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Abstract— Our project focuses on enhancing collision 
avoidance between autonomous vehicles using deep reinforcement 
learning (DRL), and it also aims to improve the collision avoidance 
between autonomous vehicles using deep reinforcement learning. 
By leveraging advanced DRL algorithms and ensuring robust, 
realtime decision-making, the project seeks to create a safer and 
more efficient autonomous driving system. The approach 
integrates various state representations, actions, and reward 
functions to optimize driving behaviors. The system's state 
representation includes vehicle positions, velocities, distances to 
obstacles, and relative locations of other vehicles. Actions 
encompass accelerating, decelerating, and turning maneuvers. 
The reward function is designed to promote safe driving 
behaviors, such as maintaining speed and lane discipline, while 
penalizing collisions and erratic movements. The project also 
incorporates Multi-Agent Reinforcement Learning (MARL) to 
enable vehicle coordination, where each vehicle learns to 
maximize its own reward while considering the actions of others. 
Communication protocols between vehicles enhance decision- 
making and collision avoidance here vehicles share information 
about their states and intended actions, improving overall 
coordination and reducing the likelihood of collisions.Safety and 
robustness are ensured by integrating safe reinforcement learning 
techniques and making the policy resilient to environmental 
uncertainties. Real-world challenges addressed include 
transferring learned policies from simulation to real-world 
applications, ensuring scalability across different traffic 
conditions, and compliance with traffic regulations. The 
effectiveness of the proposed solution is demonstrated through 
case studies and validation in various driving scenarios. This 
project aims to advance the development of safer and more 
efficient autonomous driving systems. 

I. INTRODUCTION 

RAFFIC control is changing rapidly, as Connected Au- 

tonomous Vehicles (CAVs) are bringing new opportunities 

to control and manage vehicular, people, and goods flow in and 

around our cities. The new Intelligent Transportation Systems 

(ITS) are challenged to provide new ways to control CAVs 

to reduce congestion, pollution, or accidents [1]. Therefore, 

improving and introducing new control strategies is imperative 

for efficient traffic management decisions. In recent years, nu- 

merous approaches have been developed to implement CAVs 

control algorithms, however, this task is really complex and 
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requires knowledge of the state of all actors involved in the 

traffic system (vehicles, pedestrians, priority vehicles, etc.). 

Autonomous Intersection Management (AIM) systems are 

designed to efficiently manage CAVs at urban intersections, 

eliminating collisions, and optimizing overall traffic flow [2]. 

AIMs regulate the flow of vehicles through intersections by 

acting on their state (speed, acceleration, braking, steering, etc.). 

This control is usually based on simple rules and the intersec- 

tion’s current state, without considering other vehicle-specific 

parameters, environmental conditions, upcoming events, etc. 

[3], [4]. 

Deep Reinforcement Learning (DRL) successfully connects 

Reinforcement Learning (RL) algorithms with the strengths of 

Deep Neural Networks (DNN), accelerating these RL algo- 

rithms’ training processes and performance. As a consequence 

of this success [5], DRL is being introduced in many areas. 

In Multi-Agent (MA) environments, multiple agents execute 

actions and can affect the states of other agents. Traditional 

MA-RL algorithms have recently been successfully extended 

with DNNs for MA DRL learning, giving rise to Multi-Agent 

DRL (MADRL). The reason lies in the availability of high com- 

putational power and the efficiency of distributed algorithms, 

leading to unexpected impressive results such as those obtained 

by DeepMind [6] and OpenAI [7]. 

