their ability 

for automated image analysis, which addresses the failures of 

conventional approaches that rely on manual observation. 

Manual methods often demand immense time and expertise, 

making them impractical for large-scale farming operations. 

CNNs, however, can smoothly process vast datasets to 

identify diseases such as rice blast and bacterial blight by 

recognizing complex visual patterns in crop images 

(Kamilaris & Prenafeta-Boldú, 2018). This automated 

approach not only reduces human error but also quickens the 

diagnostic process, making it highly flexible for modern 

agricultural practices. 

 
The combination of deep learning into precision 

agriculture further enhances its value. By combining CNNs 
with technologies like drones and remote sensing, high- 
resolution images of rice fields can be taken and analyzed in 
real-time. This integration facilitates comprehensive 
monitoring of crop health across vast areas, allowing for 
timely detection and action to prevent disease outbreaks. For 
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example, (Zhao et al., 2020) stress how such scalability 
ensures proactive management, minimizing crop losses and 
improving yield stability. 

Beyond automation and availability, CNNs also excel in 
early disease detection. Unlike traditional methods that 
depend on visible symptoms, CNNs can identify delicate 
physiological changes in crops before the symptoms become 
visible. This capability enables farmers to take preventative 
measures, to reduce the impact of diseases on productivity 
and promoting sustainable farming practices (Fawakherji et 
al., 2019). Early detection not only reduces yield losses but 
also matches with global efforts toward sustainable 
agricultural development. 

 

1.3 Research Contribution and Limitations: 

 

This research introduces a novel deep learning based 

framework for programming “rice leaf disease detection”. Its 

key contributions are outlined below: 

 

1) Innovation of the High Accuracy Deep Learning 

Model: Using a fine-tuned ResNet50V2 architecture which 

is pre-trained on the ImageNet dataset, the framework 

obtained an outstanding model accuracy of 99.53% on a 

dataset containing 15,023 described rice leaf images. The 

model was evaluated across ten disease classes, achieving 

precision, recall, and F1-scores above 0.99, which highlights 

its robustness in accurately detecting a wide variety of rice 

diseases. Such performance exceeds traditional methods, 

which often struggle with large datasets and faint disease 

symptoms (Kamilaris & Prenafeta-Boldú, 2018). 

 

2) Novel Hybrid Approach: The architecture introduces 

a distinct hybrid approach, integrating state of the art deep 

learning techniques with task-specific adaptations: 

 

a) Selective Fine-Tuning: The final 50 layers of 

ResNet50V2 were selectively fine-tuned while freezing 

earlier layers, allowing the model to adapt to the specific 

features of rice diseases while retaining generalized features 

from the pre-trained weights. 

 

b) Custom Classification Layers: The model includes 

Global Average Pooling (GAP) for efficient dimensionality 

reduction, followed by two dense layers (512 and 256 

neurons) optimized with L2 regularization and Dropout (0.5 

and 0.4, respectively). This rare design prevents overfitting 

and ensures stable training on a domain-specific dataset. 

 

c) Domain-Specific Tailoring: Unlike general CNN- 

based methods, this framework was designed to address 

challenges in rice leaf disease detection, such as faint 

symptom variations and class imbalances, using 

augmentation techniques and hyperparameter tuning. 

 

3) Comparison with State of the Art Methods: The offered 

framework shows a significant improvement over existing 

techniques in rice disease classification. For example, 

previous methods reported achieved an accuracy of 95.63% 

(Liu et al., 2019), while the current model achieved 99.53%, 

highlighting the impact of domain specific fine-tuning and 

architectural customizations. 

 

Limitations: 

 

While this model shows exceptional accuracy in rice leaf 

disease classification, there are a few limitations to consider: 

 

1) Generalization to Other Rice Varieties: The design was 

primarily trained on a specific dataset of rice varieties, and its 

performance may vary when applied to other varieties with 

different disease signs. Increasing the dataset to include more 

rice varieties would help improve the model's generalizability 

across vast agricultural environments (Kamilaris & 

Prenafeta-Boldú, 2018). 

 

2) Dataset Bias and Class Imbalance: Although the dataset 

was carefully arranged, it may still show some level of bias 

in terms of the representation of diseases or images. Certain 

disease classes may be overrepresented or underrepresented, 

likely affecting the model's performance in real-world 

applications where data distribution may differ (Liu et al., 

2019). 

