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Abstract—Today’s rapidly developing automotive financing 
supply chains have increased demand for agility, accuracy and 
scalability. Traditional cross-docking methods often suffer from 
delays, misunderstanding of shipments and inefficient docking 
use due to lack of predictive knowledge and manual intervention. 
This article introduces a real-time AI-controlled cross-docking 
system. It was developed to automate demand forecasting, fleet 
allocation and dynamic package sorting using affordable IoT 
infrastructure. The proposed system combines linear regression 
of a machine learning model for vehicle allocation with node.js- 
based backend and RFID-based package identification and servo- 
operated ETA prediction using ESP32 hardware processing. 
React Dashboard offers live visibility into sorting actions, vehicle 
status, and forecast trends. Extensive simulation and prototype 
testing show 94.8 percent accuracy in fleet allocation, with 
average ETA prediction errors of 4.7 minutes and 97.2 per- 
cent hardware sorting accuracy. This interdisciplinary approach 
breaks AI, embedded systems and logistics and provides a cheap 
blueprint for intelligent and scalable supply chain solutions. 

Index Terms—Artificial Intelligence (AI), Cross-Docking, Au- 
tomotive Supply Chain, Machine Learning, Fleet Assignment, 
ETA Prediction, RFID, ESP32 Microcontroller, Internet of Things 
(IoT), Servo Sorting, Real-Time Logistics, Random Forest, Linear 
Regression, Full-Stack Development, Embedded Systems, Smart 
Warehousing, Route Optimization, Logistics Automation, React 
Dashboard, Node.js Backend. 

 

I. INTRODUCTION 

Automotive supply chains are one of the most complex 

and sensitive to the logistics ecosystem. From motor com- 

ponents and electronic modules to parts of the body and 

tires, thousands of different parts need to reach the assembly 

line accurately, as needed. Traditional logistics networks rely 

heavily on centralized distribution centers, manual silk deci- 

sions, and strict routing protocols. These methods are often 

plagued by delayed delivery in real-time and special hazards in 

the prevalent manufacturing environment (JIT-Time) (JIT) in 

the automotive sector, unused vehicles, warehouse overloads, 

and lack of special hazards. Reduce or eliminate storage by 

immediately transferring incoming goods to outgoing transport 

to minimize stays and existing costs. 

Cross-docking is promising, but his success relies heavily on 

intelligent orchestration of vehicle allocation, dock planning 

and package flow. This is typically done manually or with 

rule-based logic. In large volumes, such static approaches 

have variations that accommodate fluctuating demand, traffic 

disruptions, or routing limitations. AI-based models can learn 

from historical logistics data to predict vehicle allocation or 

delivery times, while inexpensive microcontrollers and sensors 

can automate physical processes such as scan packs and 

sort packs. Despite this possibility, there are relatively few 

integrated platforms that combine both AI-controlled decision- 

making and embedded automation tailored to automation. The 

system uses random forest classification to predict optimal 

fleet allocation and linear regression for estimated time of 

arrival (ETA) predictions. 

The package is operated by an ESP32 microcontroller and 

scanned with an RFID-enabled conveyor system sorted by 

servo actuation based on backend AI decisions. Data flows 

through node.js baking and is visualized in real time follow- 

ing allocations, vehicle status and performance metrics. The 

platform has been verified through extensive simulation and 
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hardware testing and provides promising results for sorting 

accuracy, model prediction quality, and system delays. 

The main contributions of this research are: 

• A hybrid software-hardware system for AI-powered 

cross-docking automation using RFID and servo ac- 

tuation. 

• Machine learning models for real-time fleet assign- 

ment (Random Forest) and ETA prediction (Linear 

Regression). 

• A full-stack architecture that integrates ESP32 hard- 

ware, a Node.js backend, and a React-based logistics 

dashboard. 

•  Empirical evaluation of sorting accuracy, decision 

latency, and system stability in a simulated automotive 

logistics setting. 

II. LITERATURE SURVEY 

[1] M. Maroof et al., in “A Hybrid Genetic Algorithm 

for Solving Vehicle Routing Problems with Time Windows” 

[1], propose a metaheuristic-based approach to optimize com- 

plex routing problems. The authors demonstrate improved 

efficiency and lower travel costs compared to conventional 

nearest-neighbor or greedy heuristics. Although effective for 

fleet optimization, the study does not address real-time adapt- 

ability or embedded system integration. 

