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Abstract— Accurate node localization plays a critical role in wireless 

sensor networks used for tsunami early warning, where timely and 

dependable information can help reduce the impact of approaching 

waves. Sensor nodes in such environments are spread across wide 

and unpredictable ocean regions, which makes localization difficult 

when only a few anchor nodes are available and when distance 

measurements are noisy. To improve the precision of range-based 

localization in these conditions, this study applies metaheuristic 

optimization methods to estimate the positions of unknown nodes. 

Our approach Three population based algorithms are examined 

within a single simulation setup: Ant Colony Optimization, 

Differential Evolution, and the Jellyfish Optimization Algorithm, 

which serves as the main focus of the work. Each method is tested on 

the same node deployment and environmental settings to ensure 

consistency. The aim of the study is to understand how these 

algorithms search for optimal positions, how stable their localization 

process is, and how suitable they are for large scale early warning 

sensor networks placed in marine regions. The work forms a 

foundation for choosing effective optimization based strategies that 

can enhance the reliability of localization in critical warning 

applications. 

 Keywords— Wireless Sensor Networks, Tsunami Early Warning, 

Node Localization, Metaheuristic Optimization, Differential 

Evolution, Jellyfish Optimization Algorithm. 

 

I. INTRODUCTION 

sunamis are among the most severe natural disasters, 

capable of destroying coastal environments within minutes 

once a major wave is triggered. Early detection plays a vital 

role in reducing casualties and economic losses, and modern 

monitoring efforts rely heavily on distributed sensing 

technologies placed across large marine regions. Wireless sensor 

networks have become a preferred solution for this task because 

they can cover wide areas, operate with minimal human 

intervention and provide real-time environmental data. These 

networks typically consist of many sensor nodes that measure 

water pressure, wave height, vibration and other relevant 

parameters that help identify the early signs of tsunami 

formation. For the data collected by these nodes to be 

meaningful, the exact geographic location of each sensor must 

be known with high accuracy. Incorrect location information can 

lead to errors in wave propagation models and may cause early 

warning systems to issue delayed or inaccurate alerts.  

Node localization therefore becomes a fundamental requirement 

in the design of any wireless sensor network used for tsunami 

early warning. In controlled or land based deployments, 

localization may be handled through GPS, time-based 

measurements or geometry driven techniques. However, marine 

environments are much more challenging. Ocean waves, 

floating movement, irregular distances between nodes and 

limited availability of fixed anchors make traditional 

localization methods less reliable. Communication among the 

nodes is also affected by water surface reflections and 

environmental noise, which reduces the accuracy of measured 

distances. As a result, classical geometric approaches often fail 

to provide consistent results. They usually require strong 

line-of-sight conditions or a large number of anchor nodes, both 

of which are difficult to guarantee in the ocean. 

To overcome these limitations, optimization based localization 

techniques have gained attention. These methods treat the search 

for node coordinates as an optimization problem, where the 

objective is to minimize the difference between measured 

distances and estimated distances. Metaheuristic algorithms are 

particularly suitable for this type of problem because they do not 

depend on strict assumptions about the environment or on 

gradient information. Instead, they explore the solution space 

through iterative refinement and are capable of escaping local 

minima, which is important in highly nonlinear localization 

landscapes. Their flexibility makes them attractive for large 

scale sensor deployments with uncertain or incomplete 

information or data provided to them. 

This project focuses on the use of three metaheuristic algorithms 

to improve localization accuracy in wireless sensor networks 

designed for tsunami early warning. The algorithms chosen 

represent different families of population based search 

strategies. Ant Colony Optimization imitates the foraging 

behavior of ants, where artificial agents gradually discover good 

solutions by reinforcing promising paths. Differential Evolution 

relies on vector based mutation and recombination strategies that 
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allow it to search continuously across the solution space. The 

Jellyfish Optimization Algorithm is inspired by the collective 

drifting and movement patterns of jellyfish in ocean currents. 

JFOA is of particular interest in this work because its exploration 

behavior and adaptive movement rules show potential for 

handling complex optimization problems that require a balance 

between global search and local refinement. 

