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Abstract 

Retrieval Augmented Generation (RAG) systems offer significant advancements in natural language 

processing by combining large language models (LLMs) with external knowledge sources to improve factual 

accuracy and contextual relevance. However, the computational complexity of RAG pipelines presents 

challenges in terms of efficiency and scalability. This research paper conducts a comprehensive survey of 

optimization techniques across four key areas: tokenizer performance, encoder performance, vector 

database search strategies, and LLM agent integra- tion. The study explores approaches to accelerate 

tokenization using Rust-based implementations and investigates hardware optimizations like CUDA and 

Ten- sor cores to boost encoder efficiency. Additionally, it delves into algorithms and indexing strategies 

for efficient vector database searches and examines meth- ods for optimising the interaction between 

retrieved knowledge and LLM agents. By analysing recent research and evaluating various optimization 

strategies, this paper aims to provide valuable insights into enhancing the performance and practicality of 

RAG systems for real-world applications. 

Keywords: Retrieval-Augmented Generation, Performance optimization, Tokenization, 

WordPiece, Rust, FastTokenizer,Encoding, GPU, CUDA, Tensor Cores, Parallel Processing, 

Vector Databases, Indexing, HNSW, FAISS, DiskANN, LLM Agents, Prompt Engineering, 

Retriever 

 

1 Introduction 

RAG systems represent a sophisticated evolution in natural language processing (NLP) paradigms. These 

systems address the inherent limitations of traditional LLMs by integrating a retrieval component with a 

generative language model. Unlike LLMs, which rely primarily on knowledge encoded during pre-training, 

RAG systems dynamically access and incorporate information from external knowledge sources.  This 

augmentation empowers RAG systems to generate more factually grounded, contextually relevant, and up-

to-date responses, making them particularly valuable in scenarios requiring real-world knowledge and 

reasoning. 

 

Furthermore, the grounding in external knowledge sources helps mitigate a com- mon issue plaguing LLMs: 

the tendency to ”hallucinate”[1] or fabricate information. Since LLMs are trained on massive amounts of text 

data, they can sometimes generate plausible-sounding but factually incorrect responses, especially when 

prompted with questions outside their pre-trained knowledge domain. RAG systems, by integrating 

information retrieval, have a mechanism to verify generated text against retrieved sources, improving the 

factual accuracy and trustworthiness of their output. 

 

A typical RAG system consists of several key components that work together to generate informative and 

contextually relevant responses. These components include: DocumentStore: The DocumentStore is a 
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repository of documents that the RAG system can access to extract relevant information. It can be 

populated with various types of documents, such as web pages, news articles, and research papers. 

Tokenizer: The Tokenizer is responsible for breaking down text into individual tokens or words. It plays a 

crucial role in the preprocessing stage, as it affects the quality of the embeddings generated by the encoder.  

Encoder: The Encoder converts the tokenized text into dense vector representations, known as embeddings. 

These embeddings capture the semantic meaning of the text and are used for efficient retrieval and generation.  

Vector DB: The Vector DB is a database that stores the vector embeddings generated by the encoder. It 

enables fast and efficient retrieval of similar vector embeddings, which are then used to identify relevant 

documents for the generation process. 

LLM: LLM is a powerful neural network model that generates text based on the input it receives. In 

a RAG system, the LLM is used to generate text that is both informative and coherent, incorporating 

information retrieved from the Vector DB. 

These components work in tandem to enable RAG systems to generate high- quality text that is grounded in 

real-world knowledge and tailored to the user’s query or context. While RAG systems offer significant 

advantages over traditional LLMs, they also introduce additional computational overhead. Compared to a 

standard LLM query, RAG systems require additional computations for document retrieval, vector embedding 

generation, and retrieval of similar embeddings[2]. 

 

Additionally, the RAG system requires storing and managing the vector embed- dings, which can add to the 

memory requirements and increase latency. To mitigate these challenges and ensure efficient performance, it 

is crucial to optimize the RAG 

 

 
Fig. 1: Basic RAG Architecture 

 

pipeline. 

