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Abstract – Unmanned  Aerial Vehicles (UAVs) are 

advanced remote sensing tools that have the potential to 

revolutionize variety applications,including environmental 

monitoring, urban planning, agriculture, and disaster 

management. These airborne sensors provide high 

resolution, real-time data used for traditional remote 

sensing methods often struggle to capture, particularly in 

inaccessible or large-scale areas. To address challenges in 

misclassification in complex urban aerial imagery, we 

proposed a super-pixel-aided multiscale Convolutional 

Neural Network (CNN) architecture.  

This approach integrates an attention mechanism, and the 

SLICO algorithm. The attention mechanism enhances the 

model’s focus on crucial image regions, optimizing feature 

extraction. The SLICO algorithm generates super-pixels to 

reduce computational costs and refine boundary detection. 

This integrated approach effectively addresses scale 

variance in aerial imagery, resulting in more precise 

segmentation. We evaluated the model using UAV-based 

dataset: the Urban Drone Dataset (UDD). The proposed 

model significantly outperformed several state-of-the-art 

methods, achieving impressive Intersection over Union 

(IoU) scores on dataset.In recent years, unmanned aerial 

vehicles (UAVs) have gained significant attention across a 

wide range of domains, including urban planning, precision 

agriculture, disaster response, environmental monitoring, 

and infrastructure surveillance. Their ability to capture 

high- resolution images at low operational costs, coupled 

with flexible deployment and maneuverability, makes them 

a powerful tool in the field of remote sensing. The wealth 

of visual data collected by UAVs provides valuable 

insights for analysis, yet this same abundance introduces 

unique computational and methodological challenges. 

Keywords : Multiscale Convolutional Neural Network 

(CNN), SLICO Algorithm, Unmanned Aerial Vehicles 

(UAVs), Attention Mechanism, Urban Drone Dataset 

(UDD). 

1.INTRODUCTION  

 

Unmanned Aerial Vehicles (UAVs) have emerged as vital 

tools in remote sensing and aerial surveillance, offering 

high- resolution imagery for a wide range of applications 

including urban planning, environmental monitoring, 

disaster management, and precision agriculture. A 

fundamental step in extracting actionable information from 

UAV imagery is semantic segmentation, the process of 

assigning a class label to each pixel in an image. This fine-

grained, pixel-level classification is crucial for detailed 

scene understanding,enabling automated recognition  

and   localization,various land cover types, structures, or 

objects. 

UAV- captured imagery presents unique challenges that 

distinguish it from traditional ground-based or satellite 

image segmentation tasks. UAV imagery is characterized 

by a high degree of scene complexity, often involving 
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overlapping objects (e.g., buildings, vehicles, vegetation), 

scale variation due to dynamic flight altitudes, occlusions, 

and inconsistent Despite its significance, semantic 

segmentation of illumination stemming from 

environmental factors and camera angles. These 

conditions make traditional image segmentation 

techniques—such as thresholding, region growing, and 

edge detection—largely inadequate. These conventional 

approaches typically rely on low-level image features and 

predefined heuristics, making them highly sensitive to 

noise, scale, and contextual variation.In recent years, deep 

learning has revolutionized semantic segmentation 

through the use of Convolutional Neural Networks 

(CNNs), which learn hierarchical feature representations 

directly from the data. CNNs have demonstrated 

remarkable performance on benchmark datasets, owing to 

their ability to capture both spatial and semantic 

information across multiple layers. 

 However, when applied to UAV imagery, standard CNNs 

face several limitations. Most notably, they often fail to 

accurately delineate fine object boundaries and detect 

small-scale features, particularly in high-resolution images 

where objects may occupy only a few pixels. Moreover, 

fixed receptive fields and downsampling operations such 

as pooling can cause loss of spatial detail, further 

impairing performance on highly   variable  aerial   scenes.  

To   address  these shortcomings, there has been growing 

interest in the integration of super-pixel algorithms into 

semantic segmentation pipelines. Super-pixels aggregate 

pixels with similar properties into perceptually meaningful 

regions, offering a more compact and structured image 

representation. By reducing the number of primitives from 

pixels to super-pixels, these algorithms significantly lower 

computational complexity and enhance the spatial 

coherence of segmentation results. In particular, the 

Simple Linear Iterative Clustering (SLIC) algorithm and 

its improved variant, SLICO, have gained popularity due 

to their efficiency and adaptability to image content. 

SLICO, for example, eliminates the need for manual 

tuning of compactness parameters and produces more 

natural boundary adherence. 

