

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48763 | Page 1

Enhancing Organizational Infrastructure Using Kubernetes

Dr. Manuj Darbari1, Satyam Singh2, Khushboo Gupta3, Qasim Ahmad4

1Professor, Department of Computer Science and Engineering, Babu Banarasi Das Institute of Technology and
Management, Lucknow, UP

2Student, Department of Computer Science and Engineering, Babu Banarasi Das Institute of Technology and
Management, Lucknow, UP

3Student, Department of Computer Science and Engineering, Babu Banarasi Das Institute of Technology and

Management, Lucknow, UP

4Student, Department of Computer Science and Engineering, Babu Banarasi Das Institute of Technology and

Management, Lucknow, UP

---***---

Abstract - This paper presents a zero-cost, fully automated

cloud-native deployment framework using Kubernetes,
targeting small teams, academic settings, and early-stage
startups. The framework leverages freely available DevOps
tools and platforms (GitHub Actions, Docker, Render,
MongoDB Atlas) to orchestrate microservice-based web
applications with full CI/CD capabilities. The goal is to
reduce deployment complexity while improving scalability,
reliability, and performance without requiring paid
infrastructure. This solution offers a sustainable and robust
deployment pipeline with minimal manual effort. The primary
objective is to simplify the deployment process by minimizing
its complexity while simultaneously enhancing key factors
such as scalability, reliability, and performance. This
approach eliminates the dependency on costly infrastructure,
making it accessible and cost-effective without compromising
on quality or efficiency.

Key Words: Kubernetes, DevOps, CI/CD, Microservices,
Zero-Cost, Deployment, Containerization

1. INTRODUCTION

The widespread adoption of digital technologies by

businesses, educational institutions, and government agencies

has significantly increased the need for efficient, scalable, and

low-cost methods of deploying web applications. In today’s

rapidly evolving technological environment, traditional

deployment strategies often dependent on manual server

setup, fixed infrastructure, and ongoing operational expenses

struggle to fulfill the flexibility and scalability demands of

modern software systems.

To address these limitations, cloud-native deployment

strategies have emerged as a preferred solution. These modern

approaches support modular design, automation, and high

adaptability throughout the application lifecycle.

Among these technologies, Kubernetes has become a key

enabler in orchestrating containerized applications. As an

open-source system, Kubernetes automates key operational

tasks such as deployment, scaling, load balancing, service

discovery, and failure recovery. Its declarative configuration

style and robust ecosystem help developers manage

sophisticated systems with greater reliability and reduced

manual effort.

This research presents a fully automated and zero-cost

deployment framework designed for cloud-native web

applications. The solution integrates Kubernetes with free-tier

services like GitHub Actions, Render, Railway, and

MongoDB Atlas, combined with open-source DevOps tools.

This setup enables an end-to-end deployment pipeline that is

production-ready and adheres to essential practices such as

Infrastructure as Code (IaC), Continuous Integration and

Continuous Deployment (CI/CD), and microservices

architecture, ensuring performance, scalability, and

operational excellence. For orchestrating containerized

applications. Research highlights how container orchestration

systems, particularly Kubernetes, have revolutionized

application deployment and management. Traditional

monolithic infrastructures often fail to meet modern demands

for scalability, resilience, and operational speed. As noted by

Burns et al. (2016), containerization improves portability and

fault tolerance, while Kubernetes offers granular control over

application lifecycles, networking, and scaling.

2. LITERATURE REVIEW

The rise of DevOps methodologies has significantly enhanced

the speed, reliability, and consistency of modern software

delivery. In particular, Continuous Integration/Continuous

Deployment (CI/CD) and Infrastructure as Code (IaC) have

become foundational practices in enabling agile development

workflows. These practices eliminate manual configuration,

reduce human errors, and ensure seamless delivery across

environments. Kubernetes, as a container orchestration

platform, has emerged as the core engine driving these

innovations due to its support for automation, scalability, and

self-healing infrastructure.

A number of studies and industrial reports confirm

Kubernetes' widespread adoption and transformative potential.

Open-source tools such as Helm, Prometheus, ArgoCD, and

GitHub Actions have made it feasible for even resource-

constrained teams to implement enterprise-level automation.