This research paper aims to address these computational challenges hindering the wider adoption of RAG 

systems. It provides a comprehensive survey of optimiza- tion techniques targeting four crucial areas: 

tokenizer efficiency, encoder performance, vector database search strategies, and integration of LLM 

agents. By examining these optimization avenues, the paper strives to offer insights into techniques that can 

enhance the speed, scalability, and cost-effectiveness of RAG systems, ultimately facilitating their more 

widespread deployment in real-world applications 
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2 Literature Review and Discussion 

The literature review examines the expanding corpus of studies aimed at enhancing RAG pipeline 

performance and efficiency. To address the computational complexity inherent in these systems, researchers 

have explored a variety of approaches. This involves investigating different retrieval models, refining the way 

the retriever and generating modules interact, and creating new tactics for efficiently using outside knowledge 

sources. 

 

Pierre et al., (2024) [3] presented a RAG system designed to improve the pre- cision, diversity, and factual 

grounding of natural language understanding. The research focuses on query optimization using language 

models like BERT and Orca2 for superior performance in open-domain question answering. It employs a 

prompt augmenter to dynamically analyse lexical fields and generate refined search queries, leveraging the 

power of language models for nuanced user intent understanding. This approach significantly improves the 

accuracy and relevance of document retrieval. 

 

The paper further demonstrates the importance of prompt optimization and genera- tor integration to enhance 

retrieval efficiency and deliver comprehensive, contextually rich responses. 

Gao et al., (2024) [4] provide a comprehensive survey of RAG systems, tracing their evolution from Naive 

RAG to Advanced and Modular RAG paradigms. The paper meticulously analyses the core techniques 

employed within RAG frameworks for retrieval, generation, and augmentation. The paper offers a critical 

evaluation of RAG methods and benchmarks, delving into common challenges faced by these sys- tems. 

These challenges include hallucinations, outdated knowledge, opaque reasoning, issues with retrieval 

accuracy, generation irrelevance and toxicity, integration diffi- culties, and redundancies in retrieved 

information. Additionally, the paper addresses limitations in handling specialised terms, struct.  

 

Jiang et al., (2023) [5] introduce FLARE (Forward-Looking Active Retrieval Augmented Generation), a 

novel method designed to enhance RAG systems. FLARE dynamically determines when and what 

information to retrieve during the text gen- eration process. By predicting upcoming sentences and identifying 

low-confidence tokens, FLARE intelligently triggers the retrieval of relevant documents for sentence 

regeneration. Comprehensive experiments across four long-form knowledge-intensive generation tasks 

demonstrate the superiority or competitive performance of FLARE compared to baselines. Evaluation 

metrics include exact match (EM), token-level F1, precision, recall, RoBERTa-based QA score 

(DisambigF1), ROUGE, and an overall DR score combining DisambigF1 and ROUGE. 

 

Jin et al., (2024) [6] propose RAGCache, a sophisticated multilevel dynamic caching system specifically 

to enhance RAG performance. It leverages a knowledge tree to structure intermediate retrieval states, 

caching them strategically across GPU and host memory. RAGCache employs a prefix-aware Greedy 

Dual-Size Frequency (PGDSF) replacement policy to prioritise vital key-value tensors. Additionally, it 

implements cache-aware reordering for improved hit rates and thrashing prevention, and dynamic 

speculative pipelining to mask latency by overlapping retrieval and LLM inference. RAGCache 

demonstrates significant performance gains, reducing Time to First Token (TTFT) by up to 4x and 

boosting throughput by up to 2.1x in comparison to vLLM with Faiss integration. 

 

Mashagba et al., (2011) [7]. explored the application of Genetic Algorithms (GA) for query optimization 

within the Vector Space Model (VSM) of information retrieval. Their focus is on the Arabic language, and 

they investigate various similarity mea- sures (Dice, Inner Product), fitness functions, mutations, and 

crossover strategies within the GA framework. Their findings indicate that a GA approach employing a 
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one-point crossover operator, point mutation, and the Inner Product similarity measure as its fitness function 

yields the most significant improvement in IR system performance within the VSM context. Specifically, this 

GA configuration (GA1) demonstrates an 11.94% performance gain compared to traditional VSM 

approaches. 