[2] Y. Park, K. Kim, and M. Lee, in “An RFID-based 

Cross-Docking System for Logistics Efficiency” [2], introduce 

an intelligent sorting gate that uses RFID readers and low- 

cost microcontrollers. The system achieved over 95 percent 

sorting accuracy and demonstrated scalability in warehouse 

environments. However, the work focuses mainly on static 

routing logic, lacking dynamic AI-driven assignment. 

[3] Z. Wang et al., in “Edge AI in Industrial IoT for Real- 

Time Decision Making” [3], propose an IoT architecture that 

combines ESP32-based edge devices with AI inference at 

the device level. Their work validates sub-second response 

times and demonstrates that embedded intelligence can reduce 

reliance on cloud computation. However, the solution does not 

consider sorting or package-level logistics scenarios. 

[4] P. Sharma and A. Joshi, in “RFID-Based Smart Con- 

veyor Belt for Real-Time Sorting”[4], present a low-cost proto- 

type using MFRC522 RFID modules and servo motors to sort 

packages. The study reports high sorting precision but lacks 

backend AI decision-making. The logic is embedded locally 

and static, making it less adaptable for variable demand. 

[5] G. Laporte, in “Fifty Years of Vehicle Routing” [5], 

offers a comprehensive review of the evolution of vehicle 

routing problems (VRP) from classical linear programming to 

modern metaheuristic methods. This work provides essential 

theoretical context but does not present a real-world imple- 

mentation or hardware integration. 

[6] A. Raj and K. Patel, in “Integration of AI and IoT 

for Smart Warehouse Automation” [6], propose a dashboard- 

connected warehouse system that uses backend ML models 

for vehicle tracking and inventory management. The solution 

mirrors the architecture used in this project but does not 

implement closed-loop hardware control for sorting. 

[7] C. Zhang and Y. Xu, in “Forecasting Demand Using 

Random Forest and LSTM Models”[7], compare statistical and 

machine learning methods for predicting logistics demand. 

Their work shows that Random Forest models achieve com- 

petitive accuracy while maintaining interpretability. However, 

the forecasting remains isolated from downstream logistics 

actions. 

[8] G. Jocher et al., in “YOLOv5: Real-Time Object Detec- 

tion” [8], present a lightweight convolutional neural network 

model optimized for rapid object classification. Though pri- 

marily visual, their methodology opens the door for replacing 

RFID with computer vision in future cross-docking systems. 

[9] A. Kalra et al., in “Simulation and Testing of RFID- 

Based Sorting System for Supply Chains”[9], simulate real- 

world performance of automated sorting using Arduino and 

ESP32. Their findings validate feasibility but highlight chal- 

lenges like motor calibration, tag misreads, and delay during 

API calls—many of which are addressed in this project. 

[10] S. Chopra and P. Meindl, in “Supply Chain Manage- 

ment: Strategy, Planning, and Operation” [10], provide foun- 

dational insight into logistics optimization strategies, inventory 

management, and cross-docking theory. While not technical, 

their concepts justify the need for real-time automation in 

large-scale supply chain environments. 

[11] S. Verma, in “A Framework for AI-Based Route Opti- 

mization in Last Mile Delivery” [11], outlines a layered archi- 

tecture that leverages machine learning for adaptive route plan- 

ning. The system dynamically reassigns delivery sequences 

based on traffic and load data. While conceptually relevant, 

the work lacks physical sorting integration or hardware-level 

validation. 

[12] N. Sharma and K. Verma, in “QR Code Based Pay- 

ment System: A Survey” [12], study the rise of contactless 

infrastructure in smart logistics environments. Though focused 

on payments, their exploration of low-latency, error-resistant 

encoding applies to RFID tag redundancy and authentication 

in package sorting systems. 

[13] A. Gupta et al., in “Development of Cloud-Enabled 

IoT-Based Parking System” [13], implement a distributed 

detection system using RFID and ESP32 with Firebase back- 

end. Though targeted at smart parking, the architectural stack 

mirrors that of this project, showcasing the feasibility of real- 

time embedded sensing with cloud-hosted APIs. 

[14] S. Mishra and A. Banerjee, in “Real-Time Web Ap- 

plications using Firebase for Smart Services” [14], highlight 

the use of Firebase for authentication, real-time database 

management, and serverless backend logic. Their insights 

justify the use of similar cloud-native infrastructure in logistics 

dashboards for performance tracking and system control. 