All three algorithms are implemented in a single simulation 

environment to ensure that their performance can be compared 

in a fair and consistent manner. The node layout, number of 

anchors and transmission range remain identical for each 

algorithm so that differences in localization results can be 

attributed to the search strategies themselves rather than to 

environmental factors. This creates a controlled setting to 

observe how each method adapts to the constraints of marine 

sensor networks and how effectively it handles noisy distance 

measurements. In particular, the study aims to examine how 

each algorithm progresses during the localization process, how 

stable its search path is and how suitable it is for large and 

irregular ocean based deployments where node movement and 

measurement uncertainty are common. 

Improving localization accuracy is essential for strengthening 

the reliability of tsunami early warning systems. When node 

positions are estimated more precisely, the data collected by the 

sensors becomes more trustworthy, which leads to better 

prediction of wave formation and propagation. By exploring the 

strengths and limitations of ACO, DE and JFOA in this context, 

the project contributes to the development of robust techniques 

that can support long term ocean monitoring and disaster 

preparedness. The insights gained from the study can guide 

future work in designing scalable and fault tolerant localization 

methods for high risk environments where early and accurate 

warnings are crucial. 

By automating the detection process, we aim to assist healthcare 

professionals in providing faster, more accurate diagnoses, 

enabling early intervention and also reducing the risk of vision 

loss for millions of patients. 

 

II. LITERATURE REVIEW 

 

This literature survey highlights some of the key contributions 

to the field, showcasing various methodologies and their 

outcomes. 

 

Wireless Sensor Networks for Tsunami Early Warning 

 

Wireless sensor networks have become an important component 

of modern tsunami early‑warning infrastructure. Kumar and Dev 

(1) explained that distributed pressure and wave‑height sensors 

allow continuous monitoring of ocean disturbances. Tanaka et 

al. (2) highlighted how real‑time sensing networks can reduce 

the delay in issuing alerts to coastal populations. Silva and 

Gomes (3) further showed that the performance of tsunami 

prediction models depends heavily on the accuracy of spatial 

information associated with each sensor node. Since marine 

networks cover large and unstable regions, reliable node 

localization is essential to maintain the quality of the collected 

data. 

 

 

 

Challenges of Localization in Marine Environments 

 

Localizing nodes in ocean regions is significantly harder than in 

land‑based networks. Patel and Rahman (4) observed that 

floating sensors drift with currents, which leads to inconsistent 

range measurements. Naito and Ueda (5) showed that 

underwater noise and unstable communication links decrease 

the reliability of distance‑based localization. Fernandes et al. (6) 

pointed out that maintaining a high number of anchor nodes in 

deep‑water deployments is costly and technically challenging. 

These constraints reduce the effectiveness of geometry‑driven 

localization methods and motivate the use of optimization 

techniques that can tolerate noise and uncertainty. 

 

Optimization‑Based Localization 

 

Optimization approaches treat localization as a search problem 

where node coordinates must satisfy measured distances. Early 

works by Chou and Lin (7) applied nonlinear minimization for 

underwater positioning but faced convergence issues in noisy 

environments. Borges and Almeida (8) demonstrated that 

metaheuristic methods provide better robustness since they 

explore multiple candidate solutions simultaneously. Li and 

Cheng (9) observed that population‑based algorithms can 

navigate highly irregular error surfaces commonly found in 

WSN localization. These findings indicate that optimization 

offers a more reliable framework for marine sensor networks. 

 

Ant Colony Optimization (ACO) in Localization 

 

ACO has been studied for solving routing and localization 

problems due to its nature‑inspired exploration behavior. 

Hernandez and Ruiz (10) introduced one of the early ACO‑based 

localization models and reported improved performance in 

sparse networks. Singh and Arora (11) examined the impact of 

pheromone parameters and found that improper tuning can slow 

down the algorithm. Duarte et al. (12) carried out a comparative 

analysis and concluded that ACO performs well for 

medium‑sized networks but may show slow convergence in 

networks with large spatial spread. 