These tools support declarative infrastructure, continuous

monitoring, and automated delivery, enabling smaller

organizations to compete with larger enterprises in terms of

deployment speed and infrastructure reliability.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48763 | Page 2

To systematically assess the state of research and practical

implementation strategies, a comparative analysis was

conducted involving sixteen peer-reviewed papers published

between 2018 and 2024. These studies cover diverse areas

including resource optimization, microservice scheduling, AI-

driven observability, and security in Kubernetes-managed

systems. Recent publications focus increasingly on intelligent

automation, fault prediction, and cost-effective cloud-native

transformation strategies tailored for SMEs (Small and

Medium-sized Enterprises).

One key area of progress is the formal modeling of

Kubernetes behavior. For instance, simulation-based

frameworks now allow teams to test autoscaling

configurations under dynamic workloads without deploying

them in production. At the same time, researchers have

proposed optimization models that improve how

microservices are placed and scaled in clusters to minimize

resource waste and performance bottlenecks.

Security within containerized environments has also received

considerable attention. Research highlights common

vulnerabilities such as insecure default configurations, weak

access policies, and runtime anomalies. In response, tools like

Trivy and Falco have been recommended to integrate static

and runtime security into the CI/CD pipeline, enabling

proactive defense mechanisms without introducing significant

overhead.

Another major theme emerging from the literature is the

migration from legacy monolithic systems to cloud-native

architectures. Studies show that SMEs can adopt phased

migration strategies, starting with containerization and

moving toward full orchestration using Kubernetes. This

transition is supported by lightweight Kubernetes distributions

such as Minikube, K3s, and MicroK8s, which require minimal

system resources and are suitable for local or edge

deployments.

Observability tools are also maturing rapidly. Time-series data

analysis, AI-based clustering, and predictive alerting have

enabled more intelligent monitoring and faster incident

response. Prometheus, Grafana, and Loki are frequently used

in combination to provide unified metrics and logs for cloud-

native environments.

Table -1: Comparative Study of Research Papers

3. METHODOLOGY

This research proposes a fully automated, cloud-native

deployment system that leverages Kubernetes orchestration in

combination with free-tier cloud services and open-source

DevOps tools. The approach aims to deliver an accessible and

scalable solution for deploying modern applications without

incurring additional infrastructure costs.

The methodology centers around containerizing both frontend

and backend applications, utilizing declarative Kubernetes

manifests to manage application configurations and

deployments. GitHub Actions are employed to establish

continuous integration and continuous deployment (CI/CD)

pipelines, ensuring a streamlined and repeatable deployment

process.

To maintain simplicity and focus on cost-efficiency, the

research deliberately excludes advanced monitoring solutions

and AI-driven auto-scaling features. These capabilities are

acknowledged as valuable enhancements and are

recommended for future work to improve system robustness

and observability.

3.1 Proposed Solution

3.1.1 Objective: Deliver a fully automated, zero-cost cloud-

native deployment pipeline combining container orchestration

with continuous integration and delivery tools.

3.1.2 Activities:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48763 | Page 3

• Containerize frontend and backend services using

Docker.

• Manage deployments through Kubernetes manifests.

• Automate pipeline triggering on code commits via

GitHub Actions.

• Build, test, and deploy applications to free-tier cloud

platforms.

• Leverage Kubernetes scaling and self-healing to

maintain availability.

2.1.3 Deliverables: Automated CI/CD pipeline

ensuring reliable, consistent, and hands-off

application releases.

3.2 Infrastructure Setup and Environment Preparation

3.2.1 Goal: Prepare development and production

environments supporting automated deployments.

3.2.2 Tasks:

• Create separate Git repositories for frontend and

backend.

• Containerize applications with Docker; write

Kubernetes manifest files.

• Deploy and test locally using Minikube.

• Provision free-tier cloud platforms (e.g., Render,

Railway) for production.

• Secure secrets and credentials via GitHub repository

secrets.

3.2.3 Deliverables: Configured local and cloud environments

supporting automated CI/CD workflows.

