

Enhancing Data Confidentiality Through Dual-Layer Cyber Security Tool

K. Satyanarayana Murthy¹, D. Ganesh², B. Dhanunjaya Rao³, B. Yeswanth⁴, B. Mohan Sai⁵

¹ Assistant Professor ^[2-5] B. Tech Student, LIET ^[1,2,3,4,5] Computer Science & Engineering, Lendi Institute of Engineering and Technology, Vizianagaram

Abstract - This project introduces a cybersecurity tool that makes use of the complementary fields of cryptography and image steganography. The primary aim is to fortify data confidentiality by implementing robust data hiding algorithms. The tool functions as a dual-layer security mechanism, employing Advanced Encryption Standard (AES) for cryptography and Least Significant Bit (LSB) algorithm for steganography. Through the fusion of these methodologies, the project works to enhance the protection of sensitive information by concealing it within digital images. The utilization of AES ensures a formidable encryption process, while the LSB algorithm facilitates the covert embedding of encrypted data into images. The project offers a promising way to improve data confidentiality with its creative combination of steganographic hiding and robust cryptography, offering an extra layer of defense against potential breaches or cyber threats.

Key Words: Steganography, AES Algorithm, Data Encryption, LSB, Confidentiality, Security

1. INTRODUCTION

1.1. LSB Image Steganography

The word "Steganography" is a Greek term that means "covered or hidden writing". In other terms, Steganography is a technique for concealing information behind a cover medium. Steganography can be performed using text, images, video, audio, or protocol. In our work, we will use digital picture steganography since digital photographs contain a great quantity of redundant data, making it easy to hide messages within image files. Image Steganography requires the following things to complete the work:

- Cover medium: It is an image that holds secret message.
- **The Secret message:** it is message or data to be transmitted. It can be plain or encrypted text, images or any other data.
- **The Stego-key:** it is key used to hide the message (may or may not be used).

The data is disguised in such a way that no one notices its presence in the cover medium. The primary purpose of steganography is to conceal the existence of communication.

1.2. Advance Encryption Standard (AES-128 bits)

Advanced Encryption Standard (AES), also known as Rijindael, is used to secure data. AES is a symmetric block encryption that has undergone significant analysis and is commonly used today. AES, a symmetric key encryption method, is utilized with a key length of 128 bits for this purpose. The AES algorithm's qualities include excellent security, mathematical soundness, resistance to all known attacks, high encryption speed, worldwide royalty-free use, and compatibility with a wide range of hardware and software. While DES and 3DES encryption algorithms contain flaws, the AES algorithm has not yet been found to have any. Figure 1 shows the basic construction of AES.

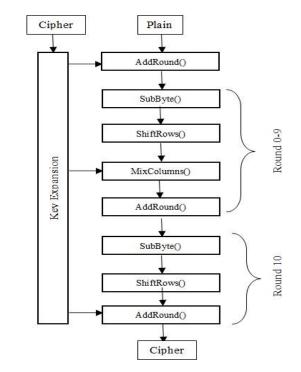


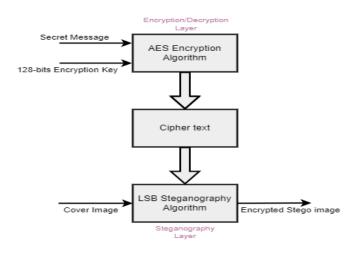
Fig -1: Advanced Encryption Standard Algorithm

2. EXISTING SYSTEM

The current landscape of digital data protection primarily revolves around encryption techniques and protocols to secure data during transmission or while at rest. Encryption, such as AES, scrambles data into an unreadable format for anyone who does not possess the decryption key, providing a strong layer of security. However, encryption alone does not address all aspects of data security, especially concerning the visibility of encrypted data, which can be a beacon for attackers, signifying that there's something worth intercepting or attacking.

3. PROPOSED SYSTEM

Data security is a biggest concern of any organization. In response to the limitations identified in the existing systems, our project introduces a novel approach to data security by seamlessly integrating Advanced Encryption Standard (AES) cryptography with Least Significant Bit (LSB) Image



Volume: 08 Issue: 06 | June - 2024

SJIF Rating: 8.448

ISSN: 2582-3930

Steganography. This proposed system is designed to not only secure data through robust encryption but also to obscure the data's very presence, thereby offering a comprehensive solution to the challenges of data confidentiality in the digital age. The cornerstone of the proposed system lies in its dual-layered security protocol. Initially, sensitive information is encrypted using the AES algorithm, renowned for its cryptographic strength and resilience against brute-force attacks. This encrypted data, while secure, remains vulnerable to detection and targeted attacks, which is where the second layer of security LSB Image Steganography comes into play. By embedding the encrypted data into digital images through 8 subtle modifications of the least significant bits of the image pixels, the system effectively renders the encrypted data invisible to all but the most sophisticated analyses. This approach not only capitalizes on the strengths of AES encryption but also mitigates its vulnerabilities by concealing the encrypted data within benign-looking images. Such images can be transmitted or stored without drawing attention, significantly reducing the likelihood of interception or unauthorized access. Moreover, the proposed system is designed with practicality in mind, ensuring that the process of embedding and extracting data does not degrade the image quality perceptibly, maintaining the usability of the steganography technique for real-world applications.

