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Abstract— Accurate node localization plays a critical role in wireless
sensor networks used for tsunami early warning, where timely and
dependable information can help reduce the impact of approaching
waves. Sensor nodes in such environments are spread across wide
and unpredictable ocean regions, which makes localization difficult
when only a few anchor nodes are available and when distance
measurements are noisy. To improve the precision of range-based
localization in these conditions, this study applies metaheuristic
optimization methods to estimate the positions of unknown nodes.

Our approach Three population based algorithms are examined
within a single simulation setup: Ant Colony Optimization,
Differential Evolution, and the Jellyfish Optimization Algorithm,
which serves as the main focus of the work. Each method is tested on
the same node deployment and environmental settings to ensure
consistency. The aim of the study is to understand how these
algorithms search for optimal positions, how stable their localization
process is, and how suitable they are for large scale early warning
sensor networks placed in marine regions. The work forms a
foundation for choosing effective optimization based strategies that
can enhance the reliability of localization in critical warning
applications.

Keywords— Wireless Sensor Networks, Tsunami Early Warning,
Node Localization, Metaheuristic Optimization, Differential
Evolution, Jellyfish Optimization Algorithm.

I. INTRODUCTION

capable of destroying coastal environments within minutes

once a major wave is triggered. Early detection plays a vital
role in reducing casualties and economic losses, and modern
monitoring efforts rely heavily on distributed sensing
technologies placed across large marine regions. Wireless sensor
networks have become a preferred solution for this task because
they can cover wide areas, operate with minimal human
intervention and provide real-time environmental data. These
networks typically consist of many sensor nodes that measure
water pressure, wave height, vibration and other relevant
parameters that help identify the early signs of tsunami
formation. For the data collected by these nodes to be
meaningful, the exact geographic location of each sensor must

F I \sunamis are among the most severe natural disasters,

be known with high accuracy. Incorrect location information can
lead to errors in wave propagation models and may cause early
warning systems to issue delayed or inaccurate alerts.

Node localization therefore becomes a fundamental requirement
in the design of any wireless sensor network used for tsunami
early warning. In controlled or land based deployments,
localization may be handled through GPS, time-based
measurements or geometry driven techniques. However, marine
environments are much more challenging. Ocean waves,
floating movement, irregular distances between nodes and
limited availability of fixed anchors make traditional
localization methods less reliable. Communication among the
nodes is also affected by water surface reflections and
environmental noise, which reduces the accuracy of measured
distances. As a result, classical geometric approaches often fail
to provide consistent results. They usually require strong
line-of-sight conditions or a large number of anchor nodes, both
of which are difficult to guarantee in the ocean.

To overcome these limitations, optimization based localization
techniques have gained attention. These methods treat the search
for node coordinates as an optimization problem, where the
objective is to minimize the difference between measured
distances and estimated distances. Metaheuristic algorithms are
particularly suitable for this type of problem because they do not
depend on strict assumptions about the environment or on
gradient information. Instead, they explore the solution space
through iterative refinement and are capable of escaping local
minima, which is important in highly nonlinear localization
landscapes. Their flexibility makes them attractive for large
scale sensor deployments with uncertain or incomplete
information or data provided to them.

This project focuses on the use of three metaheuristic algorithms
to improve localization accuracy in wireless sensor networks
designed for tsunami early warning. The algorithms chosen
represent different families of population based search
strategies. Ant Colony Optimization imitates the foraging
behavior of ants, where artificial agents gradually discover good
solutions by reinforcing promising paths. Differential Evolution
relies on vector based mutation and recombination strategies that
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allow it to search continuously across the solution space. The
Jellyfish Optimization Algorithm is inspired by the collective
drifting and movement patterns of jellyfish in ocean currents.
JFOA is of particular interest in this work because its exploration
behavior and adaptive movement rules show potential for
handling complex optimization problems that require a balance
between global search and local refinement.

All three algorithms are implemented in a single simulation
environment to ensure that their performance can be compared
in a fair and consistent manner. The node layout, number of
anchors and transmission range remain identical for each
algorithm so that differences in localization results can be
attributed to the search strategies themselves rather than to
environmental factors. This creates a controlled setting to
observe how each method adapts to the constraints of marine
sensor networks and how effectively it handles noisy distance
measurements. In particular, the study aims to examine how
each algorithm progresses during the localization process, how
stable its search path is and how suitable it is for large and
irregular ocean based deployments where node movement and
measurement uncertainty are common.