3.3 Deployment Environment Characteristics

3.3.1 Objective: Define system components and resource

utilization across the deployment cluster.

3.3.2 Activities:

• Deploy five microservices (frontend, backend API,

database proxies) in separate containers orchestrated

by Kubernetes.

• Use a three-node cluster for deployment.

• Monitor resource consumption; average CPU 500m,

memory 256Mi per pod.

• Trigger pipelines on code pushes with automated

testing and rollout across staging and production

namespaces.

2.3.3 Deliverables: Scalable, monitored Kubernetes

deployment cluster with automated CI/CD triggers.

3.4 Features Considered

3.4.1 Features:

• Docker containerization for frontend and backend

services.

• Declarative Kubernetes manifests defining

deployments, services, and ingress rules.

• Automated CI/CD workflows via GitHub Actions.

• Configuration of resource limits and readiness probes

to improve reliability.

• Integration of free-tier cloud services such as

MongoDB Atlas and Render for zero-cost data

persistence and hosting.

• Use of industry best practices for scalable, cost-

efficient cloud-native deployment.

2.4.2 Deliverables: Robust, automated, cost-free

deployment system with scalable architecture.

3.5 Limitations and Constraints

• Resource Quotas: Free-tier cloud limits impose

optimization challenges.

• Latency Variability: Public cloud shared

infrastructure may cause inconsistent network

latency impacting responsiveness.

• Complexity: Kubernetes orchestration complexity

may require expertise for troubleshooting.

• CI/CD Pipeline: Pipeline execution can be affected

by network or service outages leading to delays.

• Monitoring: Advanced monitoring and alerting are

not covered in this scope, limiting real-time

observability.

• Security: Basic security configurations applied;

comprehensive DevSecOps measures are deferred for

future work.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48763 | Page 4

RESULT AND CONCLUSION

A. 1. Configuration

The initial phase focused on setting up the deployment

environment with version-controlled repositories for frontend

and backend codebases. Dockerfiles were created to

containerize applications, specifying dependencies, runtime

environments, and startup commands. Kubernetes manifests

defined deployments, services, and ingress routing to control

container behavior within the cluster.

Environment variables and secrets were securely managed

using Kubernetes Secrets and GitHub repository secrets.

YAML files were validated through linters to ensure syntax

correctness. The CI/CD pipeline was implemented via GitHub

Actions using main.yml workflows to automate building,

testing, and deploying on every push to the main branch.

These configurations provided a stable, reproducible platform

for seamless application delivery and cluster consistency.

B. 2. Simulated Production Load and Data Generation

To validate the system’s performance under realistic

conditions, load tests simulated concurrent user traffic and

interactions with backend APIs and frontend interfaces. Tools

like K6 and Locust generated HTTP request patterns

replicating varying traffic intensities. Kubernetes Horizontal

Pod Autoscaler (HPA) was configured to dynamically scale

pods based on CPU utilization thresholds set at 70%, scaling

between 1 and 4 replicas.

Tests ran for 10 to 30 minutes with 100 to 500 concurrent

virtual users. This setup allowed monitoring of response

latency, resource consumption, and scaling behavior under

stress. The results demonstrated effective auto-scaling,

resource optimization, and system stability during fluctuating

loads.

C. 3. CI/CD Automation and Deployment

The CI/CD (Continuous Integration/Continuous Deployment)

workflow automated and streamlined the build and

deployment pipeline, significantly enhancing development

speed and reliability. Developer code commits to GitHub

triggered GitHub Actions workflows that automatically ran

unit and integration tests, built Docker container images, and

pushed those images to a secure container registry such as

Docker Hub. Kubernetes then pulled the updated images and

deployed them across the cluster using rolling updates,

ensuring minimal downtime and zero manual intervention.

This automation reduced deployment errors, accelerated

release cycles, and improved overall development agility. The

integration of containerization with Kubernetes orchestration

delivered a resilient, scalable deployment pipeline, validating

the project’s objective for automated, cloud-native application

delivery.