Yan, Wang & Chu(2020) [8] conducted a thorough investigation into the inner workings of NVIDIA Turing 

architecture Tensor Cores, specifically as they pertain to half-precision matrix multiplication. They unveil 

details about instructions, register usage, data layouts, along with the throughput and latency of Tensor Core 

operations. Furthermore, they benchmark Turing GPU memory systems and provide performance analysis. 

Interestingly, their analysis uncovers that memory bandwidth (DRAM, L2 cache, shared memory) has 

become the limiting factor in HGEMM performance, contrasting with the previous assumption of 

computation-bound limitations. Building upon their findings, they introduce optimizations to Tensor Core-

based HGEMM, focusing on blocking size, data layouts, prefetching, and instruction scheduling. Com- 

prehensive evaluations demonstrate that their optimised HGEMM implementation achieves an average 

speedup of 1.73x on NVIDIA Turing RTX2070 GPUs and 1.46x on T4 GPUs compared to the native 

cuBLAS 10.1 implementation. The use of tensor core will help in optimization of inference speed in the 

encoding process in the RAG pipeline. 

 

In this upcoming section, the approach taken to survey optimization techniques for RAG systems is outlined. 

 

Table 1: Literature survey summary table 

 

Study Focus Approach Key Findings 

 

Pierre et 

al. 

Query 

optimization in 

RAG 

BERT, Orca2, 

prompt augmenter 

Improved accuracy, 

rel- 

evance, and 

contextual richness  

in  document 

retrieval 

Gao et al. Evolution and 

chal- lenges in 

RAG systems 

Survey of RAG 

tech- niques 

Critical  

evaluation  of 

RAG  challenges  

and 

optimization 

avenues 

 

Jiang et 

al. 

Enhancing RAG 

with dynamic 

retrieval 

 

FLARE method 

Improved

 perfor

- 

mance in long-

form knowledge-

intensive 

tasks 

 

Jin et al. 
Performance 

enhance- ment in 

RAG 

 

RAG Cache 

system 

Reduced TTFT by 

up to 4x, 

increased 

throughput by up 

to 

2.1x 
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Mashagba 

et al. 

Query 

optimization in 

VSM 

Genetic 

Algorithms 

11.94%

 performan

ce 

gain in IR system 

for 

Arabic language 

Yan, 

Wang, 

Chu 

Optimization of 

Tensor Cores 

Half-precision

 matri

x multiplication 

1.73x speedup on 

RTX2070,

 1.46

x 

speedup on T4 

GPUs 

 

 

2.1 Tokenizer Performance 

A tokenizer [9] is a crucial component in NLP systems responsible for breaking down raw text into smaller, 

meaningful units called tokens. These tokens can be words, subwords, or even characters, depending on the 

tokenizer’s configuration and the requirements of the task at hand. The primary goal of tokenization is to 

prepare the text for further processing, such as parsing, semantic analysis, or machine learning tasks. 

Tokenization typically involves following phases: 

Normalization: In this phase, the text undergoes preprocessing steps to standardise its format and remove 

any inconsistencies or noise. This may include tasks such as converting text to lowercase, removing 

punctuation, handling contractions and applying Unicode normalisation. 

Pre-tokenization: The pre-tokenization phase involves splitting the text into initial units, such as words or 

subwords. This step is crucial for languages with complex morphology or agglutinative characteristics, where 

words may consist of multiple morphemes or have variable forms. 

Running the input through the model: Once pre-tokenized, the text is pro- cessed through the model, 

which may involve converting the tokens into numerical representations suitable for machine learning 

algorithms or other downstream tasks. This phase typically relies on the model architecture and specifications 

to determine how tokens are processed and encoded. 

Post-processing: Finally, in the post-processing phase, additional operations may be applied to the 

tokenized output to prepare it for specific tasks or applications. This includes adding special tokens, 

generating attention masks or assigning token type IDs, depending on the requirements of the model or task. 