 

Differential Evolution (DE) for Localization 

 

Differential Evolution is widely recognized for its strong global 

search ability. Park and Cho (13) applied DE to underwater 

localization and reported enhanced accuracy over classical 

least‑squares techniques. Chen and Wang (14) demonstrated that 

DE maintains stable performance even when measurement noise 

is high. Ibrahim and Mahmud (15) further showed that DE 

performs reliably with fewer anchors, making it suitable for 

ocean‑based deployments. These observations make DE a strong 

benchmark algorithm for comparing newer metaheuristics. 

 

Jellyfish Optimization Algorithm and Related Research 

 

JFOA is a relatively recent metaheuristic inspired by the drifting 

and active movement of jellyfish in ocean currents. Zhao and He 

(16) explored its use in scheduling problems and found that its 

movement patterns support strong exploration. Farouk and 

Salem (17) used JFOA for clustering and noted its ability to 

switch between passive and active behaviors, preventing  

 

premature convergence. Rana and Pillai (18) tested JFOA under 

noisy conditions and concluded that its dynamic movement rules 

enhance stability. Although studies applying JFOA to WSN 
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localization are limited, its characteristics make it well suited for 

noisy marine environments. 

 

Studies on Metaheuristic Localization Methods 

 

Gupta and Mehra (19) compared PSO, GA and ACO and 

concluded that no single algorithm performs best across all 

scenarios. Lopez et al. (20) evaluated DE, ABC and Firefly 

Algorithm and observed that DE maintained consistent accuracy 

across uniform and random node deployments. Kaneko and 

Ishikawa (21) compared newer metaheuristics including JFOA 

and reported that algorithms with strong exploration abilities 

perform better under high‑noise conditions. These comparative 

studies highlight the need to evaluate ACO, DE and JFOA under 

the same simulation setup specifically for tsunami early‑warning 

networks. 

 

III. METHODOLOGY 

 

A. Model Architecture 

 

The overall architecture of the proposed localization model 

follows a structured sequence that begins with preparing a 

simulated marine sensing environment and ends with evaluating 

the accuracy of estimated node positions. The architecture is 

designed to reflect the actual behavior of tsunami early warning 

networks, where sensor nodes collect environmental data across 

wide ocean regions and rely on distance‑based communication to 

maintain network stability. 

 

The architecture contains four essential layers. The first layer 

defines the marine sensing field and deploys sensor nodes across 

it. A certain number of these nodes act as anchors with known 

coordinates, while the remaining nodes form the set of unknown 

positions to be estimated. The second layer generates the measured 

distances between nodes using the Euclidean distance formula. 

These distances form the primary input to the optimization 

algorithms. 

 

The third layer represents the metaheuristic optimization engine. 

This layer includes the implementations of Ant Colony 

Optimization, Differential Evolution and the Jellyfish 

Optimization Algorithm. Each algorithm receives the same 

distance matrix and attempts to minimize the localization error by 

updating candidate coordinate sets for the unknown nodes. During 

this process, each algorithm follows its own internal mechanism. 

ACO updates pheromone levels and guides ants toward better 

coordinate configurations, DE evolves a population of solutions 

through mutation and crossover, and JFOA navigates the search 

space through both passive drifting and active movement. 

 

The final layer performs evaluation. This includes computing final 

localization error, generating convergence curves, comparing 

estimated node positions with ground truth and studying how 

anchor count and communication range influence accuracy. 

 

This layered structure ensures that the entire process, from data 

preparation to algorithmic optimization and final evaluation, is 

handled systematically. 

 
 

Fig. 1. Model Architecture 

 

 

B. Data Preprocessing 

 

The preprocessing stage prepares all the necessary information for 

the optimization algorithms. The first step is defining the 

two‑dimensional marine sensing region and deploying the sensor 

nodes. Their true coordinates are generated randomly so that the 

network resembles real deployments, where nodes may not be 

placed in perfect grids. The anchor nodes are selected from this set 

based on a predefined ratio, and their positions remain fixed 

throughout the simulation. 