Due to the advantages that MADRL can offer for cleverly 

finding a cooperative control policy, we decided to explore this 

path. In this work, we detail a new AIM system based on 

MADRL, called advanced Reinforced AIM (adv.RAIM), and 

its performance is extensively evaluated in a variety of realistic 

and complex scenarios. The proposed adv.RAIM is trained by 

DRL and uses end-to-end MADRL, along with other advanced 

methods such as Curriculum through Self-Play learning and 

Prioritized Experience Replay (PER), to learn and model the 

complex dynamics of the environment in the control of CAVs 

at urban intersections. The final goal of adv.RAIM is to 

periodically act on the speed of all CAVs collectively at 

intersections to reduce lost time, by eliminating collisions and 

traffic lights. To the authors’ knowledge, this paper addresses 

the use of end-to-end MADRL in the field of AIM for the first 

time. Simulation results show that the performance of adv.RAIM 

is remarkably superior to other traditional traffic light control 

algorithms (like Fixed Time (FT) or iREDVD [8]). Furthermore, 

when compared to other recently proposed AIMs [9], adv.RAIM 

can reduce waiting time by 88%, and time loss by 55%, among 

http://www.ijsrem.com/


           
International Journal of Scientific Research in Engineering and Management (IJSREM) 

             Volume: 09 Issue: 03 | March - 2025                            SJIF Rating: 8.586                                  ISSN: 2582-3930                                                                                                    

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM42806                                             |        Page 2  
 

other metrics. This demonstrates the multiple advantages of 

MADRL to develop increasingly intelligent AIMs, which can 

provide advanced control policies and achieve smarter CAVs. 

Moreover, they can greatly surpass in control complexity the 

currently proposed AIMs, where they usually only allow straight 

or right turns, single-lane intersections, or very low vehicular 

flows. 

A tentative version of this work was previously presented in 

[10], which served as a basis for the development of RAIM and 

to demonstrate that RL-based AIM could offer advantages over 

traditional control techniques. The present work adds significant 
aspects to the initial version. 

. First, RAIM has been enhanced with a recurrent module 

(LSTM) to eliminate the problem of variation in the shape 

of the variable observations as a function of the number of 

vehicles. In addition, thanks to the nature of LSTMs, we 

can capture the long-term spatial and temporal dynamics 

of traffic conditions in the network. With this recurrent 

module, the speed calculation for each vehicle considers 

all other vehicles at the intersection. 

Secondly, the complexity of the simulation scenario has 

been considerably increased from a maximum flow of 450 

veh/h/lane to 1200 veh/h/lane and from 2 lanes to 3 lanes 

per direction, which increases exponentially the complex- 

ity and training time, but allows maximizing the advantages 

offered by RL over traditional and other AIM techniques. 

In addition, each simulated vehicle had different charac- 

teristics within a random range of acceleration, shape, fuel 

consumption, etc., which offered additional complexity in 

learning how to model the simulated environment. 

Finally, the comparison of results is extended to more 

recently published algorithms, such as an intelligent traffic 

light control system (iREDVD [8]) and an already proposed 

AIM [9], and we confirm that our model continues to 

outperform existing approaches using different evaluation 

metrics. Furthermore, considerable new analysis and in- 

tuitive explanations are added to the training curves and 

testing results. 

The rest of this paper is organized as follows. Section II pro- 

vides an overview of the operating principles of AIM. Section III 

shows the state of the art of AIM. Section IV describes the system 

proposed in this paper. The simulator and parameters used are 

shown in Section V. Section VI includes the performance results 

obtained both in the training process and in a test scenario. 

Finally, the conclusions are summarized in Section VII. 

 

II. AUTONOMOUS INTERSECTION MANAGEMENT 

Intersections are responsible for regulating the right-of-way 

of vehicles to control traffic flow, reduce accidents, and improve 

travel time, which is usually done with traffic lights, or traffic 

signals, in urban areas. With the arrival of CAVs, it requires a new 

way of controlling vehicles as a whole [11], more efficient and 

sophisticated than traditional techniques, allowing inefficient 

traffic lights to be eliminated. 

AIM emerges as a new approach to building intelligent 

systems that can deal with the complex dynamics of real-life 

 

 

Fig. 1. AIM basic operation. AIM includes a Conflict module and a Priority 
module to control AV [10]. 

 

 

and control CAVs’ state (speed, acceleration, steering, etc.) at 

intersections to provide the highest security level, increasing 

flow while increasing flow and decreasing time loss [12]. Tradi- 

tionally, these AIMs are based on two modules, one dealing with 

conflict prediction and the other with the resolution of expected 

conflicts. 

