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Abstract—Satellite imagery plays a crucial role in land use 
mapping, land cover classification, and the detection of an- 
thropogenic interference in natural environments. However, the 
effectiveness of these applications depends significantly on image 
quality, which is often compromised by atmospheric conditions 
such as clouds and shadows, as well as radiometric incon- 
sistencies. This paper explores the application of Generative 
Adversarial Networks (GANs) as a state-of-the-art approach to 
satellite image super-resolution. By employing a two-component 
architecture—a generator that upscales low-resolution inputs and 
a discriminator that ensures photorealistic outputs—GANs can 
overcome the hardware limitations of satellite sensors while 
preserving critical spatial details. The proposed methodology 
incorporates specialized loss functions to maintain structural 
integrity and enhance feature extraction capabilities. Results 
demonstrate that GAN-based super-resolution techniques not 
only improve visual quality but also significantly enhance the 
accuracy of downstream analytical tasks in urban planning, 
environmental monitoring, and disaster response. This approach 
represents a promising direction for advancing geospatial intelli- 
gence and remote sensing applications where high-resolution data 
is essential but often unavailable through conventional means. 

Index Terms—GAN, Planet Imagery, Normalization 

 

I. INTRODUCTION 

Satellite imagery has revolutionized our ability to monitor, 

analyze, and understand Earth’s surface at various spatial 

and temporal scales. Among the numerous satellite platforms 

available today, Planet’s Dove constellation stands out for its 

capability to capture daily multispectral imagery at 3-4 meter 

resolution across four spectral bands (Blue, Green, Red, and 

Near-Infrared). This remarkable temporal frequency and spa- 

tial detail offer unprecedented opportunities for applications 

in environmental monitoring, land use mapping, and change 

detection. 

However, the utilization of such high-frequency satellite 

data presents significant challenges, particularly in processing 

large volumes of imagery to produce normalized, analysis- 

ready datasets. These challenges include atmospheric inter- 

ference (clouds and shadows), radiometric inconsistencies 

between images captured at different times, and the compu- 

tational demands of processing terabytes of data across large 

geographic extents. 

This paper presents a novel approach to super-resolution 

of satellite imagery using Generative Adversarial Networks 

(GANs). Our method addresses the fundamental limitations 

of satellite sensor hardware by leveraging deep learning to 

generate enhanced imagery with improved spatial resolution 

while preserving spectral information. The implemented GAN 

architecture consists of a generator network that transforms 

low-resolution satellite imagery into high-resolution outputs, 

and a discriminator network that ensures the generated images 

maintain photorealistic qualities and faithfulness to ground 

truth. 

By applying this technique to PlanetScope imagery, we 

demonstrate the potential to overcome the inherent resolu- 

tion constraints of the Dove constellation while maintaining 

radiometric accuracy. The super-resolution process enhances 

the visibility of fine-scale features, improves edge definition, 

and enables more precise feature extraction—critical improve- 

ments for applications such as deforestation monitoring, urban 

expansion analysis, and detailed land cover classification. 

Our methodology integrates cloud and shadow masking pro- 

cedures with radiometric normalization techniques to produce 

temporally consistent image products. We evaluate the perfor- 

mance of our approach through quantitative metrics and visual 

assessment, demonstrating significant improvements in image 

quality and information content. The processing pipeline is 

designed to scale efficiently across large datasets, leveraging 

advanced computational infrastructure to handle the intensive 

processing requirements. 

The techniques developed in this study represent an im- 

portant advancement in satellite image processing, offering 

a pathway to extract greater value from existing satellite 

platforms without requiring new sensor deployments. The 
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improved spatial resolution achieved through our GAN-based 

approach enables more detailed analysis of landscape patterns 

and processes, ultimately contributing to more accurate and 

timely environmental monitoring capabilities. 

II. LITERATURE SURVEY 

Satellite imagery has revolutionized our ability to monitor, 

analyze, and understand Earth’s surface at various spatial 

and temporal scales. Among the numerous satellite platforms 

available today, Planet’s Dove constellation stands out for 

its capability to capture daily multispectral imagery at 3- 

4 meter resolution across four spectral bands (Blue, Green, 

Red, and Near-Infrared) [1]. This remarkable temporal fre- 

quency and spatial detail offer unprecedented opportunities 

for applications in environmental monitoring, land use map- 

ping, and change detection. However, the utilization of such 

high-frequency satellite data presents significant challenges, 

particularly in processing large volumes of imagery to pro- 

duce normalized, analysis-ready datasets [1], [2]. These chal- 

lenges include atmospheric interference (clouds and shad- 

ows), radiometric inconsistencies between images captured 

at different times, and the computational demands of pro- 

cessing terabytes of data across large geographic extents. 