In this sub-section, the focus lies on examining the substantial performance gaps between Rust-based fast 

tokenizers and Python-based slow tokenizers provided by the Hugging Face library. Rust, a systems 

programming language renowned for its emphasis on performance, memory safety, and concurrency, serves as 

the backbone for the fast tokenizers implemented in the Hugging Face Tokenizers library. 

Leveraging Rust’s inherent advantages in speed and efficiency as discussed in [10], these fast tokenizers 

demonstrate remarkable processing speeds, particularly when dealing with large batches of text 

simultaneously. This speed advantage is particu- larly pronounced during batch encoding, where 

parallelization capabilities inherent to Rust-based implementations lead to drastic reductions in processing 

times. While the speed advantage of fast tokenizers may not be immediately apparent when tok- enizing 

individual sentences, their superior performance becomes unmistakable when processing extensive datasets. 

The following tokenization findings were obtained from the UC Irvine Machine Learning Repository’s 

Drug Review dataset, as reported on the hugging face website. 
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Table 2: Fast vs Slow Tokenizer Results 

Fast tokenizer Slow tokenizer batched=True 10.8s 4min 41s 

batched=False 59.2s 5min 3s 

 

 

 

 

 

 
Fig. 2: Modules in TensorRT Optimization [27] 

 

2.2 Encoder Performance 

The encoder model [11] plays a crucial role in transforming tokenized textual input into vector embeddings. 

The model, often built upon deep learning architectures such as transformers, receive tokenized sequences 

as input and produce dense vector representations, or embeddings, for each token. The encoder’s task is to 

capture the semantic and contextual information of the input tokens, encoding them into high- dimensional 

vector spaces. By leveraging self-attention mechanisms and multi-layer architectures, encoder models can 

effectively capture complex relationships within the input text, enabling downstream tasks such as text 

generation, sentiment analysis, and language understanding. 

 

The advancements in hardware acceleration, such as CUDA and Tensor Cores provided by Nvidia, 

significantly augment the performance of encoder models. These specialised computing units are designed to 

handle parallel processing tasks effi- ciently. By harnessing the power of parallelization, CUDA and Tensor 

Cores expedite the computations involved in encoding tokenized sequences into vector embeddings. This 

parallel processing capability leads to substantial performance boosts, enabling encoder models to process 

large volumes of data swiftly and efficiently. As a result, tasks reliant on encoder models, such as text 

classification, sentiment analysis, and language understanding, benefit from accelerated processing times and 

enhanced performance. 

CUDA cores [12], integral components of Nvidia GPUs, play a pivotal role in accelerating parallel processing 

tasks. The number and speed of CUDA cores directly affect data processing efficiency. Analogous to 

checkout lanes in a supermarket, CUDA cores operate in parallel, with each core capable of processing 

one task at a time. Just as opening multiple lanes expedites checkout for numerous customers, increasing the 

number of CUDA cores enables parallel processing of data points, significantly enhancing throughput. As 

Nvidia GPUs evolve, the proliferation of CUDA cores has surged. Tensor cores [13], specifically 

engineered for accelerating deep learning computations, excel in performing complex matrix operations 
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crucial for neural network processes at remarkable speeds. 

Buber et al., (2018) [14] did a comparative study on the performance of CPU and GPUs and concluded that 

GPUs were around 4-5 times faster than CPUs. Nishanth et al., (2022) [15] also reinforced the theoretical 

superiority of GPUs over CPUs when it comes to deep learning model training and inference. It was 

shown that GPUs were faster by 8.8 times when trained on Convolutional Neural Networks (CNNs) and 

4.90 times faster when trained with Recurrent Neural Networks (RNNs). Ghadani et al.,(2020)  [16] reported 

that the frames per second (FPS) was 4.5 times faster than the non-optimized inference speeds when 

trained with CUDA and TensorRT execution optimization. The table 2 provides inference optimization 

provided by TensorRT based on [27] 

 

Table 3: Inference Speed of TensorRT against PyTorch 

 

Model 

name 

Throughp

ut 

(PyTorch

) 

Throughp

ut 

(TensorR

T) 

Latency 

(PyTorch

) 

Latency 

(TensorR

T) 