 

The next part of preprocessing involves generating the pairwise 

distances between nodes. For each pair of nodes that fall within 

the communication radius, their Euclidean distance is calculated 

using the formula: 

 

𝑑𝑖𝑗 =  √(𝑥𝑖 − 𝑥𝑗)
2

+  (𝑦𝑖 −  𝑦𝑗)
2
 

 

These distances form the distance matrix used by all three 

algorithms. Nodes outside the communication range are not 

included in the matrix, reflecting the realistic behavior of marine 

sensor networks where long‑range communication is limited. 

 

The preprocessing stage also includes structuring the initial 

population for each algorithm. In ACO, the starting pheromone 

levels are set uniformly. In DE, an initial population of coordinate  

 

vectors is generated, each containing random estimates for 

unknown node positions. In JFOA, initial jellyfish agents are 

positioned randomly in the search space. The preprocessing 

ensures that all algorithms begin with equal information and 
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identical environmental constraints. 

 

 

C. Model Training 

Model training refers to the optimization process where each 

algorithm iteratively improves its estimate of the unknown node 

positions. Even though the algorithms differ in their internal 

behavior, they all attempt to minimize the same objective function. 

This function computes the overall localization error by summing 

the squared differences between measured distances and distances 

derived from estimated coordinates: 

𝐸 =  ∑(𝑑𝑖𝑗
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −  𝑑𝑖𝑗

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)
2
 

Training with Ant Colony Optimization: 

In ACO, each ant represents a possible coordinate assignment. The 

ants explore the search space using transition probabilities that 

depend on pheromone intensity and heuristic information. After 

evaluating the quality of each solution using the objective 

function, pheromone values are updated. Better solutions reinforce 

the pheromone trail more strongly. This gradual reinforcement 

leads the colony toward lower error solutions. 

Training with Differential Evolution: 

DE trains the model by generating new solutions through mutation 

and crossover. In mutation, a candidate vector is created by adding 

the scaled difference of two vectors to a third vector. The 

crossover step mixes the mutant with the current vector to produce 

a trial solution. Selection then decides whether the trial solution 

replaces the existing one based on which has the lower error. This 

process repeats over many generations, gradually improving the 

population. 

Training with Jellyfish Optimization Algorithm: 

JFOA training alternates between passive drifting and active 

movement. In passive drifting, jellyfish agents move with 

simulated ocean currents, which encourages global exploration. In 

active movement, agents swim toward better solutions, improving 

local convergence. The algorithm uses a time control mechanism 

to regulate when to prioritize exploration or exploitation. As 

training progresses, the agents move toward coordinate values that 

reduce the localization error. 

 

D. Evaluation 

 

The evaluation stage assesses how well each algorithm performs 

in estimating node positions. Several performance metrics and 

visual outputs are used to compare the results. 

 

Convergence Analysis: 

Line plots showing the change in fitness across iterations reveal 

how quickly and smoothly each algorithm reduces localization 

error. In your outputs, DE converges the fastest, JFOA shows 

steady improvement and ACO displays slower, gradual 

convergence. 

 

Localization Error Distribution: 

Histogram plots illustrate the spread of localization error across 

nodes. A narrow spread indicates stable performance. DE 

typically produces the smallest spread, while ACO exhibits 

wider variation. 

 

True vs. Estimated Node Position Plots: 

Scatter plots compare estimated coordinates with actual 

coordinates. These visualizations help determine whether the 

algorithm preserves the general layout and structure of the 

sensor network. 

 

Anchor Variation Tests: 

By increasing or decreasing the number of anchors, the 

evaluation examines how dependent each algorithm is on anchor 

density. In your simulation, JFOA shows improved stability with 

more anchors. 

 

Transmission Range Analysis: 

When the communication range increases, more nodes have 

distance information available, improving estimates. All 

algorithms show better performance with larger ranges, but 

JFOA adapts the fastest. 

 

Together, these evaluation steps provide a clear picture of how 

each algorithm behaves in a realistic tsunami early warning 

environment and highlight the strengths and weaknesses of each 

method. 