This paper presents a novel approach to super-resolution 

of satellite imagery using Generative Adversarial Networks 

(GANs). Our method addresses the fundamental limitations 

of satellite sensor hardware by leveraging deep learning to 

generate enhanced imagery with improved spatial resolution 

while preserving spectral information [2], [3]. The imple- 

mented GAN architecture consists of a generator network 

that transforms low-resolution satellite imagery into high- 

resolution outputs, and a discriminator network that ensures 

the generated images maintain photorealistic qualities and 

faithfulness to ground truth [3]. Recent advances in satellite 

imaging technology have transformed our ability to monitor 

Earth’s surface, with platforms like Planet’s Dove constellation 

providing unprecedented daily multispectral imagery at 3-4 

meter resolution. Despite these technological achievements, 

satellite imagery faces several critical challenges that impact 

its utility for practical applications. Atmospheric interference, 

radiometric inconsistencies, and hardware limitations continue 

to affect image quality and usability. Traditional approaches 

to satellite image enhancement have focused on conventional 

signal processing methods, but recent developments in deep 

learning have opened new possibilities for improving satellite 

imagery quality. Among these advances, Generative Adversar- 

ial Networks (GANs) have emerged as particularly promising 

for addressing resolution limitations while preserving spectral 

integrity [4]. The evolution of satellite image enhancement 

techniques has seen significant progression, with GANs rep- 

resenting a major breakthrough in overcoming traditional 

hardware constraints. Several sophisticated GAN architectures 

have been developed specifically for satellite image enhance- 

ment. The SRResNet architecture, introduced by Ledig et al. 

in 2017, marked one of the first successful implementations 

of GANs for Single Image Super-Resolution (SISR) [2]. 

This pioneering work demonstrated remarkable effectiveness 

when applied to Sentinel-2 images, utilizing PeruSat-1 as a 

high-resolution reference. As highlighted by Kramer in ”En- 

hancing Sentinel-2 Image Resolution: Evaluating Advanced 

Techniques based on Convolutional and Generative Neural 

Networks” [5], building upon this foundation, researchers 

developed the Enhanced SRGAN (ESRGAN), which incorpo- 

rated innovative Residual-in-Residual Dense Blocks (RRDB) 

and eliminated computationally intensive Batch Normalization 

[3]. The ESRGAN also introduced a relativistic methodology 

for comparative realism assessment, significantly improving 

overall image quality. More recent developments have led to 

the Real-ESRGAN, specifically designed to handle unknown 

and complex degradation patterns commonly found in satellite 

imagery [6]. This architecture employs a U-Net structure with 

spectral normalization, demonstrating superior performance 

on synthetic datasets. Furthermore, the Enlighten-GAN rep- 

resents a specialized advancement for satellite image pro- 

cessing, incorporating Self-Supervised Hierarchical Perceptual 

Loss and optimizing memory utilization through patch-based 

processing [7]. This architecture ensures reliable convergence 

during training while maintaining high-quality outputs. Effec- 

tive implementation of GAN-based super-resolution requires 

carefully constructed datasets and preprocessing pipelines. 

Researchers have identified several critical challenges in 

dataset generation, including sensor compatibility issues be- 

tween different platforms, temporal alignment requirements, 

cloud coverage management, and coordinate reference system 

consistency [8]]. Standard preprocessing involves bit depth 

normalization to achieve uniform values within the interval 

[0,1], reduction of high-frequency components, arithmetic 

mean filtering for aliasing prevention, and spectral adjustment 

through histogram matching. These preprocessing steps are 

essential for ensuring consistent and reliable training data. 