 

LITERATURE SURVEY 

This module is responsible for deciding whether, or not, there 

will be conflicts between two vehicles when approaching or 

crossing the intersection. It follows a series of rules so that it can 

predict the routes that vehicles will take within the intersection 

along space-time and check if there are conflicts. That is, when 

two or more vehicles coincide temporally and spatially, this 

component identifies a conflict. The basic operation of AIM with 

the conflict module and priority module can be seen in Fig. 1. 

This module can follow several approaches to conflict identi- 

fication: i) intersection-based [12]–[14], ii) tile-based [15]–[18], 

iii) conflict point-based [9], [19]–[22], and iv) vehicle-based 

[23]–[26]. A representation of each approach can be seen in 

Fig. 2. 

The first proposed approach laid the foundation for AIM [12]. 

This approach (intersection-based) does not allow more than one 

vehicle to be inside the intersection at the same time, regardless 

of the route the vehicles take. This option, while very simple, 

has multiple obvious disadvantages. 

A more elaborated approach is the tile-based [18], which cre- 

ates a mesh within the intersection, and vehicles cannot coincide 

in the same mesh cell simultaneously along their trajectory. 

The conflict point-based [9] only takes into account the spots 

where the trajectories of the vehicles within the intersection 

overlap. This dramatically reduces the complexity of optimiza- 

tion tasks, but due to the variable geometry of the vehicles, 

unexpected accidents may occur, a situation that can never occur. 

Finally, the vehicle-based [26] approach offers vehicles total 

freedom of movement within the intersection. Here, vehicles are 

free to choose the route they take to reach their exit lane. The 

latter option is undoubtedly the one that offers the most freedom, 

but it requires enormous computing power since it becomes a 

multidimensional and multiagent problem of vast complexity. 

. 

. 
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Fig. 2.  Approaches developed for the conflict module of AIM. 

 

PROBLEM STATEMENT 

When conflicts are encountered, the priority module resolves 

them by acting on the vehicles’ state (e.g., speed, acceleration, 

route, etc.) and managing the vehicles’ right-of-way. This mod- 

ule is responsible for ensuring that the travel time of the vehicles 

is reduced most fairly, ensuring that no vehicle is stuck infinitely. 

Seeking to assign priorities to vehicles when crossing, this mod- 

ule can give the right-of-way of vehicles in several manners: i) 

based on the order of arrival at the intersection, with First-Come 

First-Served (FCFS) [12], [19], [27], [28]; ii) assigning priorities 

based on vehicle/intersection status, such as Fast First Service 

(FFS) [9] where vehicles arriving at the intersection fastest are 

given the highest priority, or Long Queue First (LQF) [17] where 

those vehicles with the longest entry queue have the highest 

priority; iii) using some heuristics like Dynamic Programming 

(DP) or Linear Mixed Integer Programming (MILP) where given 

a series of equations and conditions is used to solving them 

[15], [22], [26], [29]–[32]; however, this method requires a huge 

computational load every time a solution is required, and when 

sudden changes occur, a solution has to be obtained again from 

scratch, which increases the complexity to solve the problem in 

an almost exponential way and the complexity is not acceptable 

for real-time systems; iv) by auctions [13], [33] with higher 

priority being given to those vehicles with the highest bids, 

creating a market economy with the currency used for auctioning 

and generating problems of equality; v) or through artificial 

intelligence mechanisms such as genetic algorithms [34] or RL 

[17]. 

 

III. STATE OF THE ART 

Having seen the principle of operation of the different AIMs, 

in this section we will look at the proposed works, as well as 

their benefits, drawbacks, and performance. The work presented 

by Stone et al. [12] was based on right-of-way reservations, 

following a policy based on FCFS, and began the develop- ment 

of these systems, which demonstrated that, in certain situations, 

the control protocol they proposed outperformed the traditional 

traffic light control protocols. Further, multiple variants of this 

work were presented that allowed the incorpo- ration of non-

autonomous vehicles (FCFS-light) [2], [35], as well as 

emergency vehicles such as ambulances or police cars (FCFS-

EMERG) [36]. The advantages offered by FCFS were a 

reduction in travel time of up to 80% compared to traffic lights 

and stop signals. 