2. RELATED WORK 

 

Qi Diao et al.(1) proposed SAGNN, a superpixel-based 

attention graph neural network for semantic 

segmentation of high-resolution aerial images. By 

combining CNN features, superpixel graphs, and attention 

mechanisms, SAGNN enhances boundary precision and 

robustness, outperforming state-of-the-art methods on the 

Potsdam and Vaihingen datasets. 

Ching-Lung Fan(2) proposed MSFCNN, a multiscale 

feature convolutional neural network for extracting 

buildings and roads from UAV and satellite imagery. By 

capturing features at multiple scales, MSFCNN achieved 

over 91% accuracy on Kaohsiung images, showing strong 

adaptability across resolutions for urban land cover 

mapping. 

Shuang Tian et al.(3) proposed a multiscale superpixel-

based method for fine crop classification in UAV-based 

hyperspectral imagery. By integrating multiscale 

information through pre- and post-processing strategies, 

the approach enhances spectral-spatial representation, with 

post-processing yielding the highest accuracy across three 

public datasets. 

Liang Huang et al.(4) proposed a UAV image segmentation 

method that combines SLIC superpixels with multi-

feature distance measures (spectral, texture, shape, area) 

to reduce over-segmentation. Tested on two UAV datasets, 

it outperforms the FNEA algorithm, particularly in 

segmenting objects of varying sizes. 

Zhiyou Lian and Jianhua Ren(5) proposed a UAV image 

stitching method using superpixel segmentation to 

improve speed and stitching quality. By integrating 

superpixel-based region estimation, enhanced SIFT 
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matching, and optimized fusion, the method doubles 

feature extraction speed and improves SSIM, PSNR, and 

MAE by ~5% over AANAP, VSP, and UVS methods. 

Yunjie Mu et al.(6) proposed SCGCN, a superpixel-based 

graph convolutional network that segments UAV forest 

fire images by converting them into graphs and applying 

node classification. Using CNNs for feature extraction and 

GraphSAGE for graph learning, SCGCN outperformed 

four mainstream models on FLAME and Chongli datasets 

in terms of F1 score and accuracy. 

S. Crommelinck et al.(7) evaluated SLIC superpixels for 

delineating roads and roofs in high-resolution UAV 

orthoimages for cadastral mapping. With up to 64% 

completeness on 0.05 m GSD images, SLIC proves 

effective for segmentation but needs integration with other 

methods for precise boundaries, serving well as a 

preprocessing step to enhance mapping efficiency. 

Liang Huang et al.(8) proposed a UAV image 

segmentation method that applies SLIC superpixels 

followed by feature-based merging (spectral, texture, 

shape, area) to reduce over-segmentation. Tested on two 

UAV datasets, it outperforms the FNEA algorithm, 

particularly in handling varying object sizes. 

Huang et al.(9) introduced batch loss regularization in deep 

learning to improve aerial scene classification by reducing 

overfitting on limited datasets. This technique enhances 

model robustness and generalization, boosting the 

reliability of deep learning for land-use analysis in aerial 

remote sensing. 

Lowe(10) introduced the Scale-Invariant Feature 

Transform (SIFT), a method for object recognition using 

local scale-invariant features. SIFT enables reliable 

matching across scales, orientations, and lighting, 

revolutionizing computer vision and underpinning 

applications like robotics, image retrieval, and 3D 

reconstruction. 

Teng et al(14) developed a method combining satellite 

imagery and visible-near infrared (VNIR) spectroscopy to 

map and model soil loss across Australia. Their study 

shows how remote sensing can be used effectively for 

monitoring environmental degradation caused by 

water erosion. This technology enables high-resolution 

mapping crucial for soil conservation planning. The 

integration of imagery and spectroscopy provides a more 

detailed and accurate analysis compared to traditional 

methods. Their findings contribute significantly to 

sustainable land management strategies. 

Chen et al.(15) proposed a land-use scene classification 

method using multi-scale completed local binary 

patterns (CLBP) to capture texture information across 

scales. This approach improves classification accuracy for 

diverse land covers and offers a robust tool for applications like 

urban planning, agriculture, and environmental monitoring. 

3.ARCHITECTURE 

The initial step involves preparing the UAV imagery for 

both super-pixel generation and CNN input. The dataset 

contains aerial images captured at varying altitudes and 

under different environmental conditions, with complex 

object arrangements such as roads, vegetation, buildings, 

and vehicles. These images are high-resolution, making  

them ideal for detailed semantic analysis but also 

challenging due to memory and computationalconstraint. 

