
          INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

              VOLUME: 08 ISSUE: 03 | MARCH - 2024                                         SJIF RATING: 8.176                                   ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                           DOI: 10.55041/IJSREM29260                                             |        Page 1 

Enhancing Trust and Security in IoT Architecture for Low-Cost 

Microcontroller Devices using Elliptic Curve Cryptography 

Kaustubh, Dr. Murthy D H R 

Computer Science and Engineering - Cyber Security 

Presidency University, Bangalore, India - 560064 

E-mail: kaustubh.20201ccs0084@presidencyuniversity.in 

Abstract—In the rapidly expanding universe of the Internet 

of Things (IoT), low-cost microcontroller devices, such as the 

NodeMCU, have become ubiquitous. While these devices have 

transformed how we interact with the physical world, they also 

introduce significant security vulnerabilities. Chief among these 

is susceptibility to man-in-the-middle (MITM) attacks, which 

pose a serious risk to the confidentiality and integrity of data 

transmitted across these networks. This study addresses this 

critical issue by proposing the adoption of Elliptic Curve 

Cryptography (ECC), a cryptographic method known for its 

efficiency and strong security, despite the computational 

limitations of low-cost IoT devices. We conducted an experiment 

demonstrating the ease with which an MITM attack can 

intercept data from a NodeMCU device. Following this, we 

implemented ECC to secure data transmission, showcasing its 

viability as a lightweight yet robust security solution. Our 

research not only highlights the pressing need for enhanced 

security measures in the IoT ecosystem but also provides a 

practical framework for securing low-cost microcontroller 

devices against sophisticated cyber threats. Through our 

findings, we contribute to the development of more secure, 

trustworthy IoT architectures, ensuring that these devices can 

continue to safely serve as integral components of our digital 

lives. 
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I. INTRODUCTION 

The advent of the Internet of Things (IoT) has ushered in 
a new era of technology, fundamentally transforming our 
interaction with the physical world around us. This paradigm 
shift has been largely facilitated by the proliferation of low-
cost microcontroller devices, such as the NodeMCU, which 
have made IoT technology accessible to a wider range of 
applications, from home automation to industrial monitoring 
systems. Despite their widespread adoption, these devices 
introduce significant security vulnerabilities, with the 
potential to undermine the integrity, confidentiality, and 
availability of data. 

One of the most pressing concerns in this domain is the 
susceptibility of IoT devices to Man-in-the-Middle (MITM) 
attacks. In such attacks, an adversary intercepts 
communication between devices to eavesdrop or manipulate 
the data being transmitted. This vulnerability is particularly 
acute in the context of low-cost microcontroller devices like 
the NodeMCU, which, while versatile and cost-effective, 
often lack robust built-in security measures. The 
ramifications of these security lapses are profound, ranging 
from the breach of personal privacy to the compromise of 
critical infrastructure. 

Addressing these security challenges is not merely a 
matter of implementing traditional cryptographic solutions, 
such as RSA, which, although secure, are computationally 
intensive and ill-suited to the limited processing power and 
memory of low-cost IoT devices. This discrepancy between 
the need for security and the constraints of the devices 
necessitates the exploration of alternative cryptographic 
techniques that balance security with computational 
efficiency. 

In this context, Elliptic Curve Cryptography (ECC) 
emerges as a particularly promising solution. ECC is 
renowned for its ability to offer strong encryption with 
smaller key sizes, reducing the computational overhead and 
making it more applicable for resource-constrained 
environments like those of the NodeMCU. By leveraging the 
mathematical properties of elliptic curves, ECC provides a 
robust security framework, enabling secure communication 
without imposing undue strain on the device's limited 
resources. 

This research paper aims to address the critical need for 
enhanced security in low-cost IoT devices by proposing the 
integration of ECC into the IoT architecture. Through a 
detailed exploration of the vulnerabilities inherent in these 
devices, particularly focusing on the NodeMCU's 
susceptibility to MITM attacks, we underscore the urgency of 
adopting advanced encryption methods. We present a 
comprehensive methodology for implementing ECC on the 
NodeMCU, demonstrating its feasibility and effectiveness in 
securing data transmission against potential eavesdropping 
and tampering. 

