
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35639 | Page 1

Enhanced Visibility for Real-time Monitoring and Alerting in

Kubernetes by Integrating Prometheus, Grafana, Loki, and Alerta

Karthik Pai
Department of ISE

R. V. College of Engineering®

Bengaluru, India

Prof. B.K Srinivas
Department of ISE

R. V. College of Engineering®

Bengaluru, India

Abstract—With the increasing popularity of Kubernetes as
the go-to platform for containerized applications, numerous
companies are adopting Kubernetes as their preferred platform
for containerized applications. As organizations embrace this
container orchestration technology for its scalability, flexibility,
and portability benefits, the need for robust monitoring solutions
becomes paramount. Monitoring Kubernetes environments is
essential to ensure the health, performance, and availability
of applications running within the cluster. This paper aims to
provide a comprehensive approach for monitoring Kubernetes
via Prometheus, Grafana, and Alerta

Prometheus, a powerful open-source monitoring system, col-
lects metrics from Kubernetes pods and nodes, enabling real-
time monitoring of resource utilization, performance metrics,
and application health. Grafana complements Prometheus by
providing intuitive visualization of collected metrics through
customizable dashboards, facilitating comprehensive insights into
cluster performance and trends. Loki and Promtail by Grafana
are used to collect and aggregate the logs associated with the
cluster. Alerta enhances the monitoring setup by enabling alerting
based on predefined thresholds and conditions, ensuring prompt
notification of potential issues or anomalies.

Together, this stack empowers administrators to gain deep
visibility into their Kubernetes infrastructure, proactively identify
and mitigate issues, and maintain the high availability and
reliability of their applications and services.

Index Terms—Kubernetes, Prometheus, Grafana, Alerta, Loki,
Promtail, Monitoring, Alerting, Logging.

I. INTRODUCTION

In today’s dynamic computing landscape, Kubernetes has

emerged as the de facto standard for orchestrating container-

ized applications. As organizations increasingly embrace Ku-

bernetes for its scalability, resilience, and agility, the need

for robust monitoring solutions to ensure the health and

performance of applications running on Kubernetes clusters

has become paramount. In response to this demand, moni-

toring tools such as Grafana, Alerta, and Prometheus have

gained prominence for their ability to provide comprehensive

visibility into the state of Kubernetes deployments.

Prometheus serves as a powerful monitoring and alerting

system, specifically designed for cloud-native environments

like Kubernetes. Prometheus excels in its ability to scrape and

store time-series data, enabling the collection of metrics from

various Kubernetes components, such as pods, nodes, and ser-

vices. With its flexible querying language and robust alerting

mechanisms, Prometheus empowers operators to define and

manage alerts based on predefined thresholds and conditions,

ensuring proactive detection and resolution of potential issues.

Grafana, with its intuitive dashboarding capabilities, allows

operators and developers to visualize key metrics and perfor-

mance indicators, facilitating effective monitoring and trou-

bleshooting. Loki and Promtail by Grafana are used to collect

and aggregate the logs associated with the cluster. These

logs would further allow us to debug various issues within

the cluster. By leveraging Grafana’s rich set of visualization

options and customizable dashboards, organizations can gain

insights into the behavior of their Kubernetes applications,

identify trends, and respond to emerging issues in real time.

In collaboration with Grafana and Prometheus, Alerta serves

as a centralized alert management platform, streamlining the

intricate process of alert deduplication, escalation, and reso-

lution. While Prometheus offers its own alerting capabilities

through Alertmanager, it’s important to note some inherent

limitations. The Alertmanager interface, while functional, may

not always provide the most intuitive user experience, making

it challenging to effectively discern various system conditions.

Additionally, Alertmanager’s scalability can pose challenges,

particularly in environments with multiple Prometheus in-

stances, necessitating individual Alertmanager instances for

each Prometheus deployment.