 

3) Need for Additional Validation: While the model achieved 

high accuracy on the training dataset, additional validation on 

external datasets and in-field trials would further strengthen 

its robustness and prove its effectiveness in real-world 

agricultural settings (Liu et al., 2019). 

 

II. LITERATURE REVIEW 

 

2.1 Existing Plant Disease Detection Methods: 

 
“Plant disease detection methods have grown from basic 

image processing techniques to advanced deep learning 
models”. This section categorizes these methods and analyzes 
their principles, applications, and limitations, providing a 
complete review of their strengths and weaknesses. 

 

2.1.1 Traditional Image Processing Techniques: 

Traditional processing images depend on handmade 
features to detect visible symptoms of plant diseases. These 
methods primarily analyze image properties such as color, 
texture, and shape. 

 
1) Image Preprocessing: Noise reduction methods like 
Gaussian filtering enhance image quality by removing 
irrelevant details, while histogram equalization improves 
contrast, aiding feature visibility. 

 
2) Feature Extraction: Algorithms like Gabor filters analyze 
spatial frequency components to detect texture variations 
often connected with diseases. Similarly, Local Binary 
Patterns (LBP) capture micro-textures, such as lesion patterns 
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or discolorations, making them effective for identifying 
specific disease characteristics. 

 
3) Classification: Extracted features are used in classifiers 
such as Support Vector Machines (SVM) and k-Nearest 
Neighbours (k-NN). For example, SVM is effective for 
classifying diseases like leaf spots or rusts based on their 
unique textural properties. 

 
Integrated Limitations: While these techniques offer 

simplicity and computational effectiveness, they lack 
robustness under variable environmental conditions (e.g., 
lighting or shadows). Their dependence on handmade features 
limits adaptability and generalizability across diverse datasets, 
especially when diseases display in faint or atypical ways 
(Barbedo, 2016). 

 

2.1.2 Machine Learning-Based Methods: 

Machine learning methods, particularly deep learning, 
have redefined plant disease detection by processing feature 
extraction and improving accuracy. These methods are widely 
divided into shallow learning approaches and deep learning 
architectures. 

 

Shallow Learning Approaches: 

“Shallow learning techniques, such as Decision Trees, 
Random Forests, and SVM, require predefined features for 
training”. For example, texture descriptors combined with 
Random Forests have been used to detect wheat powdery 
mildew with moderate success. However, these methods are 
restricated by their faith on handmade features, limiting their 
scalability to larger and more complex datasets (Zhang et al., 
2015). 

 

Deep Learning Approaches: 

Deep learning models, specifically Convolutional Neural 
Networks (CNNs), have achieved state of the art results by 
learning hierarchical features directly from raw image data. 

 

1) Specific Architectures: 

AlexNet: Among the first CNNs applied to plant disease 
detection, AlexNet provided a foundational architecture for 
learning low-to-high-level image features. 

ResNet: Introduced residual connections to address 
vanishing gradients, enabling deeper networks to excel in 
disease detection tasks. 

Inception: Utilizes parallel convolutional paths of varying 
filter sizes, making it adept at capturing multi-scale disease 
patterns. 

For example, (Ferentinos, 2018) used these models to 
achieve over 98% accuracy across 38 plant disease classes 
using the Plant Village dataset. 

2) Hybrid Models: Recent approaches combine CNNs 
with other models like Long Short-Term Memory (LSTM) 
networks. Hybrid CNN-LSTM models capture spatial and 
temporal features, enabling disease monitoring over time. For 
example, Zhang et al. (2021) shown enhanced accuracy in 
tracking rice crop diseases using such hybrid architectures. 

 

2.2 Rice Disease Detection Studies: 

 

Research on rice disease detection has a wide range of 

methods, from traditionally processing images to advanced 

models of deep learning. Early approaches depended on 

handmade features such as color, texture, and shape to 

identify disease symptoms. For example, methods like 

thresholding and segmentation were used to isolate diseased 

regions in rice leaf images, followed by classifiers like k-NN 

or Support Vector Machines (SVM) to classify the type of 

disease (Lu et al., 2017). While these methods were 

computationally efficient, they often lacked robustness in 

real-world scenarios due to difference in lighting, 

background noise, and the position of leaf. 

 

III. METHODOLOGY 

 

3.1 Dataset Acquisition and Preparation: 

 

This section tells the dataset used for training and 

evaluation, as well as the preprocessing steps started to 

confirm the data's quality and diversity. 