Another interesting work on AIM was proposed by [13], 

where it presented an auction-based reserve approach. These 

auctions were used to determine the order in which vehicles pass 

through, that is, within the priority module. The vehicles that bid 

the most were passed first. The results shown in four urban cities 

showed superior performance in three of the four simulated road 

networks when compared to traditional mechanisms, as well as 

when compared to FCFS. However, this mechanism presents 

several serious problems. The main problem is that the intrinsic 

problem of any auction mechanism is vehicle starvation, in the 

sense that the auction strategy may prevent others from winning, 

with the risk that they will experience indefinitely long waiting 

times, as well as generate a market economy of the currency 

used, inflation, discrimination, etc. 

Using DRL, an AIM was presented in [17] where DRL is 

used in the priority module to create a Q-table with all possible 

combinations of vehicles per entrance and the best car to pass. 

This work offers improvements of more than 30% compared to 

FCFS and LQF, but however, very extensive training is required. 

Aside from creating all possible combinations of vehicles in the 

entry, you must find the best vehicle for each case, something 

that, for real situations, can take an enormous amount of training 

time. Nevertheless, the advantage of RL is that when such a 

policy has been found, the inference is extremely fast. However, 

in the work proposed by Levin et al. [37] it was shown that AIM 

has much room for improvement, since, in realistic ex- amples, 

conventional traffic systems were able to outperform the 

reservation-based systems proposed to date. To test this, FCFS 

was compared with a traditional traffic light system. In 

situations where vehicle flow is low, FCFS provided better 

performance, but when traffic is high (> 800 veh/h) traffic light 

control provided better performance. In addition, when traffic 

is asymmetric, in bursts, or there is a main avenue and streets 

connecting to it, the performance of FCFS was worse than that 

of traffic light control. 
It’s evident that having more control over autonomous ve- 

hicles, both individually and collectively, gives these systems a 

huge advantage over traditional control techniques in terms of 

increasing vehicle flow, avoiding accidents, and shortening 

vehicle travel times. However, the functioning of these modules 

can have serious disadvantages compared to traditional traffic 

light control techniques as they are based on simple control 

techniques. These disadvantages have been previously detailed 

in [37], where it is demonstrated that in the case of unstudied 

situations, the systems’ behavior becomes unstable and obtains 

unexpected results. Furthermore, these techniques are incapable 

of considering past events or anticipating future ones. 

http://www.ijsrem.com/
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Fig. 3. New advanced RAIM (adv.RAIM) network. The action to be performed by the ego vehicle is calculated in the Policy. The output is the normalized speed 
that the ego vehicle must follow in the next timestep. Note that there is only one LSTM cell that is iteratively fed with the features of each vehicle (14), starting 
with the ego vehicle’s state, and continuing with other vehicles’ state. The State/Conflict Encoder output (hx) was set to 256 hidden parameters. 

 

 

IV. ADVANCED REINFORCED AIM – ADV.RAIM 

Considering the enormous potential offered by AIM and the 

challenges that MADRL can address, in this work we proposed 

advanced Reinforced AIM (adv.RAIM). This new approach 

brings together the properties of the MADRL field with those of 

AIM. adv.RAIM can offer a new approach within AIM, opening 

an original path for the development of other advanced AIM 

solutions. 

Our prior work [10] showed that RAIM offers a great advan- 

tage over the previously proposed AIM in simple scenarios. In 

addition, RAIM was able to adapt to the different conditions 

that may arise as well as, once trained, being able to infer a 

result extremely quickly. Furthermore, the preliminary findings 

suggested that RAIM could outperform other traffic control 

systems in more realistic scenarios than those shown in the 

previous.However, the main problem of RAIM was that it could 

only take into account 32 vehicles at a time, using a zero-filling 

approach when faced with fewer vehicles and ignoring them 

when there were more than 32 vehicles. To solve this problem, 

the proposal we made is to use a recurrent network (Long-Short 

Term Memory, LSTM) in which the features of each vehicle 

are fed into the input and encoding of the conflicts between the 

vehicle to be controlled and the other vehicles is obtained at the 

output. This module is called State/Conflict encoder and can be 

seen in Fig. 3, where an LSTM cell is used to which all the 

vehicle states are recurrently input, and an encoded value of the 

conflicts is learned during the training process. 