This is where Alerta shines. By consolidating alerts from

diverse sources, including Prometheus, Alerta delivers them to

a unified dashboard, offering comprehensive visibility into the

system’s health. Through seamless integration with popular

communication channels such as Slack and the flexibility to

create custom plugins (e.g., for generating Jira tickets), Alerta

enhances collaboration among teams and facilitates timely

notification. This collaborative approach empowers teams to

swiftly respond to incidents and work towards rapid resolution,

ensuring minimal downtime and optimal system performance.

Together, Grafana, Alerta, and Prometheus form a po-

tent monitoring stack that empowers organizations to gain

actionable insights, streamline operations, and maintain the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35639 | Page 2

reliability and performance of their Kubernetes applications.

By leveraging the capabilities of these tools, organizations can

effectively monitor, manage, and optimize their Kubernetes

deployments, ensuring they meet the demands of modern,

cloud-native environments.

II. LITERATURE REVIEW

A variety of research papers have been published in this

domain. The research by Carcassi et at.,[1] discussed on multi

cluster monitoring using Thanos which acts as a centralized

storage to all the Prometheus deployed in different clusters.

Further more Grafana was used as a dashboard to visualize

the data. The Grafana plots were later integrated at SLATE

console.

Another paper by Ioannis Tzanettis et al.,[2] talks about

about orchestration of distributed applications. It discusses

using data fusion to improve the observability of these appli-

cations. Observability signals are used to monitor the health of

the application. The authors propose a new method for data

fusion that leverages machine learning. This method can be

used to improve the decision-making process for orchestration.

The research by Ridwan Satrio Hadikusuma et al.,[3] article

is about optimizing and monitoring Kubernetes clusters. It

discusses different methods to achieve this goal. The authors

analyze three journals that explore various approaches. They

find that a Prometheus and Grafana for monitoring, and

efficient cluster frameworks can all improve performance.

It showcases how Prometheus and Grafana is effective for

monitoring Kubernetes applications

The paper by P., Prerana et al.,[4] discusses a method for

monitoring multiple clusters using Prometheus Operator and

the standard prometheus.

The paper by Thanh-Tung Nguyen et al.,[5] investigates

Kubernetes’ HPA, comparing Kubernetes Resource Metrics

(KRM) and Prometheus Custom Metrics (PCM), and provides

insights on optimizing HPA’s performance.Experiments show

that PCM reacts more responsively to load changes, leading

to quicker scaling than KRM. However, this can result in a

higher number of failed requests during scaling operations.

The research by Ioannis Korontanis et al.,[6] discusses

a Prometheus-based monitoring stack for applications and

resources on Kubernetes clusters, used within the platform

to monitor applications across various development units and

host types.The monitoring stack successfully monitors both

applications and resources, characterizes hosts in a K8s cluster.

The paper by Sai Vimal Kumar V et al., [7] discusses

multi cluster fault detection with Prometheus on Kubernetes

and Docker containers.It was found that the Prometheus on

Kubernetes performed better.

The research by Octavian Mart et al., [8] discusses the

traditional Kubernetes observability parameters and compared

them with that which Prometheus provides. It tells about the

limitations of the traditional observability parameters and tells

advantage of using Prometheus.

The paper by Lea Matlekovic et al., [9] discusses converting

a monolithic application to microservices-based app using

Fastapi. Prometheus was used for monitoring.

The research by Lei Chen, Ming Xian et al.,[10] This

paper discusses using Prometheus to discuss OpenStack cloud

platform.It was found that Prometheus with Grafana is an

effective monitoring system.

III. PROPOSED SYSTEM

A. Architecture

The architecture can be seen in Figure 1. The various

components involved in the application are

1) Kubernetes Metrics: Metrics of the cluster itself, pro-

viding data on pods, deployments, etc. The kube-state-

metrics and node exporters agents by Prometheus can

be used for this purpose.

2) Prometheus: Open-source monitoring tool collecting

metrics data. It is responsible for collecting the metrics

from the various agents deployed in the Kubernetes

cluster. Prometheus operator will be used to manage the

Prometheus deployed in the cluster.