 

Dataset Overview: 

The dataset which I used, has a total of 18,445 labeled 

images, which is scattered across 10 categories, including 

bacterial leaf blight, brown spot, healthy leaves, leaf blast, 

leaf scald, narrow brown spot, neck blast, rice hispa, sheath 

blight, and tungro. The data is separated between two main 

groups: one for training and another for testing. 

• Training Data: Composed of 15,023 images, which 

were again split into training and validation subsets. 

• Testing Data: Comprises 3,422 images, reserved 

solely for final model evaluation. 

Each image was resized to a consistent dimension of 256 × 

256 pixels to ensure sameness and suitability with the input 

requirements of convolutional neural networks (He et al., 

2016). 

 

Data Augmentation: 

To reduce the risks of overfitting and improve the model's 

ability to generalize, many augmentation techniques were 

applied to the training dataset using a systematic approach. 

These techniques include: 

• Rotation: Randomly rotating images up to 20 

degrees to show different viewing angles. 

• Translation: Shifting images horizontally and 

vertically by up to 20% of their dimensions to model 

positional variations. 

http://www.ijsrem.com/
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• Zooming: Applying random zoom within ±15% to 

match differences in capture distance. 

• Shearing: Applying transformations with a shear 

range of ±15% in order to reduce angular 

distortions. 

• Flipping: Horizontally flipping images to consider 

for mirrored scenarios. 

• Brightness Adjustments: Adjusting brightness 

within a range of 80% to 120% to copy changing 

lighting conditions. 

• Boundary Filling: Pixels that was outside the 

transformed image boundaries were filled using the 

"nearest neighbor" method. 

These strategies match with best practices in deep learning- 

based image classification, as discussed in prior research 

(Brahimi et al., 2017; Chollet, 2017). 

 
Dataset Splitting: 

The training dataset was divided into two subsets: 

• Training Set: Consisted of 12,020 images for model 

learning. 

• Validation Set: Included 3,003 images, which is 

used for fine-tuning model parameters and 

evaluating performance during training. 

The remaining 3,422 images is in the test set which were 

reserved for unbiased performance evaluation. A stratified 

splitting approach ensure all classes evenly represent across 

subsets, which minimize the potential bias (Chollet, 2017). 

 

3.2 Proposed Hybrid Deep Learning Model: 

 

This section describe the structure of the proposed hybrid 

deep learning model: 

 
Base Model: ResNet50V2: 

The ResNet50V2 architecture was chosen as the 

backbone CNN due to its proven effectiveness in image 

recognition tasks and its power to handle vanishing gradient 

issues in deep networks. ResNet50V2 uses residual 

connections, which enables deeper architectures by allowing 

the network to learn identity mappings. This characteristic 

ensures stable training and improved convergence (He et al., 

2016). 

• Pre-trained Weights: The model was started with 

weights trained on the ImageNet dataset to utilize its 

learned features for general object recognition. 

• Layer Fine-tuning: The final 50 layers of 

ResNet50V2 were set to trainable to adjust the 

model to domain-specific patterns in rice leaf 

diseases. Earlier layers, which capture more general 

features, were frozen to keep pre-trained knowledge. 

Customized ANN Component: 

The feature extraction capability of ResNet50V2 was 

complemented with a fully connected ANN module to 

classify the extracted features into 10 disease categories. This 

module was designed to prevent overfitting while ensuring 

robust classification. The key layers and hyperparameters of 

the ANN component are as follows: 

1. Batch Normalization: Applied after the base model 

in order to normalize the extracted features and 

accelerate convergence. 

2. Global Average Pooling (GAP): “Replaced the 

traditional layer which is fully connected layer, so to 

reduce the spatial dimensions of feature maps while 

keeping essential global features.” 

3. Dense Layers: 

o “The first dense layer comprises 512 units, 
using the ReLU activation function, and 
includes L2 regularization with a factor of 

0.001. This layer captures complex non- 

linear patterns in the feature maps.” 

o “A second dense layer with 256 units and 
ReLU activation refines the feature 
representation. L2 regularization with a 
smaller factor of 0.0005 prevents 
overfitting.” 

4. Dropout Layers: “Added after each dense layer, with 

dropout rates of 0.5 and 0.4, respectively, to further 

reduce overfitting.” 

5. Output Layer: “A final dense layer with 10 units 

(corresponding to the number of classes) and a 

softmax activation function outputs the class 

probabilities.” 

Model Architecture Flow: 

Below is a simplified overview of the architecture: 

1. Input Layer: It accepts images of size 256 × 256 × 

3. 

