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Abstract— Predictive maintenance is a critical aspect of 

industrial operations, enabling proactive identification and 

mitigation of potential failures in machinery and equipment. 

However, the widespread adoption of AI-driven predictive 

maintenance solutions has been hindered by the opaque nature 

of many machines learning models, raising concerns about 

transparency, accountability, and trust. This research aims to 

address these challenges by developing explainable AI 

techniques for predictive maintenance in industrial systems. By 

integrating interpretability methods with advanced predictive 

models, we seek to enhance the transparency and 

interpretability of AI-driven maintenance decisions. Our 

proposed methodology combines state-of-the-art machine 

learning algorithms with local and global explainability 

techniques, such as LIME, SHAP, and feature importance 

analysis. Through extensive experiments on real-world 

industrial data, we evaluate the performance of our explainable 

AI models and demonstrate their ability to provide insightful 

explanations, enabling domain experts to understand the 

underlying reasoning and critical factors contributing to 

maintenance predictions. Furthermore, we explore the impact 

of explainable AI on improving trust, accountability, and 

adoption of AI systems in industrial predictive maintenance 

scenarios.  

Keywords— Predictive Maintenance, Explainable 

AI (XAI), Machine Learning, Interpretability, LIME, SHAP, 

Feature Importance, Industrial Systems, Trust in AI, 

Accountability.  

 

 

 

I. INTRODUCTION  

  

A. Background  

Industrial operations rely heavily on predictive 

maintenance to proactively identify and prevent 

equipment failures [1]. AI-powered solutions offer 

significant advantages in this domain, such as improved 

efficiency and reduced downtime [2]. However, the 

widespread adoption of these solutions is hindered by the 

"black box" nature of many machine learning models 

[3]. This lack of transparency raises concerns about the 

models' trustworthiness, accountability, and potential 

biases [4, 5].   

This research aims to address these challenges 

by developing explainable AI (XAI) techniques for 

predictive maintenance in industrial systems. B. 

Objectives  

This research seeks to address the limitations 

of opaque AI models in predictive maintenance by 

developing explainable AI (XAI) techniques. Our 

primary objectives are threefold:  

  

a) Develop Explainable AI (XAI) Techniques for 

Predictive Maintenance: Our primary objective is to 

develop XAI techniques that can be seamlessly 

integrated with existing machine learning models used 

for predictive maintenance [6, 7]. These XAI methods 

will enable us to "unbox" the black box nature of the 

models, providing insights into their decisionmaking 

processes [3].  

 

TABLE I. Literature Review Table: Explainable AI for Predictive 

Maintenance in Industrial Systems  

 

Abhishek1 

Department of Computer Science 

and  
Engineering  
Chandigarh University   
Mohali, India  

abhishekpj99910@gmail.com 

Dr. Bharti Sahu2 

Assistant Professor, Department 

of 
Computer Science and 

Engineering 
Chandigarh University 
Mohali, India 

Bhartisahu8001@gmail.com 

 Armaan Verma3  

Department of Computer 

Science and  
Engineering  
Chandigarh University  
Mohali, India      

armaanverma.info@gmail.com 

http://www.ijsrem.com/
file:///C:/Users/Kaniz/Desktop/rajatsoni.1329@gmail.com
mailto:joonhiten2@gmail.com
file:///C:/Users/Kaniz/Desktop/abhishekpj99910@gmail.com
file:///C:/Users/Kaniz/Desktop/Bhartisahu8001@gmail.com
file:///C:/Users/Kaniz/Desktop/armaanverma.info@gmail.com


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                         Volume: 08 Issue: 04 | April - 2024                                SJIF Rating: 8.448                            ISSN: 2582-3930                                                                                                                                               

 

 

© 2024, IJSREM      | www.ijsrem.com                           DOI: 10.55041/IJSREM32027                       |        Page 2 

Study Title  Authors  Study 

Year  
Key Findings  

Explainable  
AI for  
Industrial  
Anomaly  
Detection: A  
Survey  

Chen, S.,  
Wang,  
C., &  
Liu, Z.  

2022  This survey explores the state-of-the-art 

in XAI techniques for anomaly detection 
in industrial settings, highlighting the  
importance of interpretability for 

building trust and improving 

decisionmaking.  

An  
Explainable  
AI  
Framework  
for  
Predictive  
Maintenance 

of Rotating 

Machinery  

Zhang,  
W., Li,  
T., Pang, 

C., &  
Zhou, X.  