3) Alertmanager: It provides alerting capabilities to

Prometheus. A webhook is configured to forward its

alerts to Alerta.

4) Grafana: Open-source analytics and visualization tool,

querying from Prometheus. It queries various metrics

from Prometheus using the PromQL language and can

be used to build custom dashboards to get to know the

condition of the cluster and the various services that are

running on it.

5) Loki: Log aggregation system for Kubernetes, collecting

logs. It acts as a centralized storage for all the logs.

Promtail an agent by Grafana will perform the duty of

sending all the logs from cluster to Loki.

6) Alerta: Alert monitoring system, collecting and man-

aging alerts, with options for notifications. It collects

all the alerts from Prometheus and sends notifications

to sources such as Slack. A custom plugin can also be

written to create Jira Tickets based on the type of Alert

generated.

B. Methodology

The Kubernetes cluster was created using minikube. The

monitoring system requires the setup of 3 main components

Prometheus, Alerta, Grafana and Logging Component.

1) Prometheus: The various steps involved in setting up

Prometheus are

• Set up Node Exporters and kube-state-metrics: The

initial step involves configuring kube-state-metrics and

node exporters for the Prometheus cluster. kube-state-

metrics will listen to the Kubernetes API and gener-

ate metrics regarding the various Kubernetes resources

present in the system. Node exporters, on the other hand,

collect system-level metrics from each node, providing

crucial data on resource utilization, performance, and

health.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35639 | Page 3

Fig. 1. Architecture of the Proposed System

• Set up Prometheus using Prometheus Operator:

The Prometheus Operator is used to set up

Prometheus. Traditionally, Prometheus setup

requires a prometheus.yaml along with the

scrape_configs and rules files specifying the

targets to monitor and the different rules to evaluate

for alerting purposes. But Prometheus Operator

provides various CRDs to dynamically manage these

configurations. ServiceMonitor resource was used

to monitor all the resources in the cluster. The operator

also provides PodMonitor for monitoring the pods

directly used in case of deployments having no service

resource assigned to it. ScrapeConfig resource can

be used to monitor the services that are not deployed

in the Kubernetes cluster. PrometheusRule resource

is used to write up the recording and alerting rules

for Prometheus to evaluate based on which alerting

takes place. The metrics from the kube-state-metrics

are used to write the various rules for detecting various

scenarios such as a pod going down, a node going

down, deployments not having enough replicas, etc. The

metrics collected by ServiceMonitor can be used

to write application-specific rules. Here the rules written

only consist of making sure that the target is up. After

writing up all these resources the Prometheus setup

would be completed.

• Set up AlertManager: The final step in setting up

Prometheus involves setting up Prometheus AlertMan-

ager. Prometheus Operator can be used for this purpose.

All the alerts generated here will be forwarded to Alerta

through a webhook which will be configured later.

2) Alerta: Once the setup of Prometheus is done next is to

set the alerting component which is Alerta

• Set up Alerta: The first step is to set up Alerta. It requires

setting up the various API keys, users, etc. Alerta offers a

diverse range of authentication providers including basic

auth, SAML, OpenID, among others. For this project, ba-

sic auth was employed. Different roles can be established,

each with varying levels of permissions to ensure proper

access control. Alerta comes equipped with its own

predefined severity levels, but these can be customized to

align with project requirements. Postgres database is used

to store all the alerts associated with Alerta. Once Alerta

configuration is done AlertManagerConfig resource

can be utilized to facilitate the creation of a configuration

for Alertmanager, enabling seamless forwarding of all

alerts from Alertmanager to Alerta.

• Enabling Notifications through Slack: Alerta provides

a plugin for sending notifications to Slack. The plugin

can be directly used just modifying the to the message

sent using the SLACK_PAYLOAD env variable. It offers

routing to different Slack channels based on factors such

as environment, severity, or event. The routing plugin

was employed to set up routing based on tags.

• Custom Plugin for Jira: To handle more severe alerts

effectively, a custom plugin was developed to create Jira

tickets. The plugin automatically closed the ticket when

the alert was resolved. Additionally, it was capable of

adding comments in Jira whenever a note was added to

Alerta.