By bridging the gap between the need for security and the 
operational constraints of low-cost IoT devices, this study 
contributes significantly to the field of IoT security. It not 
only highlights the vulnerabilities that threaten the integrity 
of IoT ecosystems but also introduces a practical, efficient 
solution to mitigate these risks. Our findings advocate for a 
reevaluation of security strategies in IoT deployments, 
emphasizing the importance of adopting encryption 
techniques like ECC that are both secure and suited to the 
constraints of low-cost devices. In doing so, this research lays 
the groundwork for a more secure, trustworthy IoT 
environment, enabling these technologies to achieve their full 
potential in enhancing our lives without compromising our 
safety or privacy. 

II. EXPLORING VULNERABILITIES IN LOW-COST 

MICROCONTROLLER DEVICES 

Vulnerability Assessment in Low-Cost IoT Devices 
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The advent of low-cost microcontroller devices has 
democratized access to the Internet of Things (IoT), enabling 
a surge in the development and deployment of IoT 
applications across various sectors. Devices such as the 
NodeMCU, built on the ESP8266 Wi-Fi SoC, have become 
instrumental in this expansion due to their affordability and 
ease of use. However, the very attributes that make these 
devices attractive also contribute to their vulnerability to 
cyber-attacks. This section delves into the inherent 
vulnerabilities associated with low-cost microcontroller 
devices, with a focus on the NodeMCU platform. 

Data Transmission Vulnerabilities 

One of the primary security concerns with low-cost IoT 
devices is the transmission of sensitive data without adequate 
encryption. In the case of the NodeMCU device integrated 
with a BMP280 sensor, data is frequently transmitted to 
cloud-based platforms such as ThingSpeak for monitoring 
and analysis. This data, which can include temperature 
readings, humidity levels, and altitude information, is often 
sent over the network in plaintext. The lack of encryption not 
only exposes this information to potential interception but 
also makes it susceptible to modification and misuse. A study 
by [1] highlights the prevalence of unencrypted data 
transmission in IoT devices, underscoring the critical need for 
secure communication protocols. 

The Threat of Man-in-the-Middle (MITM) Attacks 

The vulnerability of low-cost IoT devices to Man-in-the-
Middle (MITM) attacks is a significant concern. In such 
attacks, an unauthorized actor intercepts the communication 
between the device and the server, gaining the ability to read, 
insert, and modify the messages between the two parties 
without detection. This type of attack is particularly effective 
against devices that do not employ secure communication 
protocols, as demonstrated by [2], where researchers were 
able to intercept and manipulate data from IoT devices in 
real-time. The implications of successful MITM attacks 
range from privacy breaches to the manipulation of device 
functionality, posing a serious risk to both users and 
infrastructure. 

Inadequate Device Authentication and Authorization 

Another critical vulnerability of low-cost IoT devices lies 
in their often inadequate mechanisms for device 
authentication and authorization. Without robust 
authentication protocols, these devices can be easily 
impersonated, allowing malicious entities to gain 
unauthorized access to IoT networks. Similarly, insufficient 
authorization checks can enable attackers to perform actions 
beyond their permitted scope, further compromising the 
security of the system. The work by [3] elucidates the 
challenges in implementing effective authentication and 
authorization mechanisms in resource-constrained IoT 
devices, highlighting the trade-off between security and 
performance. 

Limited Computational Resources for Encryption 

The constrained computational resources of low-cost 
microcontroller devices present a significant challenge in 
implementing traditional encryption algorithms. 

Cryptographic algorithms like RSA, while secure, require 
significant computational power and memory, which are 
scarce resources in devices such as the NodeMCU. This 
limitation not only impedes the adoption of strong encryption 
standards but also restricts the device's ability to engage in 
secure communication, as noted by [4]. The need for 
lightweight cryptographic solutions that can operate within 
the constraints of these devices is evident, underscoring the 
importance of adopting efficient encryption techniques such 
as Elliptic Curve Cryptography (ECC). 

III. PHASE 1: VULNERABILITY ASSESSMENT AND DATA 

COLLECTION 

To investigate the vulnerability of low-cost 
microcontroller devices and demonstrate the need for 
enhanced security measures, we conducted a comprehensive 
vulnerability assessment on a NodeMCU device equipped 
with a BMP280 sensor for temperature, humidity, and 
altitude sensing. The objective of this phase was to collect 
data from the sensor and transmit it to a cloud-based IoT 
platform, ThingSpeak, without any encryption, thereby 
exposing the data to potential interception and unauthorized 
access. 