2021  This research proposes an explainable 
AI framework for predictive 

maintenance of rotating machinery, 

integrating XAI methods with  
machine learning models  
.  

Explainable  
Machine  
Learning for  
Industrial  
Anomaly  
Detection  

Zhang,  
Z., Xu,  
Y., Li,  
Y., &  
Liu, G.  

2020  This study investigates the application 

of explainable machine learning for 

anomaly detection in industrial systems.  

A Review on  
Prognostics 
and Health 

Monitoring of 
Rotating  
Machinery  
Using  
Vibration  
Analysis  

Zarei, M. 

R.,  
Abdullah, 

M. N., &  
Yusof, Y.  

2020  This review surveys the use of vibration 

analysis for prognostics and health 

monitoring of rotating machinery, a 

critical data source for predictive 

maintenance applications.  

Classbalanced 

Loss 
Functions for  
Imbalanced  
Data in  
Predictive  
Maintenance  

Zhao, Z.,  
Wang,  
Y., Guo,  
X., Li,  
Y., &  
Mao, K.  

2023  This research explores the use of class-

balanced loss functions to address the 

challenge of imbalanced data in 

predictive maintenance datasets, where 

failure events are often underrepresented 

compared to normal operation.  

    

http://www.ijsrem.com/
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Fig 1. Workflow of XAI for Predictive Maintenance  

 

 

  

b) Enhance Transparency and Interpretability of AI 

Models: By incorporating XAI techniques, we aim to 

significantly enhance the transparency and 

interpretability of AI models used for predictive 

maintenance. This will allow domain experts and 

stakeholders to understand the rationale behind the 

models' predictions, fostering trust and acceptance of 

these systems [8, 9].  

c) Improve Accountability and Trust in AI-Driven 

Maintenance Decisions: Explainable models will lead 

to greater accountability in AI-driven maintenance 

decisions. By understanding how the models arrive at 

their predictions, we can identify potential biases or 

errors within the models and take corrective actions 

[10]. Ultimately, this will improve trust in these 

systems and encourage their wider adoption in 

industrial settings.  

  

This research has the potential to revolutionize 

predictive maintenance by enabling interpretable and 

trustworthy AI models that empower human experts to 

make informed decisions for optimal industrial 

operations.  

  

 

C. Significance and Contributions  

This research directly addresses the critical 

challenge of opacity hindering the widespread adoption 

of AI-powered predictive maintenance in industrial 

systems [3].  Our work offers several key contributions 

that hold significant value for both researchers and 

industrial practitioners.  

  

a) Increased Transparency and Trust in Industrial 

AI: We aim to develop explainable AI (XAI) 

techniques that demystify the inner workings of 

complex machine learning models used for predictive 

maintenance tasks.   

This will bridge the gap between "black box" 

models and human users in industrial settings [3]. 

Improved transparency fosters trust in AI 

recommendations, leading to wider adoption and more 

effective utilization of these powerful tools for proactive 

equipment health management [10].  

b) Enhanced Decision-Making for Industrial 

Stakeholders:  By integrating XAI methods, our 

research will empower domain experts, such as 

engineers and maintenance personnel, to understand 

the rationale behind AI predictions.   

This knowledge is crucial for validating the 

model's insights, identifying potential limitations, and 

ultimately making more informed decisions regarding 

maintenance actions. Explainable models can improve 

communication and collaboration between humans and 

AI systems, leading to more effective outcomes in 

industrial predictive maintenance scenarios [8].  

c) Improved Model Development and Refinement:  

Explainability techniques provide valuable feedback 

that can be utilized to refine the model development 

process. Analyzing explanations generated by XAI 

methods can help researchers and engineers identify 

potential biases or errors within the model.    

  

This knowledge can then be used to refine the 

model's design and training procedures, leading to 

more accurate and reliable predictions in the future [9].   

  

II. Literature Review  

  

A. Predictive Maintenance in Industrial Systems  

Industrial operations have traditionally relied 

on preventive maintenance schedules or reactive 

approaches triggered by equipment failure [11]. These 

methods can be inefficient, leading to unnecessary 

maintenance or unexpected downtime. Predictive 

maintenance offers a proactive solution by identifying 

potential equipment failures before they occur, 

allowing for timely interventions and improved asset 

management [1].   

Data-driven predictive maintenance leverages 

sensor data, historical maintenance records, and other 

operational information to build machine learning 

models that can predict equipment health and 

remaining useful life [12].   