Performance evaluation in GAN-based satellite image en- 

hancement relies on comprehensive quantitative metrics. Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 

Measure (SSIM) serve as primary quantitative indicators, with 

quality filtering thresholds typically set at SSIM values greater 

than 0.45 [9]. Visual assessment criteria emphasize feature 

preservation, edge definition quality, spectral consistency, and 

artifact minimization. This multi-faceted evaluation approach 

ensures that enhanced images meet both technical standards 

and practical requirements. The integration of GAN-based 

super-resolution techniques with satellite imagery processing 

has opened promising avenues for various applications. En- 

vironmental monitoring has benefited significantly, enabling 

enhanced deforestation detection and improved land cover 

classification accuracy. Urban planning applications have seen 

improvements in fine-scale feature extraction and precise in- 

frastructure monitoring. Additionally, researchers continue to 

advance the field through integration with cloud computing 

architectures, development of specialized loss functions, and 

improvements in spectral preservation methods. By applying 

this technique to PlanetScope imagery, we demonstrate the 

potential to overcome the inherent resolution constraints of 
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Fig. 1. GAN model 

 

the Dove constellation while maintaining radiometric accu- 

racy [4]. The super-resolution process enhances the visibility 

of fine-scale features, improves edge definition, and enables 

more precise feature extraction—critical improvements for 

applications such as deforestation monitoring, urban expansion 

analysis, and detailed land cover classification [4], [5]. Our 

methodology integrates cloud and shadow masking proce- 

dures with radiometric normalization techniques to produce 

temporally consistent image products [6]. We evaluate the 

performance of our approach through quantitative metrics and 

strengths of GANs in generating high-fidelity images, with 

preprocessing tailored to handle satellite-specific challenges 

such as atmospheric effects. 

 

A. Preprocessing 

Preprocessing prepares PlanetScope satellite imagery (Au- 
gust 2017 to November 30, 2018) for super-resolution analysis. 

Spectral radiance (Lλ) was converted to top-of-atmosphere 

(TOA) reflectance (ρλ) using the following equation : 

visual assessment, demonstrating significant improvements in 

image quality and information content [7]. The processing 

pipeline is designed to scale efficiently across large datasets, 

π 
ρλ = 

ESUN 

 

cos θs 
× Lλ × d2 × c 

leveraging advanced computational infrastructure to handle the 

intensive processing requirements. The techniques developed 

in this study represent an important advancement in satellite 

image processing, offering a pathway to extract greater value 

from existing satellite platforms without requiring new sensor 

deployments [8]. The improved spatial resolution achieved 

through our GAN-based approach enables more detailed anal- 

ysis of landscape patterns and processes, ultimately contribut- 

ing to more accurate and timely environmental monitoring 

capabilities. 

III. METHODOLOGY 

This section outlines the methodology employed to en- 

hance the resolution of satellite imagery using Generative 

Adversarial Networks (GANs). The approach integrates pre- 

processing, model design, training, and evaluation to trans- 

form low-resolution (LR) satellite images into high-resolution 

(HR) outputs. The methodology is designed to leverage the 

where ρλ is TOA reflectance (dimensionless), Lλ is radiance 

(W/m2 sr µm), d is the Earth-Sun distance (astronomical 

units), ESUNλ is solar irradiance (1997, 1812, 1533, 1039 

W/m2 µm for Blue, Green, Red, NIR bands), θs is the solar 

zenith angle (degrees), and c is a calibration constant. A refer- 

ence mosaic was created from the median of images with less 

than 1% cloud cover, used to inter-calibrate the collection via 

histogram matching with Random Forest regressors, selecting 
images with less than 20% cloud cover. 

Cloud and shadow masks (see Section B) were applied, 

followed by median calculation of non-masked pixels. A 

Random Forest regressor reduced noise between spectrally 

similar features (e.g., urban areas and water). Normalized mo- 

saics, free of clouds and shadows, were exported in GeoTIFF 

format with Blue, Green, Red, NIR, and Availability bands, 

plus metadata. LR images were generated by 4× bicubic 

downsampling, with pixel values normalized to [0, 1]. 4× 

bicubic downsampling, with pixel values normalized to [0, 1]. 

λ 
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Fig. 2. Proposed Methodology 

 

 

B. Masks for Shadow and Cloud Removal 

The generation of cloud and shadow masks relied on 

empirically determined threshold values applied via histogram 

slicing. For cloud detection, a threshold of values exceeding 

2200 in the Blue band was selected, while shadow masks 

were defined using values between 1500 and 2200 across 

the Blue and NIR bands. These thresholds produced initial 

binary masks for clouds and shadows. To refine these masks, a 

frequency filter was applied, assessing the temporal persistence 

of masked targets across the image series. Pixels with low 

temporal stability (50%), indicative of transient features like 

clouds and shadows, were retained, while stable pixels (e.g., 

water bodies, urban constructions, beaches, and exposed soil) 

were excluded. This step ensured the masks accurately isolated 

atmospheric artifacts. The cloud and shadow removal process 

then eliminated masked pixels from each image, returning only 

cloud-free data to the workflow. 