Fig -2: Encryption Process

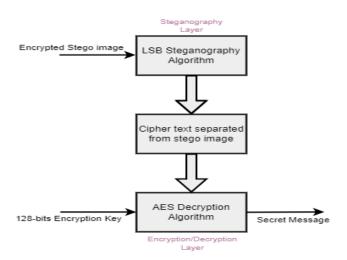


Fig -3: Decryption Process

Encryption/Decryption Layer: The core of first layer in our system is AES 128 bits Encryption algorithm. The output of this layer is a cipher text. We encrypt the secret message with AES algorithm by providing 128 bits phrase key for encryption which is optional but providing a key will give us a secure encrypted text.

LSB Steganography Layer: In this layer, we use the Least Significant Bit picture steganography algorithm. If the LSB of the pixel value of the cover picture C(i,j) is equal to the message bit SM of the secret massage to be inserted, C(i,j) is left untouched; otherwise, set the LSB of C(i,j) to SM. The message embedding procedure is described below:

$$\begin{split} S(i,j) &= C(i,j) - 1, \text{ if } LSB(C(i,j)) = 1 \text{ and } SM = 0\\ S(i,j) &= C(i,j) + 1, \text{ if } LSB(C(i,j)) = 0 \text{ and } SM = 1\\ S(I,j) &= C(i,j), \text{ if } LSB(C(i,j)) = SM \end{split}$$

Pixels before Embedding:

Pixel 1: 10001100	01001111	00001111
Pixel 2: 01010100	11010101	11011010
Pixel 3: 11101000	11110110	10000001

Pixels after Embedding "1010011", *i.e.*, alphabet "S" using LSB Algorithm:

Pixel 1: 10001101	0100111 0	00001111
Pixel 2: 01010100	1101010 <u>0</u>	1101101 <u>1</u>
Pixel 3: 1110100 <u>1</u>	11110110	10000001

In the example before it, just five of the nine bits have changed. It relies on the secret message that will be encoded. There are two sorts of digital images; 8-bit and 24-bit. In an 8-bit picture, only one bit of data can be embedded. However, in a 24-bit image, we can embed three bits of information in each pixel, as demonstrated in the example above. A photograph with 800×600 resolution may store 1,440,00 bits of encoded data. Changing the LSB of each pixel has no effect on the appearance of the original image, therefore the Stego-image seems nearly identical to the cover image. LSB is a basic algorithm with a large payload capacity. In the receiver end reverse process is applied by decrypting the stego image and then decrypting the cipher text.

4. IMPLEMENTATION AND DISCUSSION

The user interface (UI) allows users to input secret message and phrase key for encryption, select cover images for embedding, and initiate decryption processes.

4.1. Encryption Process:

The encryption process involves several phases:

- Data Input: Users input the data they want to encrypt into the system.
- Encryption: The system utilizes the AES encryption algorithm to encrypt the input data, generating ciphertext.
- Steganography: The encrypted data is embedded into digital images using LSB Image Steganography, producing steganographed images

Transmiss a

Volume: 08 Issue: 06 | June – 2024

SJIF Rating: 8.448

ISSN: 2582-3930

Image Selection	Encrypted Image
Choose File Text.jprg	REarrypted Image Preview
Tot lipst	60.
There Are More Trees on Earth Than Stars in the Milky Way Scientists have deermined that the number of stars in the Milky Way ranges from 100 hillion to upwards of 400 hillion, but there is an estimated amount of	
Choose Text Document	
Choose File No Sie chosen	
Keypeosphrase	

Fig -4: Encryption page layout

4.2. Encryption Results:

After completing the encryption process, the following results are obtained:

- Ciphertext: The encrypted data in ciphertext form.
- Steganographed Images: Digital images containing the encrypted data embedded within them.

Image Selection	Encrypted Image
Choose Image	
Choose File Test/peg	
Tret Inpet	Save
There Are More Trees on Earth Than Stars in the Milky Way Scientists have determined that the number of stars in the Milky Way ranges from 100 hillion to upwards of 400 hillion, but there is an estimated amount of	
Choase Text Document	
Choose File No file chosen	
Keypassphrase	

Fig -5: Encryption page Output

The Cipher text will be generated in the backend which is not shared with anyone for the security purposes. The Cipher text will be in the form of:

 $f6182db3e285847053b2677e1ca0c06270daa7b3f093c300368\\1464451ff8ab38a223c1aabc1e948bcc608a1ba882c130e1a111\\6d643741488595d6889b79ed5b1d1560be40f9d2fea1c74bac9\\b09b9125794f0a60992009f64a90f80187ea254701692205d4b\\1222a1e58ac57780d4a1b10095f6bf2e816f88e3201ab5fff60e4\\519e45ae6e0571d0a79ca1e7f8c1963280c643ae1854566863b\\873ef276304a3457d22dfee13342b0395e04c8a8ec15f8208538\\bc7dad01839409d14d7ec402008cccbf37d849e4d1006fef0dbf\\b75a8f93ccfd91b0c5b07ba0e86067bcda8ba655d37dd7c2296\\49b72aeaafd0fa7f8bb107c4e054d819b0$

3e589bd1215b236bb6024ad21c3bb9bd30a66411e7582a

This won't be the same for all the time.