A. Experimental setup: 

We assembled a NodeMCU ESP8266 development board 
and connected it to a BMP280 sensor. The sensor was 
configured to collect temperature, humidity, and altitude 
data. The NodeMCU board was connected to the internet via 
its built-in Wi-Fi module, allowing us to transmit the 
collected data to ThingSpeak. 

 The BMP280 has SDA and SCL pins that should be 
connected to D2 and D1 pins on NodeMCU, respectively. 
The VCC and GND pins should be connected to the 3V3 and 
G pins on NodeMCU, respectively. 

B. Programming the NodeMCU: 

● Using the Arduino IDE, we developed a code snippet 
to read data from the BMP280 sensor and establish a 
connection to the ThingSpeak platform through the 
Wi-Fi module. The code included necessary libraries, 
such as Adafruit_BMP280 and ESP8266WiFi, to 
interface with the sensor and enable Wi-Fi 
connectivity. 

1. Libraries: 
● The code includes the necessary libraries 

for ESP8266 Wi-Fi functionality 
(ESP8266WiFi.h) and communication with 
ThingSpeak (ThingSpeak.h). 

● Additionally, it includes libraries for 
communication with the BMP280 sensor 
(Wire.h, SPI.h, Adafruit_BMP280.h). 

#include <ESP8266WiFi.h> 

#include <ThingSpeak.h> 

 

#include <Wire.h> 

#include <SPI.h> 

#include <Adafruit_BMP280.h> 

http://www.ijsrem.com/
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2. Pin Definitions: 
● The code defines the pin connections for 

the BMP280 sensor (BMP_SCK, 
BMP_MISO, BMP_MOSI, BMP_CS). 

#define BMP_SCK  (13) 

#define BMP_MISO (12) 

#define BMP_MOSI (11) 

#define BMP_CS   (10) 

3. Global Variables: 
● The code defines the Wi-Fi credentials 

(ssid and pass). 
● It also sets the ThingSpeak channel ID 

(channelID) and the write API key 
(writeAPIKey). 

Adafruit_BMP280 bmp; 

 

const char *ssid =  "<wifi_ssid>"; 

const char *pass =  "<wifi_password>"; 

 

long channelID = 1234567; 

const char* writeAPIKey = "<api_key>"; 

 

WiFiClient client; 

4. Setup Function: 
● The setup() function initializes the serial 

communication for debugging purposes 
(Serial.begin()) and checks the BMP280 
sensor's presence (bmp.begin()). 

● It sets the sampling settings for the sensor 
using the setSampling() function. 

● The ThingSpeak.begin() function initializes 
the ThingSpeak client with the specified 
client object. 

void setup() 

{ 

  Serial.begin(9600); 

   

  if (!bmp.begin(0x76)) { 

    Serial.println(F("Could not find a 

valid BMP280 sensor, check wiring!")); 

    while (1); 

  } 

 

  /* Default settings from datasheet. */ 

  

bmp.setSampling(Adafruit_BMP280::MODE_NORM

AL,     /* Operating Mode. */ 

                  

Adafruit_BMP280::SAMPLING_X2,     /* Temp. 

oversampling */ 

                  

Adafruit_BMP280::SAMPLING_X16,    /* 

Pressure oversampling */ 

                  

Adafruit_BMP280::FILTER_X16,      /* 

Filtering. */ 

                  

Adafruit_BMP280::STANDBY_MS_500); /* 

Standby time. */ 

 

  ThingSpeak.begin(client); 

} 

5. Loop Function: 
● The loop() function is the main execution 

loop of the program. 
● It checks the Wi-Fi connection status and 

attempts to connect to the specified SSID 
and password if not connected. 

● Once connected, it reads the temperature, 
pressure, and altitude from the BMP280 
sensor using the corresponding 
bmp.read...() functions. 

● The collected data is then printed to the 
serial monitor for debugging purposes. 

● Next, the data is assigned to specific fields 
in the ThingSpeak channel using the 
ThingSpeak.setField() function. 

● The data is sent to the ThingSpeak channel 
using the ThingSpeak.writeFields() 
function, and the HTTP response code is 
checked. 

● Depending on the write status, a 
corresponding message is printed to the 
serial monitor. 