C. Model Architecture 

The proposed framework adopts a GAN-based approach, 

specifically inspired by the Super-Resolution GAN (SRGAN) 

architecture, which comprises two primary components: a 

generator and a discriminator. 

Generator: The generator network is designed to upscale 

LR images to HR images. It employs a deep convolutional 

neural network (CNN) with residual blocks to capture intricate 

spatial features. The architecture begins with an initial convo- 

lutional layer, followed by a series of residual blocks (e.g., 16 

blocks), each containing two convolutional layers with batch 

normalization and ReLU activation. A sub-pixel convolution 

(PixelShuffle) layer is then used to upscale the feature maps 

by a factor of 4×, followed by a final convolutional layer to 

produce the HR output. 

Discriminator: The discriminator is a CNN tasked with 

distinguishing between real HR images and those generated 

by the generator. It consists of multiple convolutional layers 

with increasing filter sizes (e.g., 64 to 512), interleaved with 

batch normalization and LeakyReLU activation. The output is 

passed through a dense layer and a sigmoid activation function 

to produce a probability score. 

D. Loss Functions 

The training of the GAN involves optimizing a composite 

loss function to balance image quality and adversarial learning. 

The total loss comprises two components: 

Content Loss: To ensure the generated images retain struc- 

tural similarity to the ground-truth HR images, the Mean 

Squared Error (MSE) between the generated and real HR 

images is computed. Additionally, a perceptual loss based on 

features extracted from a pre-trained VGG-19 network (e.g., 

layer conv5 4) is incorporated to enhance visual fidelity. 

Adversarial Loss: The adversarial loss is derived from the 

discriminator’s output, encouraging the generator to produce 

images that are indistinguishable from real HR images. This 

is formulated as a binary cross-entropy loss. 

The generator’s total loss is a weighted combination of 

content and adversarial losses, with hyperparameters (e.g.,λ = 
0.001 for adversarial loss) tuned during experimentation. 

E. Training Procedure 

The model was implemented using a deep learning frame- 

work (e.g., TensorFlow or PyTorch) and trained on a GPU- 

enabled system to accelerate computation. The training process 

followed a two-stage approach: Pre-training the Generator: 

The generator was initially trained in isolation using only 

the content loss (MSE) for 10 epochs to establish a baseline 

mapping from LR to HR images. 

Adversarial Training: The full GAN was then trained for 

100 epochs, alternating updates between the generator and 

http://www.ijsrem.com/
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discriminator. The Adam optimizer was employed with a 

learning rate of 0.0002 and β = 0.9 . A batch size of 16 

was used, balancing memory constraints and training stability. 

To prevent mode collapse and ensure convergence, tech- 

niques such as gradient clipping and learning rate decay were 

applied after 50 epochs. 

F. Evaluation Metrics 

The performance of the super-resolution model was assessed 

using both quantitative and qualitative metrics. Quantitatively, 

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM) were calculated on the test set to measure 

pixel-level accuracy and perceptual similarity, respectively. 

Qualitatively, visual inspection of the generated HR images 

was conducted to evaluate fine details, edge sharpness, and 

overall realism compared to the ground-truth HR images. 

G. Implementation Details 

The experiments were conducted on a system equipped with 

an NVIDIA GPU (e.g., RTX 3080) and 32 GB of RAM. 

The dataset was preprocessed and stored in HDF5 format for 

efficient loading during training. Hyperparameters, such as the 

number of residual blocks and loss weights, were fine-tuned 

based on validation set performance. 

IV. DATASET DESCRIPTION 

The study was conducted as part of the NextGenMap 

project, covering six major Brazilian biomes—Amazon, 

Caatinga, Cerrado, Atlantic Forest, Pampa, and Pantanal—as 

well as the Chaco biome, which spans regions of Argentina, 

Paraguay, and Bolivia. These biomes exhibit diverse climatic, 

ecological, and topographical characteristics, making them 

ideal for evaluating the effectiveness of satellite-based remote 

sensing techniques. 