The LSTM cell has the advantage of being able to learn long- 

term dependencies [38], i.e., between different vehicles 

depending on their state, since the feedback mechanism allows 

it to remember previous states of the vehicles. In addition, the 

output of the LSTM is a fixed-dimensional vector, eliminating 

the problem that RAIM had. An output size of 256 variables was 

used to allow encoding as much information as possible without 

restricting the information learned. This is the first time we have 

used an LSTM cell in a RAIM approach, and it is also a novel 

approach to conflict-based controller design. 

As for the order in which the module is fed, the state variables 

of the ego vehicle are fed first, followed by those of the other 

vehicles, in the order of their distance from the center of the 

intersection. This allows learning the state variables in the local 

neighborhood when a conflict occurs (fed by the reward signal). 

The motivation for learning in this way is that it is easier to feed 

the data in a way that considers the different states in which there 

would be a conflict, or in which there would be a large impact on 

the RL information about a given vehicle state, thus increasing 

the reward for learning to encode conflicts. 

After the State/Conflict encoder module, adv.RAIM presents a 

set of fully connected layers, which compose the Motion Planner 

module, see Fig. 3. This module decides the normalized speed to 

be carried by each CAV at the next timestep based on its features 

and the output of the state/conflict encoder to avoid collisions and 

optimize the traffic flow. This module was composed of 4 layers 

of fully connected neurons with ReLU activation functions and 

the number of neurons in each layer is shown in Fig. 3. adv.RAIM 

is termed as an ego-centric multi-agent system, having to deal 

with all the CAVs at the intersection simultaneously, but con- 

trolling each CAV individually. That is, adv.RAIM considers 

the current state of the vehicle (ego) and the other vehicles to 

obtain the normalized speed of the ego vehicle at the next time 

step.The action space is the normalized speed between 0 and 1 

that the ego-vehicle must follow in the following time interval 

(labeled ego-action in Fig. 3). The speed was denormalized 

considering a maximum road speed of 13.9 m/s ( = 50 Km/h). 

Each CAV has internal constraints of maximum accelerations 

and decelerations given by the simulation tool that it will be 

employed (typical values of 2.6 and 4.5 m/s2), so each vehicle 

performs the indicated actions considering these speed change 

constraints. 

http://www.ijsrem.com/
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TABLE VIII 

TESTING SCENARIO 3 (FIXED 1200 VEH/H/LANE) ADDITIONAL RESULTS 

 

No collisions were recorded. [mean ± std. of 10 simulations]. 

 

TABLE IX 

TESTING SCENARIO 4 (VARIABLE FLOW RATE) RESULTS 

 

No collisions were recorded. [mean ± std. of 10 simulations]. 

 

Fig. 5.  Vehicle flow rate per lane used in the testing scenario. 

and fast flow variations. This allowed us to test adv.RAIM in a 

large number of conditions as close to reality as possible, as 

well as to see the evolution of performance in different isolated 

scenariosSeveral metrics were studied. Due to the optimization 

tech- nique, the metrics directly optimized and studied were 

travel time, waiting time, and time loss due to congestion. 

Waiting time refers to the time in which the vehicle speed was 

less than or equal to 0.1 m/s. This time can be due to a variety of 

factors, including congestion. Although the travel time and time 

loss due to congestion metrics are directly related, we left both to 

show in perspective the time loss due to congestion in relation to 

the total travel time. Indirectly, pollution and consumption 

metrics (CO, CO2, HC, PMx, NOx, and fuel and electricity) 

were analyzed to show the environmental benefits that these 

systems can offer, 

in addition to the reduction in travel time and congestion. The 

traditional traffic light algorithms used for comparison were: 

fixed time algorithm (FT) and iREDVD algorithm [8]. 