Improving localization accuracy is essential for strengthening
the reliability of tsunami early warning systems. When node
positions are estimated more precisely, the data collected by the
sensors becomes more trustworthy, which leads to better
prediction of wave formation and propagation. By exploring the
strengths and limitations of ACO, DE and JFOA in this context,
the project contributes to the development of robust techniques
that can support long term ocean monitoring and disaster
preparedness. The insights gained from the study can guide
future work in designing scalable and fault tolerant localization
methods for high risk environments where early and accurate
warnings are crucial.

By automating the detection process, we aim to assist healthcare
professionals in providing faster, more accurate diagnoses,
enabling early intervention and also reducing the risk of vision
loss for millions of patients.

II. LITERATURE REVIEW

This literature survey highlights some of the key contributions
to the field, showcasing various methodologies and their
outcomes.

Wireless Sensor Networks for Tsunami Early Warning

Wireless sensor networks have become an important component
of modern tsunami early-warning infrastructure. Kumar and Dev
(1) explained that distributed pressure and wave-height sensors
allow continuous monitoring of ocean disturbances. Tanaka et
al. (2) highlighted how real-time sensing networks can reduce
the delay in issuing alerts to coastal populations. Silva and
Gomes (3) further showed that the performance of tsunami
prediction models depends heavily on the accuracy of spatial
information associated with each sensor node. Since marine
networks cover large and unstable regions, reliable node
localization is essential to maintain the quality of the collected
data.

Challenges of Localization in Marine Environments

Localizing nodes in ocean regions is significantly harder than in
land-based networks. Patel and Rahman (4) observed that
floating sensors drift with currents, which leads to inconsistent
range measurements. Naito and Ueda (5) showed that
underwater noise and unstable communication links decrease
the reliability of distance-based localization. Fernandes et al. (6)
pointed out that maintaining a high number of anchor nodes in
deep-water deployments is costly and technically challenging.
These constraints reduce the effectiveness of geometry-driven
localization methods and motivate the use of optimization
techniques that can tolerate noise and uncertainty.

Optimization-Based Localization

Optimization approaches treat localization as a search problem
where node coordinates must satisfy measured distances. Early
works by Chou and Lin (7) applied nonlinear minimization for
underwater positioning but faced convergence issues in noisy
environments. Borges and Almeida (8) demonstrated that
metaheuristic methods provide better robustness since they
explore multiple candidate solutions simultaneously. Li and
Cheng (9) observed that population-based algorithms can
navigate highly irregular error surfaces commonly found in
WSN localization. These findings indicate that optimization
offers a more reliable framework for marine sensor networks.

Ant Colony Optimization (ACQO) in Localization

ACO has been studied for solving routing and localization
problems due to its nature-inspired exploration behavior.
Hernandez and Ruiz (10) introduced one of the early ACO-based
localization models and reported improved performance in
sparse networks. Singh and Arora (11) examined the impact of
pheromone parameters and found that improper tuning can slow
down the algorithm. Duarte et al. (12) carried out a comparative
analysis and concluded that ACO performs well for
medium-sized networks but may show slow convergence in
networks with large spatial spread.

Differential Evolution (DE) for Localization

Differential Evolution is widely recognized for its strong global
search ability. Park and Cho (13) applied DE to underwater
localization and reported enhanced accuracy over classical
least-squares techniques. Chen and Wang (14) demonstrated that
DE maintains stable performance even when measurement noise
is high. Ibrahim and Mahmud (15) further showed that DE
performs reliably with fewer anchors, making it suitable for
ocean-based deployments. These observations make DE a strong
benchmark algorithm for comparing newer metaheuristics.

Jellyfish Optimization Algorithm and Related Research

JFOA is a relatively recent metaheuristic inspired by the drifting
and active movement of jellyfish in ocean currents. Zhao and He
(16) explored its use in scheduling problems and found that its
movement patterns support strong exploration. Farouk and
Salem (17) used JFOA for clustering and noted its ability to
switch between passive and active behaviors, preventing

premature convergence. Rana and Pillai (18) tested JFOA under
noisy conditions and concluded that its dynamic movement rules
enhance stability. Although studies applying JFOA to WSN
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localization are limited, its characteristics make it well suited for
noisy marine environments.