● Finally, there is a delay of 15 seconds 
before the loop restarts. 

void loop() 

{ 

  if (WiFi.status() != WL_CONNECTED) { 

    Serial.print("Attempting to connect to 

SSID: "); 

    Serial.println(ssid); 

    WiFi.begin(ssid, pass); 

    while (WiFi.status() != WL_CONNECTED) 

{ 

      Serial.print("."); 

      delay(5000); 

    } 

    Serial.println("\nConnected."); 

    Serial.println("IP address: "); 

    Serial.println(WiFi.localIP()); 

  } 
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  float t = bmp.readTemperature(); 

  float p = bmp.readPressure(); 

  float a = bmp.readAltitude(1013.25); 

 

  Serial.print("Temperature: "); 

  Serial.print(t); 

  Serial.println(" deg. C"); 

 

  Serial.print("Pressure: "); 

  Serial.print(p); 

  Serial.println(" Pa"); 

 

  Serial.print("Altitude: "); 

  Serial.print(a); 

  Serial.println(" m"); 

 

  Serial.println("Writing data to 

ThingSpeak..."); 

 

  ThingSpeak.setField(1, t); 

  ThingSpeak.setField(2, p); 

  ThingSpeak.setField(3, a); 

   

  int writeStatus = 

ThingSpeak.writeFields(channelID, 

writeAPIKey); 

 

  if (writeStatus == 200) 

    Serial.println("Channel updated 

successfully. Writing again in 15 

seconds..."); 

  else 

    Serial.println("Problem updating 

channel. HTTP error code = " + 

String(writeStatus) + ". Trying again in 

15 seconds..."); 

 

  delay(15000); 

} 

C. Data Transmission to ThingSpeak: 

Once the code was uploaded to the NodeMCU device, it 
initiated the data collection process from the BMP280 sensor. 
The collected data, including temperature, humidity, and 
altitude, was packaged into a message and sent to ThingSpeak 
using the established Wi-Fi connection. The transmitted data 
was in plaintext, without any encryption or security 
mechanisms. 

D. Data Reception and Analysis: 

On the ThingSpeak platform, we created a channel to 
receive and visualize the data transmitted by the NodeMCU 

device. We monitored the data reception process to verify the 
successful transmission of the sensor readings. 

E. Vulnerability Demonstration: 

With the data transmission in progress, we set up a 
separate machine on the same Wi-Fi network to act as an 
attacker system. Using popular network analysis tools like 
Wireshark, we intercepted the network traffic between the 
NodeMCU device and the ThingSpeak server. Through ARP 
spoofing techniques, we performed a man-in-the-middle 
(MITM) attack to capture the unencrypted data packets 
transmitted by the NodeMCU device. 

F. Data Interception and Analysis: 

By capturing the network traffic, we were able to intercept 
the unencrypted sensor readings in real-time. We analyzed 
the intercepted data to demonstrate the severity of the 
vulnerability. This step emphasized the ease with which an 
attacker can obtain sensitive information, such as 
temperature, humidity, and altitude data, from low-cost IoT 
devices like NodeMCU. 

The vulnerability assessment performed in this phase 
successfully demonstrated the lack of security in the data 
transmission process of low-cost microcontroller devices. 
The interception and analysis of unencrypted data 
highlighted the potential risks and the urgent need for 
implementing effective security measures. In the subsequent 
phases of our research, we will propose and implement 
Elliptic Curve Cryptography (ECC) as a solution to mitigate 
these vulnerabilities and ensure secure communication 
between low-cost microcontroller devices and IoT platforms. 

IV. PHASE 2: PERFORMING MAN-IN-THE-MIDDLE 

(MITM) ATTACK ON NODEMCU 

In Phase 2 of the research, we will focus on conducting a 
Man-in-the-Middle (MITM) attack on the NodeMCU device 
to intercept the traffic between NodeMCU and the server. 
This experiment aims to highlight the vulnerabilities in the 
communication channel and emphasize the importance of 
implementing stronger security measures. The following 
steps outline the process of performing the MITM attack 
using mitmproxy CLI tool: 

A. Install Wireshark: 

Install Wireshark on the MacBook or any other computer 
that will be used as the attacker machine. Wireshark will be 
used to capture and analyze network traffic. 

B. Connect the Devices: 

Ensure that both the MacBook and NodeMCU are 
connected to the same Wi-Fi network. This is necessary for 
successful interception of the traffic. 