The FT algorithm sets a fixed passing priority time for each 

of the branches of an intersection and only allows vehicles from 

one branch to pass at a time. Several passing priority times were 

tested, 10, 15, 20, and 30 seconds (total cycle lengths of 40, 60, 

80, and 120 seconds). They were named FT10, FT15, FT20, and 

FT30. iREDVD is an adaptive algorithm based on queuing 

theory and traffic lights. RAIM was also compared with the AIM 

approach developed by Qian et al. [9]. The vehicle distribution 

used was: 35% of diesel cars, 35% of gasoline cars, and 30% of 

electric cars with zero emissions. 

 

RESULTS 

The following section highlights the results obtained in the 

test scenario, along with a detailed comparative analysis of the 

test scenario results. 

 

A. Training Scenario 

Fig. 6 shows the results obtained in the training scenario in 

the studied metrics (number of collisions, reward, and time loss) 

versus the simulated vehicle flow throughout all simulations. 

One of the main quick observations is the stability of the system. 

This is especially noticeable at the peak of the first simulations in 

the average number of collisions metric (Fig. 6a) and is mitigated 

by the automatic Self-Play curriculum and RL nature. There are 

some outliers in the metrics as the flow increases. However, they 

eventually converge to stable values, demonstrating that TD3 

and PER allow training to converge with increasing complexity. 

In addition, it is worth noting that the number of collisions shows 

a downward trend from the peak in the initial 750 simulations 

approximately, due in part, to the large negative reward when a 

collision occurs. Finally, the number of collisions can be seen to 

trend to 0 and presents a very low value from simulation 7000 

onwards.The average reward per vehicle metric (Fig. 6b) also 

shows a negative trend, but acceptable stability within the 

confidence intervals. This negative trend is because the number 

of simulated vehicles increases over time, making the 

intersection increas- ingly congested. This causes vehicles (on 

average) to drive progressively slower, but optimally to 

maximize the average reward received by each vehicle. 

http://www.ijsrem.com/
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CONCLUSION AND FUTURE WORK 

The fields of robotics, CAVs, and ITS are advancing rapidly 

by virtue of MADRL, which provides a flexible and efficient 

way to solve complex and extreme optimization problems in 

these areas. This paper presents and evaluates adv.RAIM, a new 

and inspiring approach in AIM based on MADRL. adv.RAIM 

periodically controls the speed of CAVs passing through an 

intersection in a cooperative and decentralized manner, ensuring 

safety and maximum fluidity. adv.RAIM presents an architecture 

with an LSTM capable of capturing the long-term spatial and 

temporal dynamics of traffic conditions in the network. This 

allows it to better understand and encode possible collisions in 

space/time between different CAVs passing through an in- 

tersection and thus act proactively. In addition, apart from the 

LSTM module, it presents a module composed of deep neural 

networks in charge of crossing the collision information encoded 

by the LSTM module and the state of the CAV to be controlled, 

obtaining the speed at which the CAV should circulate during 

the following time interval. The control process is performed 

sequentially and periodically for all CAVs. 

The results show that adv.RAIM is able to overcome some 

important disadvantages of traditional AIMs (performance loss 

when the vehicular flow is heavy), controlling challenging sce- 

narios and achieving robust results through the coexistence of RL 

techniques such as TD3, PER, and Self-Play curriculum-based 

training techniques. 

Quantitatively, the results show an improvement in several 

metrics, such as a reduction in travel time by 59%, or a reduction 

in time loss by 95% in the most complex scenario. The intensive 

training and the capability of operating proactively can explain 

the good outcomes obtained. Moreover, thanks to the nature of 

the optimization, adv.RAIM is able to obtain a control policy 

capable of indirectly optimizing other very important metrics 

such as fuel/energy consumption or pollutant gas emissions, 

due to the smaller number of accelerations/decelerations of the 

CAVs. Furthermore, the modularity of adv.RAIM could be an 

advantage to explore its use in other scenarios such as highways 

or sub-urban areas. 

As future work, we will address some improvements such as 

incorporating a Transformer-based attention mechanism to 

identify conflicts, the crossing order of vehicles, or the exchange 

of information between intersections to increase collective in- 

telligence. 
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