For systematic data collection and analysis, the study area 

was divided into 16 charts, defined based on the Interna- 

tional Millionth System at a 1:250,000 scale . Each chart 

encompasses an approximate area of 37,600 km², ensuring 

comprehensive spatial coverage for generating high-resolution 

image mosaics. The division of study areas into these stan- 

dardized units facilitates the consistent assessment of land 

cover, vegetation dynamics, and atmospheric conditions across 

different regions. 

This study utilized high-resolution satellite imagery from 

the Satellite Analytic SatelliteScope Ortho Scenes dataset. 

These images were acquired from two distinct orbital con- 

figurations: (i) the International Space Station (ISS) orbiting 

at an altitude of 400 km with an inclination of 51.6 degrees, 

and (ii) a sun-synchronous, near-polar orbit with an inclination 

of 98 degrees. 

The SatelliteScope satellites provide high-frequency, mul- 

tispectral imagery with a ground sampling distance (GSD) 

of approximately 3–5 meters, enabling detailed observations 

of land surface features. These images offer significant ad- 

vantages for remote sensing applications, including vegetation 

monitoring, land-use classification, and environmental change 

detection. The use of multispectral bands allows for enhanced 

discrimination of surface features, making the dataset par- 

ticularly useful for NDVI-based vegetation analysis, cloud 

masking, and haze removal techniques. 

The combination of images from different orbital configura- 

tions enhances the temporal resolution of the dataset, ensuring 

frequent revisit times and minimizing gaps in spatial coverage. 

This high temporal resolution is particularly beneficial for 

monitoring dynamic landscapes, such as agricultural regions, 

wetlands, and forested biomes, where land cover changes 

occur rapidly. The integration of imagery from these sources 

provides a robust dataset for developing and validating remote 

sensing algorithms aimed at improving mosaic generation and 

atmospheric correction techniques. 

V. RESULTS AND DISCUSSION 

This implementation demonstrates a Pix2Pix Generative 

Adversarial Network (GAN) approach for remote sensing 

image super-resolution. The model architecture follows the 

conditional GAN pattern introduced by Isola et al. (2017), but 

has been specifically adapted for multi-band satellite imagery. 

A. Qualitative Results 

The model’s performance is visualized after each epoch 

by generating super-resolved images from test samples and 

comparing them with both the input conditions and ground 

truth (as visualised in Figure 4, 5 and 6). The visualization 

shows RGB composites (first three bands) of the 6-band 

images. The generated images demonstrate the model’s ability 

to recover fine details and structures from lower-resolution 

inputs. 

B. Limitations and Potential Improvements 

The current implementation has several limitations that 

could be addressed in future work: 

The fixed learning rate of 0.0002 could be replaced with 

a learning rate scheduler to improve convergence The batch 

size of 64 may be too large for the available memory when 

processing high-resolution satellite images The model does 

not incorporate any spectral fidelity metrics specific to remote 

sensing applications There is no quantitative evaluation using 

metrics like PSNR, SSIM, or SAM (Spectral Angle Mapper) 

The model loads the entire dataset into memory, which could 

be problematic for large remote sensing datasets. 

This Pix2Pix GAN implementation demonstrates promising 

results for satellite image super-resolution, effectively leverag- 

ing the power of deep learning to enhance the spatial resolution 

of multi-spectral imagery. The qualitative results show that the 

model can generate visually plausible high-resolution images 

from lower-resolution inputs, preserving both spatial structure 

and spectral characteristics. For operational use in remote 

sensing applications, further refinements would be beneficial, 

including more robust quantitative evaluation, optimization 

for larger datasets, and exploration of domain-specific loss 

functions that better preserve spectral fidelity across all bands. 

http://www.ijsrem.com/
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Fig. 3. Result 1 
 

 

Fig. 5. Result 3 
 

 

should focus on refining haze removal methods to optimize 

the applicability of satellite-based observations in challenging 

environments. 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 4. Result 2 
 

 

VI. CONCLUSION 

This study highlights the effectiveness of the proposed 

methodology in processing satellite images on a large temporal 

and spatial scale. The developed algorithms successfully gen- 

erated radiometrically normalized mosaics at three temporal 

resolutions—weekly, biweekly, and monthly—demonstrating 

their adaptability for different remote sensing applications. 

These mosaics provide valuable insights for change detection, 

real-time alert systems, and improved mapping accuracy. How- 

ever, in regions with significant haze contamination, further 

advancements in atmospheric correction techniques are essen- 

tial to enhance image quality and reliability. Future research 
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