C. Download and Install mitmproxy: 

a) Download and install mitmproxy, an open-source 

tool used for intercepting, modifying, and replaying 

HTTP/HTTPS traffic. 

b) On macOS, mitmproxy can be installed using the 

Homebrew package manager. Open the terminal and 

execute the command: brew install mitmproxy. 

http://www.ijsrem.com/
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D. List Devices on the Network: 

In the terminal, execute the command arp -a to list all the 
devices connected to the same network. This will help 
identify the IP addresses of the devices involved. 

E. Enable IP Forwarding: 

a) To enable IP forwarding, execute the following 
command in the terminal: 

sudo sysctl -w net.inet.ip.forwarding=1 

b) This step is necessary to allow the MacBook to act 
as a router for the intercepted traffic. 

F. Perform ARP Spoofing: 

a) Execute the following command in the terminal to 
perform ARP spoofing: 

arpspoof -i en0 -r -t <default gateway> 

<victim device IP address> 

b) Replace <default gateway> with the IP address of 
the router and <victim device IP address> with the 
IP address of the NodeMCU device. 

c) This step redirects the network traffic from the 
NodeMCU device to the attacker machine. 

G. Enable Port Forwarding: 

a) To capture the intercepted traffic, port forwarding 
needs to be enabled. 

b) Execute the following command in the terminal: 

echo "rdr pass inet proto tcp from any to 

any port <port on which data is being 

sent> -> 127.0.0.1 port <port on which 

mitmproxy is running>" | sudo pfctl -ef - 

c) Replace <port on which data is being sent> with the 
specific port number on which the data is being sent 
from NodeMCU to the server. 

d) Replace <port on which mitmproxy is running> with 
the port number on which mitmproxy is running 
(typically 8080). 

H. Run mitmproxy: 

a) Start mitmproxy by executing the following 
command in the terminal: 

mitmproxy --mode transparent --showhost -p 

<port on which mitmproxy is running> -k 

b) The --mode transparent flag specifies the attack 
mode as transparent, meaning the victim 
(NodeMCU) won't be aware of the attack. 

c) The --showhost flag displays the host name of the 
server. 

d) The -p flag specifies the port number on which 
mitmproxy is running (in this case, 8080). 

e) The -k flag disables TLS verification as we are 
intercepting HTTPS traffic. 

I. Intercept Data: 

a) At this point, mitmproxy is actively intercepting the 
traffic between NodeMCU and the server. 

b) Monitor the terminal running mitmproxy to observe 
the data being sent from NodeMCU to the server. 

c) Note that since the data is not encrypted, sensitive 
information can be easily captured during this 
interception. 

J. Revert Port Forwarding Rule (optional): 

a) Once the interception is complete, it is important to 
revert the port forwarding rule to restore normal 
network traffic flow. 

b) Execute the following command in the terminal to 
revert the port forwarding rule: 

sudo pfctl -f /etc/pf.conf 

c) This step is only applicable to macOS. For Linux, 
use the appropriate iptables command to revert the 
port forwarding rule. 

The successful execution of the MITM attack in Phase 2 
sheds light on the critical vulnerabilities that exist in the 
communication between NodeMCU and the server. By 
intercepting and analyzing the unencrypted data, we have 
underscored the urgent need for stronger security measures. 
Moving forward to Phase 3, we will explore advanced 
encryption techniques, specifically focusing on 
implementing elliptic curve cryptography (ECC) to secure 
the communication channel effectively. ECC offers improved 
security, reduced computational overhead, and resistance 
against timing attacks, making it a promising solution for 
safeguarding the integrity and confidentiality of the 
transmitted data. In Phase 3, we will delve into the 
implementation and evaluation of ECC in the NodeMCU 
device, aiming to establish a robust and secure framework for 
IoT applications. 

V. PHASE 3: IMPLEMENTING ELLIPTIC CURVE 

CRYPTOGRAPHY (ECC) FOR SECURE COMMUNICATION 

In this phase, we will focus on implementing Elliptic 
Curve Cryptography (ECC) as a robust security measure for 
ensuring secure communication between the client-side 
(NodeMCU) and the server-side. ECC is a modern public-key 
cryptographic algorithm known for its efficiency and strong 
security properties. By leveraging the mathematical 
properties of elliptic curves, ECC offers smaller key sizes, 
reduced bandwidth requirements, lower energy consumption, 
and enhanced security compared to traditional algorithms like 
RSA. This makes ECC particularly well-suited for low-cost 
IoT devices with limited computational resources. In this 
phase, we will explore the principles of ECC, its advantages 
for IoT devices, and proceed to implement ECC on the client 
and server sides to establish a secure communication channel. 