To standardize the input data: 

All images are resized or cropped to 576 × 576 using a 

sliding window technique with a constant stride.This 

technique ensures that spatial context is preserved and  
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Fig-1:System Architecture for Image Segmentation 

the training samples cover diverse regions of the scene.The 

image patches are normalized and augmented using 

techniques such as horizontal flipping, rotation, and scaling 

to improve model generalization.It includes step by step 

process for the implementation of Proposed model.The 

System architecture includes several number of steps. 

3.1 Preprocessingand Dataset Preparation 

The initial step involves preparing the UAV imagery for 

both super-pixel generation and CNN input. The dataset 

contains aerial images captured at varying altitudes and 

under different environmental conditions, with complex 

object arrangements such as roads, vegetation, buildings, 

and vehicles. These images are high-resolution, making 

them ideal for detailed semantic analysis but also 

challenging due to memory and computational constraints. 

3.2 Super-pixel Generation using SLICO 

The super-pixel segmentation process is performed using 

SLICO (Simple Linear Iterative Clustering Zero 

parameter), an advanced variant of the original SLIC 

algorithm. Unlike its predecessor, SLICO eliminates the 

need for manually tuning the compactness parameter, 

which makes it ideal for real- world UAV images that may 

vary widely in content and structure.SLICO groups pixels 

into clusters (super-pixels) based on spatial proximity and 

color similarity in the CIE Lab color space. Each super-

pixel tends to represent a meaningful region of the image 

(such as part of a road, building, or tree canopy) while 

significantly reducing the number of input units for the 

CNN.Key advantages of using super-pixels in this stage 

include: Reduced computational complexity for 

downstream processing,Improved edge preservation, 

which enhances segmentation near object 

boundaries.Enhanced local structure representation, 

making CNN feature extraction more effective. The output 

of this step is a set of super-pixel-enhanced images, where 

the pixel values inside each segment are uniform, 

effectively smoothing texture without destroying 

important shape details. 

3.3 CNN-Based Segmentation Model 

The core segmentation engine is a custom CNN model 

based on an encoder–decoder architecture, similar in spirit 

to U-Net but designed to accommodate multiscale input. 

The model is composed of the following 

layers:Convolutional Layers: Extract feature maps using 

filters of size 3×3, followed by ReLU activation functions. 

1. Batch Normalization: Applied after each convolution 

to stabilize and accelerate training. 

2. Max Pooling Layers: Downsample the feature maps 

to retain dominant information while reducing spatial 

size. 

3. Dropout Layers: Incorporated during training to 

reduce overfitting. 

4. Upsampling (Transposed Convolution): Reconstruct 

the spatial dimensions of the feature maps in the 

decoder path. 

5. Skip Connections: Enable information flow between 

corresponding encoder and decoder layers to 

preserve spatial details. 

6. Softmax Layer: Produces the final output map, where 

each pixel is classified into one of the semantic 

classes. 

3.4  Multiscale Feature Aggregation 

To handle scale variance a common issue in UAV imagery 

due to differing object sizes and altitudes — the proposed 

system incorporates multiscale learning. The same image is 

resized into three versions: 
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   256 × 256 (downsampled) 

512 × 512 (original resolution) 

1024 × 1024 (upscaled) 

Each of these scaled versions is passed through an identical 

CNN model. This enables the network to learn fine-grained 

features from high-resolution inputs and contextual features 

from downsampled inputs simultaneously. The resulting 

feature maps from each CNN are: 

Resized to a common dimension.Concatenated channel-

wise Passed through a final 1×1 convolutional layer to 

produce the final aggregated prediction map.This multiscale 

fusion step is crucial for capturing both local textures and 

global structures enhancing the model's robustness to scale 

differences and improving segmentation performance. 

4. RESULTS AND DISCUSSION 

This section presents the experimental results and evaluates 

the performance of the proposed superpixel- enhanced 

multiscale CNN architecture. The evaluation is conducted 

using standard metrics, both quantitative and qualitative, on 

UAV datasets featuring complex scenes with multiple 

object classes. 

4.1 Experimental Setup 

The implementation was carried out on Google Colab, 

leveraging GPU acceleration to support the computational          

demands of deep learning. The models were implemented 

using TensorFlow and OpenCV libraries.Optimizer: Adam 

optimizer with a learning rate of 0.001 Loss Function: 

Categorical Cross-Entropy,Batch Size: 3 

Epochs: 450 (with  early  stopping  based  on  validation 

loss) Data Augmentation: Applied to double the training 

data. 