2. Pre-trained ResNet50V2: Serves as the feature 

extractor, with the last 50 layers trainable. 
3. Batch Normalization. 

4. Global Average Pooling. 

5. Fully Connected Layers: 

o Dense (512 units, ReLU, L2 regularization, 
Batch Normalization+Dropout 0.5). 

o Dense (256 units, ReLU, L2 regularization, 
Batch Normalization+Dropout 0.4). 

6. Output Layer: Dense (10 units, Softmax). 

 

Diagram Of The Model: 
 

http://www.ijsrem.com/
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3.3 Model Training and Hyperparameter Optimization: 

 

The model training process was created with care to 

achieve optimal performance and minimize overfitting. 

Below are the detailed steps: 

 

Optimizer: The Adam optimizer was used due to its 

adaptive learning rate capabilities and efficiency in handling 

sparse gradients. It combines the benefits of RMSProp and 

momentum optimization, making it a robust choice for deep 

learning models. A learning rate of 1×10−41 \times 10^{- 

4}1×10−4 was used, for balancing faster convergence and 

avoiding overshooting local minima. The Adam optimizer is 

widely chosen in machine learning research, as described by 

(Kingma and Ba, 2015). 

 

Loss Function: The “sparse categorical cross-entropy 

loss function” was selected for the multi-class classification 

task. This loss function is particularly right for integer- 

encoded target labels and correct the model based on the 

predicted probabilities relative to the ground truth. 

 

Regularization Techniques: Regularization strategies 

were implemented to reduce overfitting: 

 
o Dropout: Dropout layers were introduced 

o randomly disable neurons during 
training. Specifically, dropout rates of 0.5 
and 0.4 were applied to “dense layers with 
512 and 256 units”, respectively. 

o Batch Normalization: Batch normalization 

was included in the dense layers to 
normalize the layer inputs and stabilize 

training by reducing internal covariate 

shift. This approach is known to speed up 
convergence and improve generalization, 

as highlighted by Ioffe and Szegedy 

(2015). 

 

Callbacks: Various callbacks were used to enhance the 

training process: 

classification accuracy for neglected classes, as suggested by 

Buda et al. (2018). 

 

3.4 Performance Metrics: 

 

The proposed model shows exceptional performance, 

achieving a “test accuracy of 99.53% and a test loss of 

0.1674. The high precision, recall, and F1-scores across all 

classes indicate the model's robustness in correctly 

classifying rice diseases”. The confusion matrix analysis 

revealed small misclassifications, reflecting the model's 

reliability for practical applications in agricultural 

environments. 

IV. RESULTS 

4.1 Training and validation curves: 

 

“The training and validation curves illustrate the model's 

performance during the training phase over 30 epochs.” 

Accuracy Curve: 

 

Demonstrates the improvement in classification accuracy 

as the model learns to generalize over successive epochs in 

Fig. 1. 

 

o “Early Stopping: Training was stopped if 
validation loss did not improve for 10 
consecutive epochs, and the best weights 
were restored to prevent overfitting.” 

o “Learning Rate Adjustment: The learning 
rate was reduced by a factor of 0.5 if 
validation loss stabilized for 5 epochs, 
enabling better fine-tuning in later stages.” 

o “Model Checkpointing: The model with 
the highest validation accuracy during 

 

 

 

 

 

 

 

 

Loss Curve: 

 

 

 

 

 

 

Fig. 1 

training was saved for evaluation and 

deployment.” 

 

Class Imbalance Handling: Class imbalance was tackled 

by calculating class weights. These weights assigned higher 

penalties to minority classes, ensuring the model did not favor 

majority classes during training. This approach improves 

Shows the decrease in the “categorical cross-entropy 

loss” over epochs, with validation loss stabilizing at a lower 

value, signifying effective optimization in Fig. 2. 
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Fig. 4 

 

4.4 Comparative Analysis With Benchmark Models Or 

Previous Studies: 

 

The performance of the suggested hybrid deep learning 

model was compared against benchmark models and prior 

studies in rice disease detection. Key findings include: 

Accuracy: The proposed model exceeded standard 

architectures such as plain CNNs and standalone transfer 

learning models by achieving an accuracy of 99.53%, 

surpassing benchmarks like traditional ResNet, VGG, and 

Inception architectures reported in earlier studies (Brahimi et 

al., 2017). 
 