3) Grafana and Logging Component:

• Set up Loki: Loki is deployed on the cluster to store all

the logs. It offers both monolithic and scalable deploy-

ment options. For this project, the monolithic version of

Loki was chosen. While Loki supports various storage

backends such as S3 or GCS, the FileSystem option was

utilized for storage.

• Promtail Configuration for Loki: Promtail is a agent

by Grafana used for collecting logs from various sources

and forwarding them to Loki. Promtail is configured to

scrape logs from kubernetes and send them to Loki. Addi-

tionally, writing up pipelines for Loki involves defining

how multiline and singleline logs should be processed,

filtered, and indexed by Loki for efficient querying and

visualization.

• Set up Grafana: The setup up Grafana consisted of

providing the various datasources which in our case was

Loki and Prometheus. 3 different dashboards were built

in Grafana. These consisted the

IV. RESULT & DISCUSSION

The project effectively leveraged a variety of open-source

tools to establish a comprehensive monitoring system for

Kubernetes. This system adeptly monitored the diverse targets

deployed within Kubernetes clusters.

At the heart of the monitoring infrastructure was

Prometheus, serving as the central monitoring system.

Prometheus diligently observed various Kubernetes deploy-

ments, promptly detecting instances when critical services fal-

tered or when pods experienced disruptions. The prometheus

deployed can be seen by Figure 2.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35639 | Page 4

Fig. 2. Prometheus Dashboard

Fig. 3. Alerta Dashboard

Complementing Prometheus was Alerta, the centralized

alerting system. The deployed dashboard can be seen from Fig-

ure 3. Alerta seamlessly aggregated alerts from Prometheus,

facilitating swift incident response and resolution. Notifica-

tions were efficiently disseminated through Slack, ensuring

real-time communication among team members. Moreover,

where necessary, Alerta seamlessly interfaced with Jira, au-

tomatically creating tickets to streamline issue tracking and

resolution processes. Figures 5 and 4 show the slack message

received and ticket created.

Various dashboards were created to visualize the various

data provided by the kube-state-metrics exporter. The dash-

boards built were for different levels which were cluster, node,

namespace, and pod. The dashboards consisted of displaying

the CPU and RAM usage on the cluster level as well as graphs

showing different other levels such as namespace, pod, etc. At

node and namespace levels it gave a list of all the pods in it.

Fig. 4. Slack Message for PodDown

Fig. 5. Jira Ticket for PodDown

Fig. 6. CPU usage shown by namespace

At pod level it gave a list of all the containers running in the

pod.It also gave insights on the state of the different pods,

the ips associated with it etc. Some of the visualizations done

are as follows. Figure 7 shows cluster-level CPU and RAM

usage. It would provide insights on the load on the cluster.

Figure 6 shows the CPU utilization of different resources by

namespace, which is one such graph among many others that

shows the CPU utilization.

Figure 8 shows some details associated with the pod that

was displayed including the resource responsible for creating

the pod as well as the QOS class associated with it. The QOS

class gives details about how likely the pod is to be evicted

when the cluster doesn’t have enough CPU or RAM available.

Other details that were displayed included the node in which

the pod is running etc. Figure 9 tells the count of the total

pods, namespaces, and nodes in the cluster.

Figure 10 gives the different kubernetes resources available.

Figure 11 gives the replicas available by deployment. Other

graphs were created like this which give insights on the status

of the different Kubernetes resources.

Figure 12 is a table that gives the CPU and memory usage

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35639 | Page 5

Fig. 7. Cluster level CPU usage

Fig. 8. Pod Details

by the different containers in the pods. This usage will enable

to know the resources on the container level and if any

problems are found actions can be taken accordingly. Finally

Figure 13 shows the logs collected using Loki at pod level.

The logs shown here are that from Alerta

The table I makes a comparison on the traditional based

monitoring and the improvements provided by the Prometheus

based monitoring on Kubernetes monitoring proposed by

system. We get more range of metrics rather than just cpu/ram.