4.3 Decryption Process:

The decryption process reverses the encryption phases:

- Steganography Extraction: The system extracts the encrypted data from steganographed images using LSB Image Steganography.
- Decryption: The extracted encrypted data is decrypted using the AES decryption algorithm, resulting in plaintext.

Image and Text Input	Decrypted Text and Output
Choose Stego Image Choose File encrypted_image pag	Decrypted Text
enous rue area theor wande held	
	See
Keypassphrase	

Fig -6: Decryption page layout

4.4 Decryption Results:

Upon completing the decryption process, the following results are obtained:

Decrypted Data: The original plaintext data recovered from the decrypted ciphertext.

Image and Text Input Choose Stepo Image	Decrypted Text and Output Decrypted Text
Conser File encrysted_image page	There are two Twen on Early The Barrie the Milloy Way Scientific have determined that the number of early in the Milloy Way magnetism (2) Million to opposed in 400 Million.
Keypessphrase	

Fig -7: Decryption page Output

4.5 Discussion:

The results obtained from the encryption and decryption processes demonstrate the efficacy of the proposed system in securing data confidentiality. The encryption phase ensures that sensitive data is transformed into an unreadable format, protecting it from unauthorized access. Additionally, the steganography phase conceals the encrypted data within digital images, adding an extra layer of security. The decryption phase successfully retrieves the original plaintext data from steganographed images, providing assurance that the data remains intact and accessible only to authorized parties.

Output

Cover Image

Cover Image

Fig -8: (a) Cover image

(b) Encrypted stego image

International Journal of Scientific Research in Engineering and Management (IJSREM)

SIIF Rating: 8.448

ISSN: 2582-3930

5. CONCLUSIONS

In this project, titled "Enhancing Data Confidentiality Through Dual-Layer Cybersecurity Tool," we have successfully developed a system that combines AES cryptography algorithm with LSB image steganography algorithm to enhance data confidentiality and security. Through the integration of these two techniques, we aimed to provide a robust solution for safeguarding sensitive information from unauthorized access and interception. Our system utilizes AES encryption to secure data, ensuring that it remains unreadable unauthorized parties. Additionally, LSB image to steganography is employed to conceal the encrypted data within digital images, effectively masking its presence and reducing the risk of detection. This dual-layered approach offers a comprehensive security solution, addressing both confidentiality and stealth in data transmission and storage. Through implementation and testing, we have observed promising results in terms of security, performance, and practical applicability. The encryption and steganography processes demonstrated efficient performance, with minimal computational overhead and negligible impact on image quality. Moreover, the successful extraction and decryption of hidden data from stego images validate the reliability and robustness of our system.

ACKNOWLEDGEMENT

We would like to thank the Department of Computer Science & Engineering Lendi Institute of Engineering and Technology, Vizianagaram for helping us to carry out the work and supporting us throughout the research.

REFERENCES

- 1. Schneier, Bruce. "Applied Cryptography: Protocols, Algorithms, and Source Code in C." John Wiley & Sons, 1996.
- 2. Ferguson, Niels, and Schneier, Bruce. "Practical Cryptography." John Wiley & Sons, 2003.
- 3. Stallings, William. "Cryptography and Network Security: Principles and Practice." Pearson, 2016.
- 4. Johnson, Neil F., and Jajodia, Sushil. "Steganography: Seeing the Unseen." IEEE Computer Society Press, 1998.
- 5. Fridrich, Jessica, Goljan, Miroslav, and Du, Rui. "Detecting LSB steganography in color and grayscale images." IEEE Multimedia, Vol. 8, No. 4, 2001, pp. 22-28.
- 6. Python Imaging Library (PIL). "Pillow: Python Imaging Library." [Online]. Available: https://python-pillow.org/.
- 7. "A Novel Approach to Enhance Data Confidentiality using LSB Image Steganography and AES Cryptography". Authors: Anandhavelu P., Kavitha G. Source: 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS)
- 8. "Image Steganography with AES Encryption Technique". Authors: Aparna Singh, Amit Kushwaha, Source: 2016 International Conference on Advances in Computing, Communication, & Automation (ICACCA)

- 9. "A Hybrid Approach for Data Hiding using LSB Steganography and AES Cryptography". Authors: M. Kishore Kumar, T. Padmavathi, Source: 2018 International Conference on Inventive Research in Computing Applications (ICIRCA)
- 10. "A Hybrid Approach for Data Hiding using LSB Steganography and AES Cryptography". Authors: M. Kishore Kumar, T. Padmavathi, Source: 2018 International Conference on Inventive Research in Computing Applications (ICIRCA)