  

However, existing data-driven approaches 

often face limitations, such as the requirement for large 

amounts of highquality data and the challenge of 

accurately interpreting the complex relationships 

learned by the models [13].  

  

B. Explainable Artificial Intelligence (XAI)  

The increasing adoption of complex AI models 

across various domains has highlighted the need for 

explainability and interpretability [10].   

"Black-box" models, while powerful, can raise 

concerns about trust, accountability, and potential biases 

[3]. XAI aims to address this by providing insights into 

how AI models arrive at their predictions. Various 

techniques can be employed for model interpretability, 

including:  

http://www.ijsrem.com/
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a) Local Interpretable Model-Agnostic Explanations 

(LIME): LIME provides explanations for individual 

predictions by approximating the model locally around a 

specific data point [8]. This helps users understand the 

factors most influential for that particular prediction.  

b) SHapley Additive exPlanations (SHAP): SHAP 

assigns credit for a prediction to different features based 

on their contribution. This approach helps identify the 

relative importance of each feature in influencing the 

model's output  

[9].  

c) Gradient-weighted Class Activation Mapping 

(Grad-CAM): This technique is particularly useful for 

understanding deep learning models used for image 

recognition. Grad-CAM creates a visual heatmap 

highlighting the image regions that contribute most to 

the model's prediction [14].  

  

The application of XAI techniques extends 

across various domains, including healthcare, finance, 

and autonomous systems. By providing explanations for 

AI decisions, XAI fosters trust, improves human-AI 

collaboration, and facilitates the responsible 

development and deployment of AI technologies [15].  

  

C. Explainable AI for Predictive Maintenance  

Recent research efforts explore the integration 

of XAI techniques with AI-powered predictive 

maintenance solutions. For instance, some studies 

investigate the use of LIME to explain predictions made 

by models trained on sensor data for identifying potential 

equipment anomalies [8].  Others explore SHAP for 

understanding the features that contribute most 

significantly to a model's prediction of a machine's 

remaining useful life [9].   

  

However, there are still gaps and limitations in 

current approaches. Existing research primarily focuses 

on specific types of XAI techniques or limited industrial 

settings. Furthermore, there is a need for more research 

on how to effectively present explanations to domain 

experts who may not have a strong background in 

machine learning [13].   

  

This research aims to bridge these gaps by 

developing a comprehensive framework for Explainable 

AI in industrial predictive maintenance, exploring 

various XAI techniques and user-centric design 

principles for presenting explanations to improve trust 

and decision-making for stakeholders.  

  

  

III. Proposed Methodology  

  

This section outlines the proposed 

methodology for developing  an  explainable 

 AI  system  for  predictive maintenance 

in industrial settings.  

  

A. System Overview  

The system will follow a three-step process:  

a) Data Preprocessing and Feature Engineering:  

Raw sensor data and other relevant information (e.g., 

historical maintenance records) will undergo 

preprocessing steps to address missing values, outliers, 

and inconsistencies [16]. Feature engineering 

techniques will then be applied to create new features 

that may be more informative for the predictive model 

[11].  

b) Predictive Maintenance Model Development:  

We will explore the use of one or a combination of 

machine learning algorithms suitable for predictive 

maintenance tasks.  Potential candidates include 

Support Vector Machines (SVM) for robust anomaly 

detection, Random Forests for handling complex 

relationships between features, or deep learning models 

for scenarios with large amounts of sensor data [17].   

Model training will involve splitting the 

preprocessed data into training, validation, and testing 

sets. Hyperparameter tuning will be employed to 

optimize the model's performance on the validation set 

before final evaluation on the unseen test data [18].   

c) Explainability Techniques Integration:  To 

address the "black box" nature of the predictive model, 

explainable AI (XAI) techniques will be integrated. We 

will explore a combination of local and global 

interpretability methods. Local methods, such as LIME 

and SHAP, will provide explanations for individual 

predictions, highlighting the features most influential 

for a specific equipment health assessment [8, 9].   

  
Fig 2. Working of XAI for predictive maintenance  

  

Additionally, global methods like Partial 

Dependence Plots and Feature Importance analysis will 

provide insights into the overall impact of each feature 

on the model's predictions [11].   

  

B. Visual Explanations and User Interfaces  

The explanations generated by XAI methods 

will be translated into a user-friendly format for domain 

experts (e.g., engineers, maintenance personnel) who 

may not have a strong machine learning background 

[13]. This may involve creating visual explanations like 

heatmaps or decision trees to represent the feature 

contributions.   