 

IV. IMPLEMENTATION AND RESULTS 

 

A. Datasets overview 

 

The dataset used in this work is generated entirely through 

simulation, reflecting the structure of a wireless sensor network 

deployed for tsunami early warning. The network consists of a 

fixed number of sensor nodes placed within a two‑dimensional 

marine region. Their true coordinates are created randomly so 

that the spatial layout resembles a practical environmental 

deployment rather than a regular grid. Among these nodes, a 

selected percentage serve as anchor nodes with predefined and 

accurate coordinates, while the remaining nodes are treated as 

unknowns that must be localized through the optimization 

model. 

 

The primary dataset consists of the pairwise distance 

measurements between connected nodes. These distances are 

computed using the Euclidean distance formula and are only 

recorded for node pairs that fall within the communication radius 

defined in the simulation. This ensures that the dataset reflects 

realistic communication limitations faced by marine sensor 

networks, where surface drift, signal loss and water movement 

influence connectivity. The dataset therefore includes the true 

node positions, anchor coordinates, communication radius 

values and the distance matrix that forms the input to the 

metaheuristic algorithms. 

 

B. Environmental Setup 

 

The entire implementation is carried out in a controlled 

simulation environment that reflects conditions relevant to 

tsunami monitoring. A two‑dimensional coordinate plane is used 

to represent the sensing region. Sensor nodes are placed across 

this region, and a chosen subset is assigned as anchors. The 

communication radius determines which nodes are able to 

measure distances to one another, and this range remains fixed 

during each run of an algorithm. 

 

Once the network layout is defined, the system constructs the 
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distance matrix by applying the Euclidean formula to all node 

pairs within range. This matrix forms the core input to the 

optimization algorithms. The simulation environment also 

initializes key parameters for each algorithm.  

 

For ACO, pheromone values and transition probabilities are set. 

For DE, the initial population, scaling factor and crossover rate 

are generated. For JFOA, the starting positions of jellyfish 

agents and the time control mechanism are established. 

 

All three algorithms operate under the same environmental 

constraints. This includes identical node placement, anchor 

selection, population size, iteration count and fitness evaluation 

method. Such uniformity ensures that differences in results arise 

strictly from the internal behavior of each algorithm rather than 

variations in the experimental conditions. 

 

C.   Experimental Execution 

 

The three metaheuristic algorithms are executed individually, 

following a shared objective of minimizing the localization 

error. Each algorithm maintains a population of potential 

coordinate assignments for the unknown nodes and iteratively 

improves these estimates. 

 

Ant Colony Optimization: 

 

ACO models each candidate solution as an artificial ant. The 

ants update their coordinate estimates based on pheromone 

levels and heuristic information. As iterations progress, 

pheromone reinforcement guides the search toward regions that 

produce lower error. Convergence occurs gradually due to the 

probabilistic nature of the transitions. 

 

Differential Evolution: 

 

DE begins with a population of candidate coordinate vectors. 

New solutions are generated through mutation, crossover and 

selection. Each iteration produces trial vectors that compete with 

existing ones, and solutions that reduce localization error are 

retained. The convergence behaviour is typically fast and 

stabilizes early due to strong exploitation mechanisms. 

 

Jellyfish Optimization Algorithm: 

 

JFOA alternates between passive drifting and active movement. 

Passive drifting enables broad exploration of the search space, 

while active movement allows solutions to adjust toward more 

promising regions. A time‑control factor regulates the balance 

between these two modes, resulting in steady and smooth 

convergence throughout the iterations. 

 

After completing the maximum number of iterations, each 

algorithm outputs its best estimated set of coordinates. These 

estimates are used for visualization and error analysis. Each 

algorithm continues iterating until it reaches the predefined 

maximum number of iterations.  

At the end of execution, the best solution produced by each 

method represents the estimated coordinates of all unknown 

nodes. These results are stored for comparison and further 

evaluation. 

 

 

 
 

D. Performance Evaluation 

 

Performance is assessed using a combination of numerical and 

graphical evaluations. 