[15] T. Hastie, R. Tibshirani, and J. Friedman, in “The 

Elements of Statistical Learning” [15], present a foundational 

treatise on supervised learning, including Random Forests and 

linear regression. The text informs model selection for both 
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fleet assignment and ETA prediction components used in this 

project. 

 

III. PROPOSED METHODOLOGY 

The methodology used in AI-based cross-docking systems 

integrates AI control decision logic with full-stack web ap- 

plication interfaces and built-in IoT sensing. The system is 

modular and complex, and supports real-time logistical coor- 

dination, RFID-based package tracking, and automated vehicle 

allocation. This section describes the working principles and 

implementation structure of the proposed framework. 

 

 
Fig. 1. System Architecture Diagram 

 

 

A. System Architecture Design 

1) Embedded Sensing and Control Layer: This layer 

records the detection and movement of a physical pack. The 

RFID tag is connected to the package and scanned by the 

MFRC522 module connected to the ESP32 microcontroller. 

During daytime recognition, the UID is forwarded to the 

backend via HTTP requests. Based on the reactions generated 

by the AI, the ESP32 operates a servo motor that redirects the 

package to the corresponding track. This layer ensures real- 

time package identification and mechanical control. 

2) Backend inference and API levels: The backend servers 

created with node.js and express.js act as communication 

bridges between the hardware and the AI model. It receives 

the day data, invokes a Python script through a subordinate 

process, and returns the AI decision to ESP32. The API 

also supports dashboard queries for package status, routing 

protocols, and fleet information. 

3) AI Model Execution Layer: This includes two trained 

machine learning models, a Random Forest Classifier for fleet 

allocation and a Linear Regression model for predicting ETA. 

These models are loaded at runtime and served by a light- 

weight Python service. They consume inputs like package 

priority, weight, and distance to provide optimized routing and 

fleet choice decisions. 

4) Frontend Interface Layer: The frontend dashboard, 

which is based on React, offers real-time visibility into all 

operational statistics. It features components for fleet status, 

route maps (using Leaflet.js and OSRM), package logs, and 

system settings. Admins have real-time views of sorting deci- 

sions, override assignments, and uploading CSV data. 

B. Functional Workflow 

1) RFID Tag Reading and UID Transmission: When a 

package travels down the conveyor, its RFID tag is read and 

its UID retrieved. The ESP32 transmits the UID as a JSON 

payload to the backend via Wi-Fi. 

2) Backend Prediction and Response: The server takes the 

UID, passes to the AI model with useful attributes (priority, 

weight, location), and responds with the allocated fleet and 

sorting lane within less than 500ms. This latency provides real- 

time decision making adequate for high-throughput logistics 

settings. 

3) Servo Actuation and Sorting: From the backend re- 

sponse, the ESP32 turns a servo motor to steer the package 

to the right lane. The hardware runs in an event-driven loop, 

keeping processing overhead and power usage low. 

4) Dashboard Visualization and Monitoring: All choices, 

UID logs, and sorting activity are stored in a MongoDB 

Atlas database. The frontend retrieves this data through REST 

APIs and shows updated fleet assignments, ETAs, and sorting 

routes on the dashboard. The admin interface enables real-time 

monitoring and manual intervention as necessary. 

5) Scheduled Dispatch and Logging: An underlying sched- 

uler initiates periodic dispatch logic (e.g., every 60 seconds), 

batching packages by destination and calling the route op- 

timizer to set up vehicles. Logs are kept for auditing and 

debugging. 

 

 

Fig. 2. Functional Workflow 

 

 

C. Real-Time Data Synchronization 

1) Inference and Response Loop: During RFID scan, end- 

to-end loop from receiving of UID to servo actuation is done 

in less than one second. The framework takes non-blocking 

API calls and asynchronous processing of data to maintain 

responsiveness. 

2) Polling and Live UI Updates: The dashboard employs 

light polling (every 1–2 seconds) to retrieve new package 

records and fleet updates. The application of up-to-date 

JavaScript state management guarantees that the frontend stays 

in sync with backend state without complete page reloads. 

D. Security and Access Control 

1) API Access Restriction: Backend routes are all secured 

through API key verification. Unapproved devices are not 

allowed access to prediction or logging services. 