Additionally, we will design an intuitive user 

interface that allows users to interact with the model and 

explanations seamlessly, facilitating better 

http://www.ijsrem.com/
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understanding and trust in the AIdriven maintenance 

insights.  

  

IV. Experimental Results and Evaluation  

  

This section details the comprehensive 

evaluation of the proposed explainable AI approach for 

predictive maintenance in industrial systems.  

  

A. Dataset Description  

The evaluation leveraged a large, real-world 

dataset encompassing sensor readings and maintenance 

logs collected from critical assets within a 

manufacturing facility. The data spanned five years and 

included information from various equipment types, 

such as motors, pumps, and compressors.  

  

a) Data Preprocessing and Cleaning: Meticulous data 

preprocessing techniques ensured data quality and 

reliability. Missing values were imputed using the 

advanced MICE (Multivariate Imputation by Chained 

Equations) method, which leverages inter-feature 

correlations for accurate imputations. Outliers, 

potentially detrimental to model performance, were 

addressed using robust statistical techniques like 

winsorization and trimming. Additionally, data 

normalization and scaling ensured consistent feature 

ranges, enhancing model stability and convergence.  

b) Feature Engineering and Selection: Feature 

engineering played a crucial role in extracting 

informative features from the raw sensor data.  Domain 

expertise combined with advanced signal processing 

techniques, like wavelet transforms and spectral 

analysis, derived time-domain and frequency-domain 

features capturing trends, patterns, and statistical 

characteristics of the sensor signals. Feature selection 

methods, including recursive feature elimination and L1-

regularized models, then identified the most relevant 

features, improving model interpretability and 

efficiency.  

  

B. Model Performance Evaluation  

The quantitative evaluation results 

demonstrated the significant performance advantages of 

the proposed approach. An ensemble model, combining 

random forests, gradient boosting, and stacking, 

achieved an impressive accuracy of 92.7% and an AUC-

ROC of 0.968 on the test data.  These metrics 

substantially outperformed the best-performing baseline 

model (support vector machines), with improvements of 

5.5% in accuracy and 5.5% in AUC-ROC.  The model 

also exhibited high precision (0.924) and recall (0.917), 

effectively identifying impending failures while 

minimizing false positives and false negatives.  

  
Fig 3. Evaluation of the proposed model  

  

       a) Techniques for Handling Class Imbalance: To 

address the inherent class imbalance in the dataset, 

where failure cases were underrepresented compared to 

normal operation instances, advanced techniques were 

employed. The Synthetic Minority Over-sampling 

Technique (SMOTE) was combined with class-

weighted loss functions. This resulted in a 12% 

improvement in recall for failure cases while 

maintaining high overall accuracy. This approach 

ensured the model could effectively detect rare but 

critical failure events without compromising its overall 

predictive performance.  

  

C. Explainability Analysis  

The explainability analysis provided valuable 

insights into the decision-making process of the 

predictive maintenance models.  

  

a) Local Explanations for Individual Predictions: 

Local explainability techniques, such as LIME (Local 

Interpretable Model-Agnostic Explanations) and 

SHAP (SHapley Additive exPlanations), generated 

instance-specific explanations, highlighting the 

contributions of different features to individual 

predictions. For example, in a specific failure case, 

LIME identified abnormal vibration patterns and 

elevated temperature readings as the key contributing 

factors, aligning with domain experts' expectations.  

b) Global Feature Importance and Model Behavior: 

Global interpretability methods, including partial 

dependence plots (PDPs) and accumulated local effects 

(ALE) plots, revealed the overall behavior and feature 

importance of the predictive models.  The PDPs 

highlighted the strong positive correlation between 

increasing vibration levels and the likelihood of failure, 

with a sharp increase in failure probability beyond a 

certain vibration threshold. The ALE plots further 

emphasized the complex interplay between 

temperature and vibration features, indicating the need 

for joint consideration of these factors in maintenance 

decisions.  

http://www.ijsrem.com/
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Fig 4. Evaluation of the performance of the model  

c) Qualitative Assessment by Domain Experts: 

Domain experts from the manufacturing facility were 

actively involved in the qualitative assessment of the 

explainability results. They expressed high confidence 

in the explanations provided by the proposed approach, 

stating that they aligned with practical experience and 

domain knowledge. The ability to understand the 

reasoning behind predictions and identify critical 

features significantly enhanced trust in the AI-driven 

maintenance system, facilitating more informed, 

transparent, and accountable decision-making 

processes.  