Studies on Metaheuristic Localization Methods

Gupta and Mehra (19) compared PSO, GA and ACO and
concluded that no single algorithm performs best across all
scenarios. Lopez et al. (20) evaluated DE, ABC and Firefly
Algorithm and observed that DE maintained consistent accuracy
across uniform and random node deployments. Kaneko and
Ishikawa (21) compared newer metaheuristics including JFOA
and reported that algorithms with strong exploration abilities
perform better under high-noise conditions. These comparative
studies highlight the need to evaluate ACO, DE and JFOA under
the same simulation setup specifically for tsunami early-warning
networks.

III. METHODOLOGY

A. Model Architecture

The overall architecture of the proposed localization model
follows a structured sequence that begins with preparing a
simulated marine sensing environment and ends with evaluating
the accuracy of estimated node positions. The architecture is
designed to reflect the actual behavior of tsunami early warning
networks, where sensor nodes collect environmental data across
wide ocean regions and rely on distance-based communication to
maintain network stability.

The architecture contains four essential layers. The first layer
defines the marine sensing field and deploys sensor nodes across
it. A certain number of these nodes act as anchors with known
coordinates, while the remaining nodes form the set of unknown
positions to be estimated. The second layer generates the measured
distances between nodes using the Euclidean distance formula.
These distances form the primary input to the optimization
algorithms.

The third layer represents the metaheuristic optimization engine.
This layer includes the implementations of Ant Colony
Optimization, Differential Evolution and the Jellyfish
Optimization Algorithm. Each algorithm receives the same
distance matrix and attempts to minimize the localization error by
updating candidate coordinate sets for the unknown nodes. During
this process, each algorithm follows its own internal mechanism.
ACO updates pheromone levels and guides ants toward better
coordinate configurations, DE evolves a population of solutions
through mutation and crossover, and JFOA navigates the search
space through both passive drifting and active movement.

The final layer performs evaluation. This includes computing final
localization error, generating convergence curves, comparing
estimated node positions with ground truth and studying how
anchor count and communication range influence accuracy.

This layered structure ensures that the entire process, from data
preparation to algorithmic optimization and final evaluation, is
handled systematically.

Initialize Simulation Environment

* define 2D region —
» deploy nodes s ACO
« assign anchors D_[',
* sel communication range JFOA
Generate Distance Measurements
compute Euclidean distances
for nodes within range
| 2 by .
Define Fitness Function Select
sum of squared distance % Metaheuristic
errors Algorithm
1
L 4
Initialize Algonthm Parameters|
update candidates with
algorithm-specific rules
evaluate fitness
Output Estimated Node Coordinates

Performance Evaluation

* convergence curves

« crror histograms

« node layou! comparisson

« anchor and transmissisiog tests

e Y e
End

Fig. 1. Model Architecture

B. Data Preprocessing

The preprocessing stage prepares all the necessary information for
the optimization algorithms. The first step is defining the
two-dimensional marine sensing region and deploying the sensor
nodes. Their true coordinates are generated randomly so that the
network resembles real deployments, where nodes may not be
placed in perfect grids. The anchor nodes are selected from this set
based on a predefined ratio, and their positions remain fixed
throughout the simulation.

The next part of preprocessing involves generating the pairwise
distances between nodes. For each pair of nodes that fall within
the communication radius, their Euclidean distance is calculated
using the formula:

dj = \/(xi - xj)2 + (v — yj)z

These distances form the distance matrix used by all three
algorithms. Nodes outside the communication range are not
included in the matrix, reflecting the realistic behavior of marine
sensor networks where long-range communication is limited.

The preprocessing stage also includes structuring the initial
population for each algorithm. In ACO, the starting pheromone
levels are set uniformly. In DE, an initial population of coordinate

vectors is generated, each containing random estimates for
unknown node positions. In JFOA, initial jellyfish agents are
positioned randomly in the search space. The preprocessing
ensures that all algorithms begin with equal information and
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identical environmental constraints.

C. Model Training

Model training refers to the optimization process where each
algorithm iteratively improves its estimate of the unknown node
positions. Even though the algorithms differ in their internal
behavior, they all attempt to minimize the same objective function.
This function computes the overall localization error by summing
the squared differences between measured distances and distances
derived from estimated coordinates:

i 2
— Z measured estimated

Training with Ant Colony Optimization:

In ACO, each ant represents a possible coordinate assignment. The
ants explore the search space using transition probabilities that
depend on pheromone intensity and heuristic information. After
evaluating the quality of each solution using the objective
function, pheromone values are updated. Better solutions reinforce
the pheromone trail more strongly. This gradual reinforcement
leads the colony toward lower error solutions.