 

 Fig-2: User Interface For Image Segmentation 

4.2 Evaluation Metrics 

To assess segmentation performance, the following metrics 

were used: 

Pixel Accuracy (PA): Percentage of correctly classified 

pixels.Intersection over Union (IoU): Measures overlap 

between prediction and ground truth. 

Precision: True positives divided by predicted positives. 

Recall: True positives divided by actual positives.F1-Score: 

Harmonic mean of precision and recall.  

 

Fig - 3: Confusion Matrix for Image Segmentation 
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 Figure 4 illustrates the training dynamics of the proposed 

semantic segmentation model over five epochs. The left 

subplot depicts the training loss, which shows a consistent 

downward trend, indicating effective minimization of the 

model's prediction error during training. The loss decreases 

from approximately 1.12 to 0.66, suggesting that the 

network is successfully learning meaningful patterns from 

the input data.This rapid convergence indicates that the 

model quickly adapts to the training data, possibly due to 

the enhanced input representations provided by the super-

pixel preprocessing and the multiscale architecture. 

 

Fig-4: Model Training Progress: Loss and Accuracy   

over Epochs using Multiscale CNN 

The below chart visualizes the importance of each input 

feature in the model's decision-making process. 

Feature 2 contributes the most, followed by Feature0 and 

Feature1.Understanding feature importance helps in 

feature selectionand model interpretation. Such insights 

can guide data preprocessing and improve model 

performance. 

                       Fig-5: Segmented Image 1 

  
Fig-6: Relative Importance of Input Features in Model 

Prediction 

4.3 Quantitative Results 

 

          Fig-7: Image Segmentation using SLICO 

The proposed architecture was evaluated on both original 

images and super-pixel enhanced images. The latter 

consistently outperformed the former, particularly in 

scenarios involving small or occluded objects. 

These results demonstrate the benefit of incorporating 

SLICO super-pixels, which better preserve boundaries and 

their detection. 

4.4 Qualitative Results 

Visually, the segmentation maps generated by the 

proposed model show: 

1. Sharper boundaries, especially between similar 

classes like roads and rooftops. 

2. Better detection of small objects, such as cars 

and signboards, which are often missed by standard 

CNNs. 

3. Reduced false positives in background regions. 

4. The visual consistency of segmentations across 

http://www.ijsrem.com/
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multiple test images supports the model's 

generalizability to different scenes and lighting 

conditions.                         

4.5 Discussion 

The integration of super-pixel algorithms with 

convolutional neural networks (CNNs) has proven to be an 

effective strategy for enhancing semantic segmentation 

performance in UAV imagery. Super-pixels play a critical 

role in  preprocessing  by  grouping  

 Precision recall F1score 

(np.unit8(0), 

np.unit8(0)) 

0.6 0.8 0.73 

(np.unit8(10),np.u

nit8(10)) 

0.86 0.5 0.67 

Accuracy 0.71 2  

Macro avg 0.67 0.8 0.72 

Weighted avg 0.75 0.7 0.70 

 

  Fig-8 Comparison Table of Image Segmentation 

pixels into perceptually meaningful clusters, which not 

only simplifies the input but also preserves important object 

boundaries. This reduction in image complexity helps 

mitigate the impact of background noise and redundant 

pixel-level information, making the subsequent learning 

process more focused and efficient. By emphasizing  

spatial structure and local coherence, super-pixels provide 

the CNN with a more organized and semantically enriched 

representation of the image.On the other hand, CNNs bring 

powerful feature extraction capabilities  to  the  table. When 

applied  to  super-pixel- 

enhanced inputs, CNNs can more effectively capture 

semantic patterns at both local and global levels. This 

synergy enables the network to focus on important object 

regions and disregard irrelevant background clutter. 

Furthermore, the architecture’s ability to learn hierarchical 

representations complements the structured input provided 

by super- pixels, leading to more accurate pixel-level 

classification. The combination of spatial coherence from 

super-pixels and semantic depth from CNNs forms a robust 

foundation for high-performance segmentation. 