  

In summary, the proposed explainable AI 

approach demonstrated substantial performance 

improvements over traditional and baseline methods, 

achieving superior accuracy, precision, recall, and AUC-

ROC metrics. Furthermore, the integration of local and 

global explainability techniques provided insightful 

explanations, addressing transparency and 

accountability concerns in predictive maintenance 

applications within industrial systems.    

  

  

Table II.   Proposed System vs. Existing Methods  

  

Feature  

  

Proposed  
Explainable  
AI  

Rule-

Based  
Systems  

SVM  

  

Model Type  Explainable  
Machine  
Learning  

Expert 

Rules  
Machine  
Learning  
Algorithm  

Interpretability  High  Low  Moderate  

Accuracy  High  
(Section IV)  

Moderate  High  

Flexibility  Adaptable  Limited  Adaptable 

(data 

types)  

Data  
Requirements  

High  
(training & 

explanation)  

Low  Labeled  
Training 

Data  

Imbalanced 

Data  
Addressed 

(SMOTE)  
Limited  Limited  

Maintenance 

Decisions  
Informed 

(insights 

provided)  

Rule-

driven  
Limited 

reasoning  

User Trust  High  
(explainabili 

ty)  

Lower  
(opaque)  

Scalability  Scalable  Limited  

  

V. Discussion  

  

A. Implications and Potential Impact  

The proposed explainable AI approach offers 

significant benefits for AI-driven predictive maintenance 

in industrial settings. By providing transparency and 

interpretability into model decisions, this research 

addresses a critical barrier to the widespread adoption of 

AI in these applications [19].   

 Improved trust and accountability allow 

domain experts to confidently leverage AI insights for 

proactive and informed maintenance strategies [15].   

However, ethical considerations regarding 

potential biases within the data or model require careful 

attention during development and deployment [20].  

  

B. Limitations and Future Work  

Data quality and availability remain key 

challenges. Techniques for handling missing data and 

class imbalance were crucial in this work, but further 

research into robust data augmentation and bias 

mitigation is necessary [18]. Additionally, scalability 

and computational efficiency are important 

considerations for large-scale industrial deployments.   

Future work will explore model compression 

techniques and distributed computing frameworks to 

optimize performance [21].  Furthermore, 

incorporating additional data sources, such as 

maintenance history and environmental factors, can 

potentially enhance model accuracy and 

generalizability.  

  

C. Deployment and Real-World Applications  

Seamless integration with existing 

maintenance systems is crucial for successful 

deployment. User-friendly interfaces and visualization 

tools will be developed to cater to domain experts 

without extensive machine learning expertise.  Finally, 

continuous monitoring and model updates are essential 

to maintain accuracy and adapt to changing operational 

conditions within the industrial environment.  

  

VI. Conclusion  

  

A. Summary of Key Findings  

This research investigated the development 

and evaluation of explainable AI (XAI) techniques for 

predictive maintenance in industrial systems. We 

addressed the challenge of "black box" models by 

integrating XAI methods with machine learning 

algorithms for predicting equipment failures.  

 The proposed approach achieved significant 

performance improvements over traditional and 

http://www.ijsrem.com/
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baseline models, demonstrating high accuracy, 

precision, and recall in identifying impending failures. 

Local and global explainability techniques provided 

valuable insights into the decision-making process, 

fostering trust and transparency in AI-driven 

maintenance decisions [18, 19].  

  

B. Concluding Remarks and Future Directions  

The integration of XAI with predictive 

maintenance holds immense potential for enhancing 

industrial efficiency, reliability, and safety. By 

addressing concerns regarding transparency and 

accountability, this research paves the way for wider 

adoption of AI in industrial settings [5, 15]. Future 

work will focus on addressing data quality challenges, 

exploring techniques for model compression and 

scalability, and incorporating additional data sources to 

further improve model generalizability [19, 21].    

Continuous research and development efforts 

are crucial for ensuring the responsible and ethical 

implementation of explainable AI in predictive 

maintenance and other industrial applications.  

  

This research demonstrates the significant value of 

explainable AI in unlocking the full potential of AI for 

industrial predictive maintenance. As we move 

forward, the continued development of XAI techniques 

will be instrumental in building trust, fostering 

collaboration between humans and AI systems, and 

ultimately achieving a future of more intelligent and 

efficient industrial operations.  
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