 

Convergence Curves: 

 

The convergence plots show how the objective function 

decreases over time. Differential Evolution achieves rapid error 

reduction and stabilizes early. The Jellyfish Optimization 

Algorithm exhibits smooth and progressive improvement across 

the entire iteration range. Ant Colony Optimization converges 

more slowly, with noticeable fluctuations during the early 

stages. 

 
Fig. 2. Jellyfish Convergence Curve 

 

Anchor Variation Experiments: 

 

When the number of anchor nodes is adjusted, JFOA 

demonstrates strong improvement as anchor density increases. 

DE maintains reliable performance even with fewer anchors, 

showing resilience under low‑reference conditions. ACO 

displays higher sensitivity to anchor changes, with error levels 

fluctuating more noticeably. 

 

Localization Error Distribution: 

 

Error histograms illustrate the spread of estimation error across 

the network. DE produces the narrowest distribution, indicating 

high consistency. JFOA shows moderate variance with 

relatively stable performance across nodes.  

 

ACO displays a wider error spread, reflecting the stochastic 

nature of its search process. 

 
Fig. 3. Anchors vs Error Std 

 

 

https://ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 12 | Dec - 2025                                 SJIF Rating: 8.586                                          ISSN: 2582-3930                                                                                                                  

 

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM54774                                      |        Page 6 
 

True vs. Estimated Node Positions: 

 

Graphical comparisons between estimated and actual node 

locations reveal that DE reconstructs the network layout with 

high spatial accuracy. JFOA maintains good structural 

consistency with only minor deviations. ACO captures the 

general layout but exhibits greater variability in individual node 

positions. 

  
Fig. 4. True vs Estimated Jellyfish Algorithm 

 

Transmission Range Experiments: 

 

Increasing the communication radius improves localization 

accuracy for all three algorithms. JFOA adapts effectively to 

wider ranges, maintaining stable performance as more distance 

information becomes available.  

 

DE continues to perform reliably across all tested ranges. ACO 

also benefits from increased range but retains higher variability 

compared to the other methods. 

 

The combined results highlight distinct strengths among the 

algorithms. DE excels in speed and precision, JFOA provides 

balanced and robust performance under varying conditions, and 

ACO offers reliable yet slower convergence with greater 

sensitivity to environmental factors. 

 

 

V. RESULTS AND  DISCUSSIONS 

 
The results of the study highlight how the three metaheuristic 

algorithms perform when applied to range‑based node localization 

in a wireless sensor network designed for tsunami early warning. 

Each algorithm is evaluated under identical environmental 

conditions, allowing their strengths and limitations to be observed 

clearly. The discussion presented in this section is based on the 

convergence behavior, spatial accuracy of node estimation, error 

distributions and the impact of anchor density and communication 

range on overall performance.  

 

Key Insights & Results Interpretation: 

1. Algorithm Behaviour 

The convergence curves reveal clear distinctions in search 

dynamics. Differential Evolution quickly identifies promising 

regions of the solution space and refines them with strong 

exploitation ability. JFOA maintains a balanced search due to its 

controlled transition between passive and active movement, 

leading to gradual yet dependable convergence. ACO explores 

widely but takes longer to stabilize because its pheromone 

patterns require time to mature. 

2. Spatial Reconstruction Capability 

The comparison of true and estimated locations provides a direct 

measure of coordinate accuracy. DE consistently produces the 

closest alignment to the real layout, confirming its robustness in 

handling noisy sensor information. JFOA also reconstructs the 

network shape well, showing that its exploratory motion helps 

maintain structural consistency. ACO captures the general 

pattern but displays more scatter, particularly in areas with fewer 

connections. 

3. Error Consistency and Stability 

The error histograms illustrate that DE maintains the lowest 

variance, while JFOA offers moderate and stable distributions. 

ACO exhibits a wider spread, indicating a higher sensitivity to 

local minima and uneven pheromone development. This 

reinforces the observation that DE is the most consistent across 

the network, while JFOA remains a strong alternative. 