2) MongoDB Access and Isolation: Role-based access pol- 

icy is used by MongoDB Atlas to limit database access. Only 

administrators can delete or alter key records; read-only access 

is given to dashboard viewers. 
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3) Hardware and Network Protection: The ESP32 board is 

connected to a secure local Wi-Fi network that uses WPA2 

authentication. Data is transmitted over HTTP but can be 

switched to HTTPS in production. 

 

E. Testing and Evaluation 

1) Hardware Testing: The RFID sensing and sorting system 

was tested with more than 300 packages with different UID 

values. The system had a 97.2 percent sorting yield under 

laboratory conditions, with occasional misreads being caused 

by tag orientation or metal interference. 

2) Model Performance: The Random Forest fleet classifier 

had a test data accuracy of 94.8 percent, and the Linear 

Regression ETA model had a Mean Absolute Error (MAE) 

of 4.7 minutes. These measurements confirm the predictive 

accuracy of the syste 

 

IV. IMPLEMENTATION 

The intended cross-docking platform based on artificial 

intelligence was brought to life using a synchronized combi- 

nation of embedded hardware, cloud-centered backend logic, 

and an interactive web dashboard. The modular nature of the 

implementation is for ease of testing, debugging, and future 

scalability. This section describes the components of individual 

implementations for hardware, backend server, frontend, and 

overall integration of the system. 

 

A. Hardware Architecture 

The hardware layer is the physical interface of the system 

to packages. It identifies tagged items, sends their identity 

to the backend, and sorts them physically by servo motors. 

The configuration consists of an ESP32 microcontroller, RFID 

reader, and sorting arm based on servo. 

1) ESP32 and RFID Setup: The ESP32 microcontroller is 

the intelligent part of the embedded system. It communicates 

with an MFRC522 RFID module that reads packages as they 

move on the conveyor belt. Once read, the unique ID of the tag 

is transmitted over HTTP POST to the backend server through 

Wi-Fi. 

2) Servo Motor Control: Depending on the backend’s AI- 

response-driven output, the ESP32 activates a servo motor 

which actually steers the package into the designated lane. 

Servo angles (usually 30° and 120°) are adjusted for accurate 

and smooth sorting. 

 

B. Backend Software and AI Integration 

The backend layer undertakes decision-making as well as 

data orchestration. The backend is developed with Node.js and 

Express.js, which enable communication between hardware, 

AI models, and the database. 

1) REST API Infrastructure: The backend provides REST 

endpoints for the receipt of RFID data, the calling of AI 

inference, as well as returning decisions to the ESP32. It also 

provides data to the dashboard for real-time visualization. 

 

 
 

Fig. 3. Hardware Architecture 

 

 

2) AI Model Execution: The Python scripts trained on Ran- 

dom Forest (for fleet assignment) and Linear Regression (for 

ETA prediction) are uploaded to the server. These are invoked 

as child processes by Node.js, allowing for asynchronous and 

modular inference without blocking main thread execution. 

3) Data Storage: MongoDB Atlas is utilized as the 

database to store package logs, decisions, timestamps, and 

history of fleet performance. Every sorted package record is 

labeled with its UID, allocated fleet, ETA, and decision time. 

C. Web Application and Dashboard 

A full-stack frontend interface was created using React 

(with TypeScript) and Tailwind CSS. The dashboard enables 

logistics managers to interact with the system visually and in 

real-time. 

1) Package Log Viewer: All RFID tags scanned and their 

corresponding fleets are shown in tabular view, updated every 

1–2 seconds via polling. 

2) Route Visualization: Implemented using Leaflet.js and 

OpenStreetMap APIs, routes allocated to each fleet are shown 

on a map with estimated travel time, destination, and route 

load. 

3) Admin Panel: Tools for uploading a CSV package, 

scheduling dispatch, overriding lanes manually, and metrics 

like sorting speed and model accuracy are offered on the 

dashboard. 

D. System Workflow and Integration 

The last integration creates real-time feedback among all 

the system elements. The process has a linear event-driven 

workflow: 

1) A package is loaded onto the conveyor belt and is 

scanned using the RFID reader. 

2) The ESP32 scans the tag and uploads the UID to the 

backend. 

3) The backend invokes the AI models and specifies the 

optimal fleet and estimated arrival time. 

http://www.ijsrem.com/
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Fig. 4. Dashboard UI 

 

 

4) This is returned to the ESP32, which makes the servo 

motor make the corresponding sort of the package. 

5) At the same time, the decision gets stored in the database 

as well as streamed to the dashboard in real-time. 

6) The system keeps polling or dispatching based on 

scheduling logic. 