Application-specific metrics are also possible. It provides

better alerting and visualization capabilities as well.

Fig. 9. Count of pods, namespaces and deployments in the cluster

Fig. 10. Status of Pods

Fig. 11. Replica Availability

Fig. 12. Resources by containers

V. CONCLUSION

The project aimed to establish a robust monitoring and

alerting infrastructure for the various applications deployed

in a Kubernetes environment. Through the integration of

Prometheus, Grafana, and Alerta, coupled with meticulous

configuration and testing, the project successfully achieved its

objectives.

By leveraging Prometheus for monitoring, the system was

able to collect a wide range of metrics from various com-

ponents within the Kubernetes cluster, including the various

applications deployed in the cluster, This provided valuable in-

sights into the application’s performance, request traffic, error

rates, and resource utilization. Grafana’s intuitive dashboard-

Fig. 13. Logs of the pods

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35639 | Page 6

TABLE I
COMPARISON BETWEEN TRADITIONAL KUBERNETES MONITORING AND

PROMETHEUS KUBERNETES MONITORING

Feature/Aspect Traditional Kubernetes

Monitoring
Prometheus Kubernetes
Monitoring

Data
Collection
and Storage

• Metrics Server:
Collects resource
usage (CPU,
memory).

• Storage: Requires
third-party
solutions.

• Prometheus
Operator:
Manages
Prometheus
instances.

• Exporters:
node exporter,
kube-state-metrics,
etc.

• TSDB: Efficient
time-series
database.

Architecture
• Centralized

Aggregation:
Central server or
set of servers.

• Push/Agent-Based
Model: Agents
deployed on nodes.

• Decentralized

and Federated:
Independent
Prometheus
instances.

• Pull-Based
Model:
Prometheus
scrapes metrics.

Metrics and
Logs • Resource Metrics:

Basic CPU and
memory.

• Application
Metrics: Limited,
needs third-party
tools.

• Extensive
Metrics: Detailed
metrics on
resources and
applications.

• Logs: Integrated
with solutions like
Grafana Loki.

Querying and
Alerting • Basic Querying:

Limited
capabilities with
Metrics Server.

• Basic Alerting:
Doesn’t have
much alerting
capabilities

• PromQL: Power-
ful query language.

• Advanced
Alerting:
Sophisticated
rules, multi-
condition and
time-based alerts.

Visualization
• Kubernetes Dash-

board: Basic web
UI.

• Grafana Integra-
tion: Customizable
dashboards.

• Built-In Web UI:
For querying and
visualizing metrics.

ing capabilities allowed stakeholders to visualize and analyze

these metrics effectively, enabling proactive monitoring and

performance optimization.

Additionally, Alerta served as a central alert management

system, facilitating timely notification and triaging of alerts

generated by Prometheus. Integration with external communi-

cation channels such as Slack and Jira ensured that relevant

stakeholders were promptly informed of critical incidents,

streamlining incident response and resolution processes.

Overall, the monitoring infrastructure established through

this project enhances the reliability, availability, and perfor-

mance of the applications in the Kubernetes environment. By

proactively monitoring and addressing potential issues, the

system empowers stakeholders to maintain optimal application

performance and deliver a seamless user experience. Moving

forward, continued monitoring, periodic evaluation, and iter-

ative improvements will be essential to sustain and enhance

the effectiveness of the monitoring infrastructure in meeting

evolving business needs and application requirements.

REFERENCES

[1] G. Carcassi, J. Breen, L. Bryant, R. W. Gardner, S. Mckee, and C.
Weaver, “Slate: Monitoring distributed kubernetes clusters,” in Practice
and Experience in Advanced Research Computing, ser. PEARC ’20,
Portland, OR, USA: Association for Computing Machinery, 2020, 19–
25, isbn: 9781450366892. doi: 10.1145/3311790.3401777.