VGG16 196 327 5.27 3.11 

Alexnet 997 1443 1.05 0.789 

Resnet 152 69.8 160 14.9 6.3 

Densenet 

161 

47.7 135 22.2 7.48 

Mobilenet 

v2 

219 1163 4.51 0.92 

 

 

2.3 LLM agents and Prompt Engineering 

LLM agents [17] are AI systems that combine LLMs with other tools and components to perform complex 

tasks and interact with various environments. They leverage the language understanding and generation 

capabilities of LLMs to plan actions, execute them using external tools, observe the outcomes, and adapt 

their strategies based on feedback. This allows LLM agents to solve problems that require multi-step 

reasoning, decision-making and interaction with the real world or digital systems. 

 

Prompt engineering is the process of designing and refining the input (prompts) given to an AI model to elicit 

desired responses. It involves carefully crafting instructions, questions or contexts to guide the model’s 

behaviour and output. By understanding how language models work and experimenting with different 

phrasing, formatting and examples, prompt engineers can optimise the quality, relevance, and creativity of the 

generated text [18]. 

 

Liu et al., (2023) [19] propose P-Tuning, a novel method for optimising the performance and stability of 

prompt-based natural language understanding (NLU). The paper identifies that manual discrete prompts, 

while effective, can lead to unpredictable fluctuations in performance. P-Tuning addresses this by introducing 

trainable continuous prompt embeddings in addition to discrete prompts, aiming to stabilise training and 

boost performance across various NLU tasks. Houlsby et al. (2019) [20] talk about adaptor modules and 

transfer learning. This method adds only a few trainable parameters per job, resulting in a compact and 

flexible model. The method adds just 3.6% of the parameters per job and achieves within 0.4% of the 

performance of complete fine-tuning on GLUE. Fine-tuning, on the other hand, trains all of the parameters for 
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each job. 

 

Guo et al., (2024) [21] explored the integration of LLMs within multi-agent systems (MAS). It delves into 

how LLMs, with their advanced natural language processing abil- ities can enhance MAS by facilitating 

communication, cooperation and coordination among agents. The survey discusses various approaches for 

incorporating LLMs into MAS architectures, including centralised and decentralised frameworks. It also 

exam- ines the potential benefits of LLM-based agents, such as improved decision-making, adaptable 

behaviours and the ability to handle complex tasks that require language understanding and generation.  

2.4 Vector Embedding Indexing and Search Algorithms 

Vector embeddings are numerical representations of complicated data, such as text, graphics, or audio [22]. 

Vector databases are specialised databases made to store and handle vector embeddings effectively. Vector 

databases store data as points in a high-dimensional space as opposed to standard databases, which store data 

in rows and columns. This enables similarity search and retrieval based on distance metrics. 

 

Johnson, Douze and J´egou (2017) [23] discuss Facebook AI Similarity Search (FAISS) algorithm for 

indexing of vector embedding in vector databases. Developed by Facebook AI Research, FAISS focuses 

on optimised implementations of fun- damental techniques like multi-threading and BLAS libraries for 

efficient distance computations. It also utilises SIMD vectorization and offers GPU support for accel- 

erated performance. Notably, FAISS employs approximate nearest neighbour search algorithms like 

Product Quantization and Inverted File Index to handle massive datasets effectively. The FAISS 

algorithm can construct a k-nearest neighbour graph (k=10) on 95 million images in 35 minutes using 

four GPUs. Furthermore, FAISS can efficiently cluster 67.1 million vectors into 262,144 centroids in 43.8 

minutes on eight GPUs. These benchmarks demonstrate the substantial performance gains provided by 

FAISS, particularly when dealing with large-scale datasets. 

 

If I/O efficiency is the priority during the indexing process, DISK-ANN is an algorithm to look out for. 

DiskANN, and its improved version LM-DiskANN [25], are graph-based Approximate Nearest Neighbour 

(ANN) search algorithms designed to handle extremely large datasets that cannot fit entirely in memory. 