A key innovation in the proposed framework is the use of 

multiscale input processing. By feeding the network with 

image representations at multiple resolutions, the model 

becomes more resilient to the scale variations inherent in 

UAV imagery. This is especially important in aerial scenes, 

where the same object may appear at vastly different scales 

due to changes in altitude, angle, or field of view. Multiscale 

architectures empower the model to simultaneously analyze 

fine details—such as small vehicles or roof textures—and 

broader structures like buildings or roads, leading to more 

consistent segmentation across diverse scenarios. Despite 

these benefits, a few limitations were identified during 

experimentation. In low-light or low-contrast conditions, 

the super-pixel generation process may produce inaccurate 

clusters, grouping dissimilar regions together or failing to 

delineate true object boundaries.This can introduce noise 

into the training process and potentially reduce 

segmentation precision. Additionally, the adoption of 

multiscale inputs and model replication naturally leads to a 

slight increase in computational complexity and training 

time. While these trade-offs do not hinder functionality, 

they are important considerations for real-time or resource-

constrained deployments.The overall improvements in 

segmentation accuracy, boundary preservation, and  

robustness   to  scale  variation  clearly outweigh the 

associated computational costs. The proposed architecture 

remains lightweight and modular,  

making it well-suited for deployment on edge devices 

commonly used in UAV systems. With appropriate 

optimizations—such as model pruning, quantization, or 

inference acceleration—it can achieve efficient on-board 

processing without sacrificing performance. In summary, 

the integration of super- pixels and multiscale CNNs 
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represents a promising direction for advancing semantic 

segmentation in UAV imagery, especially in complex and 

dynamic environments. this approach opens avenues for 

further enhancement through adaptive super-pixel 

generation, attention mechanisms, and integration with 

transformer- based architectures. By incorporating 

contextual attention or temporal consistency across UAV 

video frames, future models can achieve even greater 

accuracy and stability in dynamic environments.  

Additionally,integrating this pipeline with other remote 

sensing modalities—such as LiDAR or thermal imaging—

can provide complementary information, enriching the 

model's understanding of the scene. As UAV platforms 

continue to evolve with improved onboard computing 

capabilities, methods like the one proposed in this study will 

play a pivotal role in enabling real-time, intelligent 

perception for autonomous aerial operations in urban, rural, 

and disaster- stricken environments. 

5.CONCLUSION 

In this research, we presented a novel semantic segmentation 

framework tailored for UAV-captured aerial imagery, 

leveraging the combined strengths of SLICO-based 

superpixel segmentation and a multiscale convolutional 

neural network (CNN) architecture. The increasing adoption 

of UAVs across a variety of domains—including urban 

development, environmental surveillance, precision 

agriculture, and disaster management—has resulted in an 

abundance of high-resolution overhead imagery. However, 

translating this rich visual data into meaningful semantic 

information remains an open challenge due to factors such as 

high intra-class variability,scale diversity, complex object 

interactions, and visual ambiguities caused by occlusions and 

lighting conditions.To address these complexities, our 

proposed framework introduces a two-tiered approach. First, 

superpixel segmentation using the SLICO algorithm groups 

adjacent pixels into perceptually coherent regions, which 

simplifies the input space and enhances structural 

consistency. Unlike traditional pixel-level approaches, this 

method preserves object boundaries more effectively and 

reduces noise from irrelevant background textures. Second, a 

multiscale CNN is used to process input data at varying 

spatial resolutions, enabling the network to capture both low-

level details (e.g., edges, textures) and high-level semantic 

context (e.g., object shapes and spatial relationships). This 

multiscale representation is crucial for overcoming the issue 

of scale variation, a well-known limitation in aerial imagery 

where   the same object may appear in vastly different sizes 

depending on flight altitude and camera perspective. 

Future Work 

While the proposed framework demonstrates strong 

performance and practical deployability, there remain 

several avenues for enhancement and extension in future 

research. One prominent limitation observed is the 

sensitivity of superpixel clustering under extreme lighting 

conditions. In scenarios involving harsh shadows, 

overexposed regions, or low-contrast environments, SLICO 

may incorrectly group semantically unrelated pixels into the 

same superpixel, leading to segmentation inaccuracies. 

Addressing this issue may require the integration of 

illumination- invariant preprocessing techniques or the 

development of adaptive superpixel algorithms that 

dynamically adjust clustering behavior based on local 

texture and brightness statistics.In terms of computational 

efficiency, although our multiscale CNN design balances 

accuracy with resource usage, the parallel processing of 

multiple image scales introduces moderate overhead. This 

could present challenges for real-time applications on ultra- 

low-power edge devices commonly used in UAVs. Future 

work may explore the use of lightweight CNN architectures 

such as MobileNetV3, EfficientNet-Lite, or GhostNet, 

which are explicitly designed for mobile and embedded 

inference. Additionally, dynamic resolution selection 

strategies could be introduced, enabling the model to focus 

computational effort only on regions requiring multiscale 

analysis, rather than applying it uniformly across the image. 
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