Training with Differential Evolution:

DE trains the model by generating new solutions through mutation
and crossover. In mutation, a candidate vector is created by adding
the scaled difference of two vectors to a third vector. The
crossover step mixes the mutant with the current vector to produce
a trial solution. Selection then decides whether the trial solution
replaces the existing one based on which has the lower error. This
process repeats over many generations, gradually improving the
population.

Training with Jellyfish Optimization Algorithm:

JFOA training alternates between passive drifting and active
movement. In passive drifting, jellyfish agents move with
simulated ocean currents, which encourages global exploration. In
active movement, agents swim toward better solutions, improving
local convergence. The algorithm uses a time control mechanism
to regulate when to prioritize exploration or exploitation. As
training progresses, the agents move toward coordinate values that
reduce the localization error.

D. Evaluation

The evaluation stage assesses how well each algorithm performs
in estimating node positions. Several performance metrics and
visual outputs are used to compare the results.

Convergence Analysis:

Line plots showing the change in fitness across iterations reveal
how quickly and smoothly each algorithm reduces localization
error. In your outputs, DE converges the fastest, JFOA shows
steady improvement and ACO displays slower, gradual
convergence.

Localization Error Distribution:

Histogram plots illustrate the spread of localization error across
nodes. A narrow spread indicates stable performance. DE
typically produces the smallest spread, while ACO exhibits

wider variation.

True vs. Estimated Node Position Plots:

Scatter plots compare estimated coordinates with actual
coordinates. These visualizations help determine whether the
algorithm preserves the general layout and structure of the
sensor network.

Anchor Variation Tests:

By increasing or decreasing the number of anchors, the
evaluation examines how dependent each algorithm is on anchor
density. In your simulation, JFOA shows improved stability with
more anchors.

Transmission Range Analysis:

When the communication range increases, more nodes have
distance information available, improving estimates. All
algorithms show better performance with larger ranges, but
JFOA adapts the fastest.

Together, these evaluation steps provide a clear picture of how
each algorithm behaves in a realistic tsunami early warning
environment and highlight the strengths and weaknesses of each
method.

IV. IMPLEMENTATION AND RESULTS
A. Datasets overview

The dataset used in this work is generated entirely through
simulation, reflecting the structure of a wireless sensor network
deployed for tsunami early warning. The network consists of a
fixed number of sensor nodes placed within a two-dimensional
marine region. Their true coordinates are created randomly so
that the spatial layout resembles a practical environmental
deployment rather than a regular grid. Among these nodes, a
selected percentage serve as anchor nodes with predefined and
accurate coordinates, while the remaining nodes are treated as
unknowns that must be localized through the optimization
model.

The primary dataset consists of the pairwise distance
measurements between connected nodes. These distances are
computed using the Euclidean distance formula and are only
recorded for node pairs that fall within the communication radius
defined in the simulation. This ensures that the dataset reflects
realistic communication limitations faced by marine sensor
networks, where surface drift, signal loss and water movement
influence connectivity. The dataset therefore includes the true
node positions, anchor coordinates, communication radius
values and the distance matrix that forms the input to the
metaheuristic algorithms.

B. Environmental Setup

The entire implementation is carried out in a controlled
simulation environment that reflects conditions relevant to
tsunami monitoring. A two-dimensional coordinate plane is used
to represent the sensing region. Sensor nodes are placed across
this region, and a chosen subset is assigned as anchors. The
communication radius determines which nodes are able to
measure distances to one another, and this range remains fixed
during each run of an algorithm.

Once the network layout is defined, the system constructs the
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distance matrix by applying the Euclidean formula to all node
pairs within range. This matrix forms the core input to the
optimization algorithms. The simulation environment also
initializes key parameters for each algorithm.

For ACO, pheromone values and transition probabilities are set.
For DE, the initial population, scaling factor and crossover rate
are generated. For JFOA, the starting positions of jellyfish
agents and the time control mechanism are established.

All three algorithms operate under the same environmental
constraints. This includes identical node placement, anchor
selection, population size, iteration count and fitness evaluation
method. Such uniformity ensures that differences in results arise
strictly from the internal behavior of each algorithm rather than
variations in the experimental conditions.

C. Experimental Execution

The three metaheuristic algorithms are executed individually,
following a shared objective of minimizing the localization
error. Each algorithm maintains a population of potential
coordinate assignments for the unknown nodes and iteratively
improves these estimates.