This research has successfully demonstrated a zero-cost, fully
automated, and cloud-native deployment framework that
integrates Kubernetes with free-tier cloud services and open-
source DevOps tools. By embracing containerization,
Infrastructure as Code (IaC), and CI/CD pipelines through
GitHub Actions, the solution addresses the practical needs of
academic users, small development teams, and early-stage
startups seeking to streamline deployments without financial
overhead. The approach emphasized repeatability, modularity,
and scalability, enabling consistent application delivery across
environments with minimal manual intervention.

Simulated production scenarios validated the effectiveness of

the system under varying workloads, showcasing dynamic

scaling capabilities and efficient resource utilization via

Kubernetes’ native features. The integration of GitHub

Actions as the automation engine simplified the development

workflow and significantly accelerated deployment cycles.

The pipeline configuration offered a resilient, production-

ready system that demonstrated robustness in handling traffic

surges and codebase changes, all while relying on cost-free

resources such as Render, Railway, and MongoDB Atlas.

While the current scope excludes advanced monitoring and

AI-based scaling due to complexity and cost constraints, this

limitation opens avenues for future enhancements.

Incorporating observability tools like Prometheus, Grafana,

and AI-driven auto-scalers could further elevate the platform's

resilience and maintainability. Additionally, expanding

security measures and introducing service meshes like Istio

may support more sophisticated use cases. Overall, this

research contributes a practical, replicable, and resource-

efficient deployment model aligned with modern cloud-native

principles, offering a valuable blueprint for scalable

infrastructure development in cost-sensitive contexts.

ACKNOWLEDGMENT

We would like to thank (Prof.) Dr. Manuj Darbari for his

invaluable comments and suggestions, which greatly

contributed to improving the quality of this paper. His

consistent guidance and support in reviewing our work played

a crucial role throughout the process.

We also extend our heartfelt thanks to the Department of

Computer Science and Engineering, as well as to our families,

for their unwavering support and encouragement throughout

this journey.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48763 | Page 5

REFERENCES

1. Burns, B., Grant, B., Oppenheimer, D., Brewer, E.,

Wilkes, J.: Borg, Omega, and Kubernetes. Commun.

ACM 59(5) (2016) 50–57

2. Hightower, H., Burns, B., Beda, J.: Kubernetes: Up

and Running. 2nd edn. O’Reilly Media, Sebastopol,

CA (2019)

3. Hightower, K.: Kubernetes the Hard Way. GitHub

repository (2023).

https://github.com/kelseyhightower/kubernetes-the-

hard-way

4. Cloud Native Computing Foundation: CNCF Annual

Survey 2022. https://www.cncf.io/reports/cncf-

annual-survey-2022/

5. Sharma, S., Gupta, A.: Comparative Analysis of VPS

and Kubernetes-based Deployments. Int. J. Comp.

Appl. 182(41) (2023) 12–18

6. Kim, M., Lee, D., Oh, S.: DevOps Automation Using

CI/CD Pipelines in Kubernetes. IEEE Access 7

(2019) 159761–159772

7. Patel, M.T., Jain, R., Mehta, S.: Zero-Cost Cloud

Engineering: A Case Study. In: Proc. 12th Int. Conf.

Cloud Computing, Singapore (2022) 214–220

8. GitHub: GitHub Actions Documentation (2024).

https://docs.github.com/en/actions

9. Docker: Docker Documentation (2024).

https://docs.docker.com/

10. Railway: Railway Hosting Platform (2024).

https://railway.app/

11. Render: Render Deployment Docs (2024).

https://render.com/docs

12. Srinivas, Y., Mehta, S.: Monitoring Kubernetes

Clusters with Prometheus and Grafana. In: Proc.

2024 IEEE Int. Conf. Cloud Eng. (IC2E) (2024) 88–

95

13. Rafiq, A., Kumar, H., Das, P.: Minikube-based

Kubernetes Learning Environment for Academic

Use. Educ. Tech. Int. J. 13(2) (2021) 55–61

14. Bernstein, D.: Containers and Cloud: From LXC to

Docker to Kubernetes. IEEE Cloud Comput. 1(3)

(2014) 81–84

http://www.ijsrem.com/
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://docs.github.com/en/actions
https://docs.docker.com/
https://railway.app/
https://render.com/docs