 

 

 

 

4.2 Classification report: 

 

Fig. 2 

F1-Score: The model achieved a macro-average F1-score 

of 1.00, indicating exceptional performance across all 

classes. This shows its ability to balance precision and recall, 

even for minority classes. The F1-score is specially valuable 

for imbalanced datasets, as highlighted by Sokolova and 

Lapalme (2009). 

The classification report includes “precision, recall, F1- 

score, support, accuracy, macro average, and weighted 

average”, providing a comprehensive evaluation of the 

model's performance in Fig. 3. 

 

Fig. 3 

 

4.3 Testing Accuracy And Testing Loss: 

 

“Testing accuracy measures the correct predictions made 

by the model on the test dataset and Testing loss measures the 

difference between the predicted outputs and the actual 

outputs.” (In Fig. 4) 

 

Efficiency: By combining dropout, batch normalization, 

and fine-tuning of the ResNet50V2 backbone, the model 

shows faster convergence and better generalization compared 

to prior studies, which often required more complex 

architectures (Kamal et al., 2019). 

 

V. CONCLUSION 
 

 

5.1 Summary of Findings and Contributions: 

 

This research has shown the effectiveness of a “hybrid 

deep learning model” in addressing the issues of rice disease 

detection. By achieving a “test accuracy of 99.53%”, the 

model has created itself as a strong tool for classifying 

multiple rice disease categories. Key contributions of this 

research include: 

 

Hybrid Architecture: The model combined the power of 

transfer learning with ResNet50V2 and fully connected dense 

layers. ResNet50V2 was used as a feature extractor to utilize 

its pre-trained knowledge on large-scale image datasets, 

while the dense layers fine-tuned the extracted features for 

precise classification (He et al., 2016). 

 

Handling Dataset Challenges: The study used “data 

augmentation techniques, such as rotation, flipping, and 

brightness adjustments”, to artificially expand the dataset. 

These tactics handled the variability in real-world agricultural 

scenarios, so to enhance the model’s ability to generalize 

(Shorten & Khoshgoftaar, 2019). 

http://www.ijsrem.com/
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Class Imbalance Mitigation: Class weighting was utilized 

to oppose imbalances in the dataset. This ensured that the 

model treated minority classes fairly, which improves the 

performance across all categories (Buda et al., 2018). 

 

Performance Comparison: The model exceeded previous 

studies, which was reported lower accuracies of (85–95%), 

focusing on the benefits of integrating transfer learning and 

fine-tuned architectures (Brahimi et al., 2017; Kamal et al., 

2019). 

 

5.2 Significance of the Work: 

 

The result of this research are highly important in the 

context of improving agricultural practices, particularly for 

rice farming. Accurate and timely disease detection is very 

crucial to minimize yield loss and reduce the financial burden 

on farmers. The proposed model provides a highly 

dependable and automated solution for disease identification, 

reducing dependency on manual inspection and expert 

assistance. Moreover, the merging of artificial intelligence in 

agriculture marks a significant step towards sustainable and 

technology-driven farming practices (Brahimi et al., 2017; 

Goodfellow et al., 2016). 

 

5.3 Selecting Future Directions: 

 

Dataset Expansion: Future work could focus on creating 

larger and more mixed datasets, including different 

environmental conditions, geographic regions, and disease 

stages. This would further increase the model's 

generalizability and robustness. Collaborations with 

agricultural institutes and field studies could help collect real- 

world data, adding practical value to the research (Shorten & 

Khoshgoftaar, 2019). 

 

Improving Model Robustness: To make the model more 

tough, advanced techniques such as adversarial training, 

noise injection, and domain adaptation could be used. These 

methods would enable the model to handle unseen scenarios, 

such as different lighting conditions, camera angles, or mixed 

infections (Szegedy et al., 2015). 

Practical Applications for Farmers: Converting the model 

into a practical tool, such as a mobile application or IoT 

device, would provide farmers with an accessible and real- 

time disease detection system. Such tools could merge with 

crop management systems, providing usable insights and 

recommendations. These applications would connect the gap 

between cutting-edge technology and on-the-ground 

agricultural practices, encouraging broad utilization (Brahimi 

et al., 2017). 

 

Cost-Effective Solutions: Future studies could explore 

lightweight model architectures to make implementation 

possible on devices which has a finite computational 

resource, such as smartphones or edge devices. This would 

ensure accessibility and affordability for farmers, especially 

in resource-constrained regions (Howard et al., 2017). 
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