Ant Colony Optimization:

ACO models each candidate solution as an artificial ant. The
ants update their coordinate estimates based on pheromone
levels and heuristic information. As iterations progress,
pheromone reinforcement guides the search toward regions that
produce lower error. Convergence occurs gradually due to the
probabilistic nature of the transitions.

Differential Evolution:

DE begins with a population of candidate coordinate vectors.
New solutions are generated through mutation, crossover and
selection. Each iteration produces trial vectors that compete with
existing ones, and solutions that reduce localization error are
retained. The convergence behaviour is typically fast and
stabilizes early due to strong exploitation mechanisms.

Jellyfish Optimization Algorithm:

JFOA alternates between passive drifting and active movement.
Passive drifting enables broad exploration of the search space,
while active movement allows solutions to adjust toward more
promising regions. A time-control factor regulates the balance
between these two modes, resulting in steady and smooth
convergence throughout the iterations.

After completing the maximum number of iterations, each
algorithm outputs its best estimated set of coordinates. These
estimates are used for visualization and error analysis. Each
algorithm continues iterating until it reaches the predefined
maximum number of iterations.

At the end of execution, the best solution produced by each
method represents the estimated coordinates of all unknown
nodes. These results are stored for comparison and further
evaluation.

D. Performance Evaluation

Performance is assessed using a combination of numerical and
graphical evaluations.

Convergence Curves:

The convergence plots show how the objective function
decreases over time. Differential Evolution achieves rapid error
reduction and stabilizes early. The Jellyfish Optimization
Algorithm exhibits smooth and progressive improvement across
the entire iteration range. Ant Colony Optimization converges
more slowly, with noticeable fluctuations during the early
stages.

Convergence: JFOA
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Fig. 2. Jellyfish Convergence Curve
Anchor Variation Experiments:

When the number of anchor nodes is adjusted, JFOA
demonstrates strong improvement as anchor density increases.
DE maintains reliable performance even with fewer anchors,
showing resilience under low-reference conditions. ACO
displays higher sensitivity to anchor changes, with error levels
fluctuating more noticeably.

Localization Error Distribution:

Error histograms illustrate the spread of estimation error across
the network. DE produces the narrowest distribution, indicating
high consistency. JFOA shows moderate variance with
relatively stable performance across nodes.

ACO displays a wider error spread, reflecting the stochastic
nature of its search process.

Fig4: Anchors vs Error Std
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Fig. 3. Anchors vs Error Std
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True vs. Estimated Node Positions:

Graphical comparisons between estimated and actual node
locations reveal that DE reconstructs the network layout with
high spatial accuracy. JFOA maintains good structural
consistency with only minor deviations. ACO captures the
general layout but exhibits greater variability in individual node
positions.

True vs Est: JFOA (anchors=5)
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Fig. 4. True vs Estimated Jellyfish Algorithm
Transmission Range Experiments:

Increasing the communication radius improves localization
accuracy for all three algorithms. JFOA adapts effectively to
wider ranges, maintaining stable performance as more distance
information becomes available.

DE continues to perform reliably across all tested ranges. ACO
also benefits from increased range but retains higher variability
compared to the other methods.

The combined results highlight distinct strengths among the
algorithms. DE excels in speed and precision, JFOA provides
balanced and robust performance under varying conditions, and
ACO offers reliable yet slower convergence with greater
sensitivity to environmental factors.

V. RESULTS AND DISCUSSIONS

The results of the study highlight how the three metaheuristic
algorithms perform when applied to range-based node localization
in a wireless sensor network designed for tsunami early warning.
Each algorithm is evaluated under identical environmental
conditions, allowing their strengths and limitations to be observed
clearly. The discussion presented in this section is based on the
convergence behavior, spatial accuracy of node estimation, error
distributions and the impact of anchor density and communication
range on overall performance.

Key Insights & Results Interpretation:

1. Algorithm Behaviour

The convergence curves reveal clear distinctions in search
dynamics. Differential Evolution quickly identifies promising
regions of the solution space and refines them with strong

exploitation ability. JFOA maintains a balanced search due to its
controlled transition between passive and active movement,
leading to gradual yet dependable convergence. ACO explores
widely but takes longer to stabilize because its pheromone
patterns require time to mature.

2. Spatial Reconstruction Capability

The comparison of true and estimated locations provides a direct
measure of coordinate accuracy. DE consistently produces the
closest alignment to the real layout, confirming its robustness in
handling noisy sensor information. JFOA also reconstructs the
network shape well, showing that its exploratory motion helps
maintain structural consistency. ACO captures the general
pattern but displays more scatter, particularly in areas with fewer
connections.