Unlike traditional graph-based indexes that reside solely in memory, DiskANN leverages disk storage for 

storing the index structure, loading portions into memory on-demand during search. LM-DiskANN further 

enhances this approach by storing complete routing information within each node, minimising memory 

consumption and disk I/O operations. This allows for efficient search on large-scale datasets while 

maintaining a low memory footprint 

 

Table 4: Benchmarking of different Vector Databases 

 

Engine Dataset Upload + 

Index 

Time(m) 

P95(ms

) 

Latency(

ms) 

qdrant 
dbpedia- 

openai-1M- 

1536-angular 

24.43 4.95 3.54 

elasticsearc

h 

dbpedia- 

openai-1M- 

1536-angular 

83.72 72.53 22.10 
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redis 
dbpedia- 

openai-1M- 

1536-angular 

92.49 160.85 140.65 

weaviate 
dbpedia- 

openai-1M- 

1536-angular 

25.98 465.42 279.44 

milvus 
dbpedia- 

openai-1M- 

1536-angular 

1.16 441.32 393.31 

 

 

3 Methodology 

The initial phase of this literature survey involved a comprehensive search for schol- arly articles and 

publications using major online research databases such as Google Scholar, Semantic Scholar, and arXiv. These 

platforms were chosen for their extensive coverage of academic literature in computer science, artificial 

intelligence and natural language processing. 

 

Beyond academic databases, the literature survey also explored various online resources to identify cutting-

edge research and implementation practices. These resources included blogs, forums and GitHub repositories 

of prominent RAG projects. Additionally, relevant conference proceedings and workshops were examined to 

stay up-to-date on the latest advancements in the field. The survey primarily focused on peer-reviewed journal 

articles and conference papers published within the past few years to ensure the inclusion of the most recent 

and relevant research findings. How- ever, medium articles by recognized researchers in the field of NLP 

were also included to capture insights and practical applications that might not be readily available in 

traditional academic publications. 

4 Conclusion 

This comprehensive survey of optimization techniques for RAG systems underscores their immense potential 

while highlighting the critical need for continuous improve- ment in their efficiency and scalability. 

While this research has highlighted substantial progress in optimising RAG sys- tems, significant challenges 

remain. Current systems can struggle with issues such as retrieving missing content, failing to rank 

relevant documents highly enough [26], or not extracting answers correctly even when the relevant context is 

present. Fur- ther challenges arise in handling response format, ensuring appropriate specificity, integrating 

knowledge sources effectively, and mitigating the phenomenon of hallu- cination. Although methods like the 

Agentic RAG approach from LlamaIndex offer potential solutions to some of these issues, a robust and 

comprehensive solution to these challenges remains an active area of research. 

 

5 Discussion 

The existing research on RAG reveals a multifaceted approach to improving its performance and addressing 

its inherent challenges. Studies have demonstrated sig- nificant progress in optimising various stages of the 

RAG pipeline. This includes enhancing query formulation and document retrieval accuracy, as well as 

refining response generation techniques. One area of focus is query optimization. Researchers have 

investigated leveraging large language models to dynamically refine user queries, leading to more precise and 

relevant document retrieval. This focus on understanding user intent has been pivotal in improving the quality 

of retrieved information. Addi- tionally, the application of genetic algorithms has showcased potential in 

optimising query formulation for specific languages and information retrieval models. 

http://www.ijsrem.com/
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On the other hand, research has explored both software and hardware-based optimizations to tackle the 

computational demands of RAG systems. Innovative caching systems have been proposed to expedite 

document retrieval and reduce latency. Additionally, the utilisation of specialised hardware architectures like 

GPUs and their associated programming models like CUDA has demonstrated substantial speedups in 

encoder performance. However, memory bandwidth constraints remain a bottleneck even with hardware 

acceleration, emphasising the need for continued research into efficient data management and transfer within 

RAG pipelines. 

 

Furthermore, the literature underscores the importance of prompt engineering and LLM agent integration in 

enhancing the effectiveness of RAG systems. While prompt engineering techniques have proven successful in 

improving response quality, the emer- gence of LLM agents introduces new possibilities for multi-step 

reasoning and complex task execution within RAG frameworks. 
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