[2] I. Tzanettis, C.-M. Androna, A. Zafeiropoulos, E. Fotopoulou, and

S. Papavassiliou, “Data fusion of observability signals for assisting
orchestration of distributed applications,” Sensors, vol. 22, no. 5, p. 2061,
2022. doi: 10.3390/s22052061.

[3] R. Satrio Hadikusuma, L. Lukas, and K. Bachri, “Survey pa-
per: Optimization and monitoring of kubernetes cluster using var-
ious approaches,” Sinkron, vol. 8,pp. 1357–1365, Jul. 2023. doi:
10.33395/sinkron.v8i3.12424.

[4] P. P., S. Soudri, R. P., and S. Bailuguttu, “Enhancement of observ-
ability using kubernetes operator,” Indonesian Journal of Electrical
Engineering and Computer Science, vol. 25, p. 496, Jan. 2022. doi:
10.11591/ijeecs.v25.i1.pp496-503.

[5] T. K. D.-H. P. S. K. Thanh-Tung Nguyen Yu-Jin Yeom, “Horizontal pod
autoscaling in kubernetes for elastic container orchestration,” Sensors,
vol. 20, no. 16, p. 4621, 2020. doi: 10.3390/s20164621.

[6] I. Korontanis, T. Theodoropoulos, A. Makris, and K. Tserpes, “Real-
time monitoring and analysis of edge and cloud resources,” Proceedings
of the 3rd Workshop on Flexible Resource and Application Management
on the Edge (FRAME ’23), 2023. doi: 10.1145/3589010.3594892.

[7] M. K. Sai Vimal Kumar V, “Multi cluster monitoring for fault detec-
tion using novel kubernetes with prometheus over docker container,”
Journal of Pharmaceutical Negative Results, 1548–1555, 2022. doi:
10.47750/pnr.2022.13.S04.185.

[8] O. Mart, C. Negru, F. Pop, and A. Castiglione, “Observability in kuber-
netes cluster: Automatic anomalies detection using prometheus,” in 2020
IEEE 22nd International Conference on High Performance Computing
and Communications; IEEE 18th International Conference on Smart
City; IEEE 6th International Conference on Data Science and Sys-
tems (HPCC/SmartCity/DSS), 2020, pp. 565–570. doi: 10.1109/HPCC-
SmartCity-DSS50907.2020.00071.

[9] L. Matlekovic and P. Schneider-Kamp, “From monolith to microservices:
Software architecture for autonomous uav infrastructure inspection,”
in Embedded Systems and Applications, ser. EMSA 2022, Academy
and Industry Research Collaboration Center (AIRCC), Mar. 2022. doi:
10.5121/csit.2022.120622.

[10] L. Chen, M. Xian, and J. Liu, “Monitoring system of openstack
cloud platform based on prometheus,” in 2020 International Conference
on Computer Vision, Image and Deep Learning (CVIDL), 2020, pp.
206–209. doi: 10.1109/CVIDL51233.2020.0100.

[11] T. Abirami, C. Vasuki, P. Jayadharshini, and R. R. Vigneshwaran,
“Monitoring and alerting for horizontal auto-scaling pods in kubernetes
using prome theus,” in 2023 International Conference on Computer
Science and Emerging Technologies (CSET), 2023, pp. 1–8. doi:
10.1109/CSET58993.2023.10346811.

[12] J. S. Nunes, S. C. Sampaio, R. S. Malaquias, and I. de Morais
Barroca Filho, “Deploying the observability of the sigsaude system
using service mesh,” in 2020 20th International Conference on Com-
putational Science and Its Applications (ICCSA), 2020, pp. 9–15. doi:
10.1109/ICCSA50381.2020.00014.

[13] N. Sukhija and E. Bautista, “Towards a framework for mon-
itoring and analyzing high performance computing environments
using kubernetes and prometheus,” in 2019 IEEE SmartWorld,
Ubiquitous Intelligence Computing, Advanced Trusted Comput-
ing, Scalable Computing Communications, Cloud Big Data Com-
puting, Internet of People and Smart City Innovation (Smart-

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35639 | Page 7

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019, pp. 257–262.
doi: 10 . 1109 / SmartWorld - UIC - ATC - SCALCOM-IOP-
SCI.2019.00087.