3. Error Consistency and Stability

The error histograms illustrate that DE maintains the lowest
variance, while JFOA offers moderate and stable distributions.
ACO exhibits a wider spread, indicating a higher sensitivity to
local minima and uneven pheromone development. This
reinforces the observation that DE is the most consistent across
the network, while JFOA remains a strong alternative.

4. Role of Anchors and Communication Range

Increasing anchor density reduces uncertainty for all models,
with JFOA showing particularly strong gains when more
anchors are available. DE’s performance remains stable even
when anchors are limited, demonstrating resilience. ACO
depends more heavily on anchor information and therefore
shows noticeable sensitivity. Larger communication ranges
improve localization accuracy across the board, enabling the
algorithms to use more distance information. JFOA benefits the
most, indicating strong adaptability to enhanced connectivity.

5. Suitability for Tsunami Early Warning Systems

The reliability of node positioning is crucial in marine
environments where environmental noise is high and distances
are inconsistent. The overall performance pattern suggests that
DE provides the highest accuracy, JFOA offers robustness
across varying conditions and ACO is more suited for scenarios
where computational cost is less important and exploratory
behaviour is desired.

VI. CONCLUSION AND FUTURE SCOPE

This study examined the effectiveness of three population-based
metaheuristic ~ algorithms—Ant  Colony  Optimization,
Differential Evolution and the Jellyfish Optimization
Algorithm—for improving node localization accuracy in
wireless sensor networks used for tsunami early warning. The
evaluation was carried out under consistent simulation
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conditions, allowing a fair and meaningful comparison of their
performance.

The results clearly indicate that Differential Evolution provides
the highest level of accuracy and the fastest convergence. Its
ability to refine candidate solutions rapidly and consistently
makes it well suited for environments where reliable and timely
localization is essential. The Jellyfish Optimization Algorithm
also demonstrated strong performance, maintaining stable
improvement across iterations and adapting effectively to
variations in anchor density and communication range. This
balance of exploration and exploitation suggests that JFOA is a
robust option for scenarios involving environmental noise and
irregular connectivity, which are common in marine settings.

Ant Colony Optimization was able to estimate node positions
but exhibited slower convergence and higher variability. Its
performance improved with greater connectivity and anchor
support, yet it remained less consistent than the other two
techniques.

Overall, the findings show that metaheuristic approaches are
effective for addressing the nonlinear and uncertain nature of
marine sensor localization, with DE offering the strongest
results and JFOA providing a reliable and flexible alternative.
The outcomes highlight the importance of choosing
optimization strategies that can handle sparse measurements,
dynamic environments and large deployment areas, all of which
are characteristics of tsunami early warning systems. Accurate
localization greatly enhances the reliability of sensed data,
improving the responsiveness and precision of early-warning
alerts.

Future Scope:

The work presented in this study opens several promising
avenues for further research and real-world application:

1. Hybrid Optimization Models

Future studies can explore combining strengths of multiple
algorithms. Hybrid models such as DE-JFOA or ACO-DE
could capture both rapid convergence and stable global search,
potentially outperforming standalone methods.

2. Real-Time and Adaptive Localization

Marine sensor nodes may drift due to currents, requiring
dynamic position updates. Developing algorithms that
continuously adapt to movement and changing environmental
conditions can improve the reliability of long-term deployments.

3. Integration with Real Ocean Communication Models

The simulation can be enhanced by incorporating underwater
acoustic propagation, signal attenuation and noise models. This
would make the localization results more representative of
practical ocean scenarios.

4. Extension to Three-Dimensional Localization

While the current system uses a two-dimensional plane, real
tsunami sensors may operate at varying depths. Extending the
optimization methods to 3D localization would increase their
applicability to deep-water sensor networks.

5. Large-Scale Deployment Studies

Future research can test these algorithms with larger networks
covering wider ocean regions. This would help evaluate
scalability, robustness and computational efficiency.

6. Energy-Aware Localization Strategies

Sensors deployed in the ocean operate on limited power.
Developing localization algorithms that minimize energy
consumption while maintaining accuracy can improve the
operational lifespan of the network.

7. Field Testing and Validation

Validating the algorithms with real buoys or coastal sensor
systems would provide valuable insight into their performance
under actual environmental noise, weather conditions and
communication challenges.
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