This modular implementation allows for future extensions 

such as UPI integration, admin dashboards, and AI-driven 

dynamic pricing models. 

C. Dashboard Responsiveness and Data Sync 

The React-based dashboard, coupled with a MongoDB 

backend and REST APIs, had polling refresh rates below 1.2 

seconds. Real-time sorting choices, ETA predictions, and route 

visualizations updated with zero latency under normal loads. 

Polling period and WebSocket parameters are adjustable for 

scalability in the future. 

D. System Stability 

The entire system was executed for two uninterrupted 

hours in a simulated logistics lab environment. Backend APIs 

had 99.1 percent success rate through 500+ requests. No 

data loss or crashes were experienced during these tests. 

Each part—hardware, AI models, and frontend—functioned 

smoothly, proving the strength of the proposed architecture. 

 
TABLE I 

SYSTEM-WIDE PERFORMANCE METRICS 

 

 

 

 
 
 

 

 
 

 

 
 

 

 
 

 

Fig. 5. System WorkFlow 

 

V. RESULTS AND ANALYSIS 

A. Hardware Accuracy and Sorting Precision 

The RFID-driven sorting prototype consistently delivered 

97.2 percent accuracy in routing packages to their respective 

lanes. Servo actuation was with a mean latency of 420 ms 

following the backend decision. Failures were mainly due to 

RFID tag orientation or metal interference, which were ad- 

dressed with physical shielding and positioning optimizations. 

B. AI Model Performance 

Random Forest fleet assignment model performed 94.8 per- 

cent accuracy with synthetic test data, consistently suggesting 

the proper vehicle through constraints like weight, priority, 

and proximity. Linear Regression-based ETA prediction model 

obtained a Mean Absolute Error of 4.7 minutes. Results 

indicate high correspondence with actual delivery times when 

simulated. 

VI. CONCLUSION 

The paper introduced the deployment of an intelligent 

AI-based cross-docking system for automotive logistics. The 

system effectively combined real-time embedded control with 

predictive analytics and cloud-connected user interaction. Ma- 

jor contributions are: 

A working prototype showing 97.2 percent sorting accuracy 

via RFID and servo actuation. 

A Random Forest fleet assignment model that was incorpo- 

rated into a real-time inference pipeline. 

A dashboard that allows live tracking of logistics, with 

admin controls, maps, and logs. 

Scalable system design with modular hardware, AI logic, 

and full-stack web technologies. 

In general, the system attained its design objectives of 

responsiveness, flexibility, and dependability. It offers a cost- 

effective basis for future intelligent logistics solutions in 

warehouse and distribution settings. 

VII. FUTURE SCOPE 

A. Edge AI Deployment 

Future releases can natively run lightweight AI models 

on microcontrollers like ESP32-S3, minimizing latency and 

reliance on servers in low-connectivity scenarios. 

B. Fleet and Route Expansion 

Routing logic can be extended to accommodate multi-stop 

fleet deliveries, reallocation dynamically based on real-time 

traffic, and route scoring based on distance and priority mix. 

Performance Metric Observed Value 
Package Sorting Accuracy (RFID) 97.2% 
Fleet Assignment Model Accuracy 94.8% 
ETA Prediction MAE 4.7 minutes 
Route Scoring Latency ¡ 300ms 
Backend API Success Rate 99.1% 
Average RFID-to-Servo Latency 420 milliseconds 
Dashboard Update Delay 1.2 seconds 
Maximum Sorting Throughput 30 packages/minute 

System Uptime (2-hour test) 100% 
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C. IoT-Based Package Classification 

Integration with computer vision technology (e.g., 

YOLOv5) might make real-time object classification possible 

and render RFID tags unnecessary. 

D. Blockchain Audit Trail 

To further enhance package tracking and authentication, 

blockchain audit logs could be introduced to securely track 

all events throughout the supply chain. 

E. Multi-Warehouse and Multi-Node Scaling 

Scalability across multiple warehouses and nodes is sup- 

ported by the architecture. Centralized dashboarding and dis- 

tributed sorting logic will be investigated for industrial-scale 

deployment. 

[15] Firebase Documentation, “Firebase Authentication, Hosting, and Re- 
altime Database,” [Online]. Available: https://firebase.google.com/docs 
[Accessed: Jun. 2025]. 

[16] OpenStreetMap API Docs, “Routing API for dynamic map plotting,” 
[Online]. Available: https://www.openstreetmap.org/help [Accessed: Jun. 
2025]. 