[14] M. Song, C. Zhang, and E Haihong, “An auto scaling system for
api gateway based on kubernetes,” in 2018 IEEE 9th International
Conference on Software Engineering and Service Science (ICSESS),
2018, pp. 109–112. doi: 10.1109/ICSESS.2018.8663784.

[15] C.-C. Chang, S.-R. Yang, E.-H. Yeh, P. Lin, and J.-Y. Jeng, “A
kubernetes-based monitoring platform for dynamic cloud resource pro-
visioning,” in GLOBECOM2017 - 2017 IEEE Global Communications
Conference, 2017, pp. 1–6. doi: 10.1109/GLOCOM.2017.8254046.

[16] H. Kitahara, K. Gajananan, and Y. Watanabe, “Highly-scalable container
integrity monitoring for large-scale kubernetes cluster,” in 2020 IEEE
International Conference on Big Data (Big Data), 2020, pp. 449–454.
doi: 10.1109/BigData50022.2020.9377815.

[17] H. Kitahara, K. Gajananan, and Y. Watanabe, “Real-time container
integrity monitoring for large-scale kubernetes cluster,” Journal of
Information Processing, vol. 29, pp. 505–514, 2021. doi: 10.2197/ip-
sjjip.29.505.

[18] M. Gupta, K. Sanjana, K. Akhilesh, and M. N. Chowdary, “Deploy-
ment of multitier application on cloud and continuous monitoring
using kubernetes,” in 2021 5th International Conference on Electrical,
Electronics, Communication, Computer Technologies and Optimization
Techniques (ICEECCOT), 2021, pp. 602–607. doi: 10.1109/ICEEC-
COT52851.2021.9707957.

[19] S. Y. An, Y. S. Cha, E. J. Jeon, G. Y. Gwon, B. C. Shin, and B. R. Cha,
“A prestudy on the open source prometheus monitoring system,” Journal
of the Korean Institute of Smart Media, vol. 10, no. 2, pp. 110–118,
2021. doi: https://doi.org/10.14371/KISM.2021.10.2.110.

[20] N. Sukhija, E. Bautista, O. James, et al., “Event management and
monitoring framework for hpc environments using servicenow and
prometheus,” in Proceedings of the 12th International Conference on
Management of Digital EcoSystems, ser. MEDES ’20, Virtual Event,
United Arab Emirates: Association for Computing Machinery, 2020,
149–156, isbn: 9781450381154. doi: 10.1145/3415958.3433046.

[21] M. Brattstrom and P. Morreale, “Scalable agentless cloud network
monitoring,” in 2017 IEEE 4th International Conference on Cyber
Security and Cloud Computing (CSCloud), 2017, pp. 171–176. doi:
10.1109/CSCloud.2017.11.

[22] C. Cao, A. Blaise, S. Verwer, and F. Rebecchi, “Learning state machines
to monitor and detect anomalies on a kubernetes cluster,” in Proceedings
of the 17th International Conference on Availability, Reliability and
Security, ser. ARES ’22, Vienna, Austria: Association for Computing
Machinery, 2022, isbn: 9781450396707. doi: 10 . 1145 / 3538969 .
3543810.

[23] C. Cassé, P. Berthou, P. Owezarski, and S. Josset, “A tracing based model
to identify bottlenecks in physically distributed applications,” in 2022
International Conference on Information Networking (ICOIN), 2022, pp.
226–231. doi: 10.1109/ ICOIN53446.2022.9687217.

[24] C. Cassé, P. Berthou, P. Owezarski, and S. Josset, “Using dis-
tributed tracing to identify inefficient resources composition in
cloud applications,” in 2021 IEEE 10th International Conference on
Cloud Networking (CloudNet), 2021, pp. 40–47. doi: 10.1109/Cloud-
Net53349.2021.9657140.

http://www.ijsrem.com/