4. Role of Anchors and Communication Range 

Increasing anchor density reduces uncertainty for all models, 

with JFOA showing particularly strong gains when more 

anchors are available. DE’s performance remains stable even 

when anchors are limited, demonstrating resilience. ACO 

depends more heavily on anchor information and therefore 

shows noticeable sensitivity. Larger communication ranges 

improve localization accuracy across the board, enabling the 

algorithms to use more distance information. JFOA benefits the 

most, indicating strong adaptability to enhanced connectivity. 

5. Suitability for Tsunami Early Warning Systems 

The reliability of node positioning is crucial in marine 

environments where environmental noise is high and distances 

are inconsistent. The overall performance pattern suggests that 

DE provides the highest accuracy, JFOA offers robustness 

across varying conditions and ACO is more suited for scenarios 

where computational cost is less important and exploratory 

behaviour is desired.  

VI. CONCLUSION AND FUTURE SCOPE 

This study examined the effectiveness of three population‑based 

metaheuristic algorithms—Ant Colony Optimization, 

Differential Evolution and the Jellyfish Optimization 

Algorithm—for improving node localization accuracy in 

wireless sensor networks used for tsunami early warning. The 

evaluation was carried out under consistent simulation 
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conditions, allowing a fair and meaningful comparison of their 

performance. 

The results clearly indicate that Differential Evolution provides 

the highest level of accuracy and the fastest convergence. Its 

ability to refine candidate solutions rapidly and consistently 

makes it well suited for environments where reliable and timely 

localization is essential. The Jellyfish Optimization Algorithm 

also demonstrated strong performance, maintaining stable 

improvement across iterations and adapting effectively to 

variations in anchor density and communication range. This 

balance of exploration and exploitation suggests that JFOA is a 

robust option for scenarios involving environmental noise and 

irregular connectivity, which are common in marine settings. 

Ant Colony Optimization was able to estimate node positions 

but exhibited slower convergence and higher variability. Its 

performance improved with greater connectivity and anchor 

support, yet it remained less consistent than the other two 

techniques.  

Overall, the findings show that metaheuristic approaches are 

effective for addressing the nonlinear and uncertain nature of 

marine sensor localization, with DE offering the strongest 

results and JFOA providing a reliable and flexible alternative. 

The outcomes highlight the importance of choosing 

optimization strategies that can handle sparse measurements, 

dynamic environments and large deployment areas, all of which 

are characteristics of tsunami early warning systems. Accurate 

localization greatly enhances the reliability of sensed data, 

improving the responsiveness and precision of early‑warning 

alerts. 

Future Scope: 

The work presented in this study opens several promising 

avenues for further research and real-world application: 

1. Hybrid Optimization Models 

Future studies can explore combining strengths of multiple 

algorithms. Hybrid models such as DE–JFOA or ACO–DE 

could capture both rapid convergence and stable global search, 

potentially outperforming standalone methods. 

2. Real-Time and Adaptive Localization 

Marine sensor nodes may drift due to currents, requiring 

dynamic position updates. Developing algorithms that 

continuously adapt to movement and changing environmental 

conditions can improve the reliability of long-term deployments. 

 

 

3. Integration with Real Ocean Communication Models 

The simulation can be enhanced by incorporating underwater 

acoustic propagation, signal attenuation and noise models. This 

would make the localization results more representative of 

practical ocean scenarios. 

4. Extension to Three-Dimensional Localization 

While the current system uses a two-dimensional plane, real 

tsunami sensors may operate at varying depths. Extending the 

optimization methods to 3D localization would increase their 

applicability to deep-water sensor networks. 

5. Large-Scale Deployment Studies 

Future research can test these algorithms with larger networks 

covering wider ocean regions. This would help evaluate 

scalability, robustness and computational efficiency. 

6. Energy-Aware Localization Strategies 

Sensors deployed in the ocean operate on limited power. 

Developing localization algorithms that minimize energy 

consumption while maintaining accuracy can improve the 

operational lifespan of the network. 

7. Field Testing and Validation 

Validating the algorithms with real buoys or coastal sensor 

systems would provide valuable insight into their performance 

under actual environmental noise, weather conditions and 

communication challenges. 
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