[17] R. Sharma and V. Nair, “Secure dashboard design for industrial IoT 
applications,” in Proc. 2022 IEEE Conf. on Industrial Systems, pp. 91–
95, 2022. 

[18] L. Wang and H. Zhou, “Tailwind CSS and React in embedded web 
dashboards,” ACM Transactions on Embedded Computing Systems, vol. 
21, no. 3, pp. 45–55, 2023. 

[19] M. Trivedi and K. Ghosh, “Cross-docking and warehouse optimization 
using AI,” Journal of Logistics and Transport Technology, vol. 12, no. 
2, pp. 89–98, 2021. 

[20] V. Jain and R. Mehta, “RFID and servo-based package routing using 
IoT,” in Proc. Int. Conf. on Smart Electronics and Control, pp. 144–150, 
2021. 

ACKNOWLEDGMENT 

We sincerely thank our guide and faculty Prof. Deepika Dash 

from the Department of Computer Science and Engineer- ing, RV 

College of Engineering, Bengaluru, for their valuable guidance 

and support throughout this paper. We also appreciate the resources 

and encouragement provided by the institution that helped us 

complete this work successfully. 

REFERENCES 

[1] A. Boysen, M. Emde, H. Hoeck, and D. Kauderer, “Cross dock- ing—
State of the art,” Omega, vol. 40, no. 6, pp. 827–846, 2012. 

[2] K. Govindan, M. M. Kaliyan, D. Kannan, and A. Natarajan, “Bar- riers 
analysis for green supply chain management implementation in Indian 
industries using analytic hierarchy process,” Int. J. Production Economics, 
vol. 147, pp. 555–568, 2014. 

[3] M. Maroof, A. Mohammadi, and E. Nourmohammadi, “Hybrid genetic 
algorithm for solving vehicle routing problem with time windows,” Applied 
Soft Computing, vol. 124, p. 109292, 2022. 

[4] Y. Yu, C. Guan, and Q. Zhu, “Intelligent logistics system design based on 
IoT and RFID technology,” Sensors, vol. 20, no. 9, pp. 2512–2521, 2020. 

[5] S. V. Ukkusuri and K. K. Boyles, “Fleet assignment model for freight 
logistics,” Transportation Research Part C, vol. 41, pp. 190–205, 2014. 

[6] R. D. Groot and L. J. de Boer, “A simulation model for dynamic cross- 
docking,” Computers Industrial Engineering, vol. 129, pp. 198–210, 2019. 

[7] F. Bastani, H. Esmaeili, and P. Hasanzadeh, “IoT-based logistics opti- 
mization using edge computing,” IEEE Internet of Things Journal, vol. 9, 
no. 4, pp. 3298–3309, 2022. 

[8] J. Tang, R. Zhang, and H. Li, “ETA prediction for delivery trucks using 
machine learning,” in Proc. 2021 Int. Conf. on Artificial Intelligence and 
Logistics, pp. 55–60, 2021. 

[9] A. B. Ilyas, S. Arunachalam, and R. C. Nambiar, “Smart logistics systems 
using AI and big data: A review,” Journal of Intelligent Manufacturing, vol. 
34, pp. 1237–1252, 2023. 

[10] P. Pandey and A. Roy, “ESP32-based real-time object identification and 
control system,” in Proc. 2022 IEEE Int. Conf. on Embedded Systems, 
pp. 112–116, 2022. 

[11] S. Kulkarni, M. Deshmukh, and A. Jain, “Design and simulation of 
RFID-based smart conveyor sorting,” IEEE Access, vol. 10, pp. 45112–
45121, 2022. 

[12] N. Patel, R. Dutta, and R. Sharma, “AI-based supply chain demand fore- 
casting using LSTM networks,” in Proc. 2023 Int. Conf. on Predictive 
Analytics, pp. 75–80, 2023. 

[13] F. Shao, X. Liu, and Z. He, “Route optimization for last-mile delivery using 
simulated annealing,” Expert Systems with Applications, vol. 192, 
p. 116319, 2022. 

[14] T. Yamada and S. Suzuki, “Adaptive large neighborhood search for vehicle 
routing with cross-docking,” European Journal of Operational Research, 
vol. 305, no. 2, pp. 570–582, 2023. 

http://www.ijsrem.com/
https://firebase.google.com/docs
https://www.openstreetmap.org/help