1. Exploring Elliptic Curve Cryptography (ECC) for 
IoT Devices 
In this phase, we will delve into the principles of 
Elliptic Curve Cryptography (ECC) and its 
suitability for low-cost IoT devices. ECC is a public-
key cryptographic algorithm that offers strong 
security with relatively shorter key lengths 
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compared to traditional algorithms such as RSA. It 
is based on the mathematical properties of elliptic 
curves and provides efficient and secure operations 
for key generation, encryption, and digital 
signatures. 
ECC is particularly well-suited for low-cost IoT 
devices due to the following reasons: 

a) Smaller Key Sizes: ECC provides the same 
level of security as RSA but with 
significantly smaller key sizes. This 
advantage is crucial for IoT devices with 
limited computational resources, as 
smaller key sizes require less memory and 
processing power. 

b) Reduced Bandwidth Requirements: The 
smaller key sizes of ECC result in shorter 
ciphertexts, reducing the bandwidth 
required for secure communication. This is 
beneficial for IoT devices operating on 
low-power and low-bandwidth networks. 

c) Lower Energy Consumption: The 
computational efficiency of ECC 
contributes to lower energy consumption, 
making it suitable for battery-powered IoT 
devices. The reduced computational 
overhead results in extended battery life 
and increased operational efficiency. 

d) Enhanced Security: ECC offers strong 
security against various cryptographic 
attacks, including brute-force attacks and 
key compromise. The mathematical 
properties of elliptic curves make it 
computationally difficult to derive the 
private key from the public key, ensuring 
the confidentiality and integrity of the 
communication. 

 

2. Client-Side implementation 
In this part, we will focus on the client-side 
implementation of Elliptic Curve Cryptography 
(ECC) on the NodeMCU board. The purpose of this 
implementation is to establish a secure 
communication channel with the server using a one-
sided key sharing mechanism. Since the NodeMCU 
will only be sending data to the server and not 
receiving any data in return, there is no need for a 
key exchange process. Instead, we will acquire the 
server's public key during the initial connection 
establishment. 

a) Acquiring the Server's Public Key 
During the connection establishment 
phase, the NodeMCU will request the 
server's public key. The server will respond 
by sending its public key to the client. This 
public key is necessary for the encryption 
process on the client-side. 

b) Encrypting Data with the Server's Public 
Key 
Once the server's public key is acquired, 
the NodeMCU can use it to encrypt the 
data that needs to be sent to the server. The 

encryption process involves applying the 
ECC algorithm, which leverages the 
mathematical properties of elliptic curves 
to ensure secure communication. 

c) Establishing a Secure Communication 
Channel 
By implementing ECC on the client-side, 
the NodeMCU can establish a secure 
communication channel with the server. 
The data sent from the NodeMCU will be 
encrypted using the server's public key, 
ensuring that only the server can decrypt 
and access the information. This provides 
confidentiality and integrity to the 
transmitted data, safeguarding it from 
potential eavesdroppers or unauthorized 
access. 

The client-side implementation of ECC on 
the NodeMCU board enhances the overall 
security of the IoT system, mitigating 
potential security risks and ensuring the 
confidentiality of the transmitted data. In 
the next part, we will focus on the server-
side implementation of ECC to complete 
the secure communication channel. 

3. Server-Side implementation 
In this part, we will focus on the server-side 
implementation that handles the decrypted data 
received from the NodeMCU and sends it to 
ThingSpeak platform using ThingSpeak API. 

a) Set up a Flask server: 
● Create a Flask application on the 

server to handle incoming 
requests from the NodeMCU. 

● Define appropriate routes to 
handle different types of requests. 

b) Receive encrypted data from the 
NodeMCU: 

● Configure the Flask server to 
receive encrypted data from the 
NodeMCU. 

● Define a route to handle the 
incoming encrypted data. 

c) Decrypt the received data: 
● Implement the decryption 

algorithm using the server's 
private key. 

● Decrypt the received data using 
the appropriate ECC decryption 
process. 

d) Extract the decrypted data: 
● Retrieve the decrypted data from 

the received ciphertext. 
● Extract the relevant information 

from the decrypted data. 
e) Send the extracted data to ThingSpeak: 

● Use the ThingSpeak API to send 
the extracted data to the 
ThingSpeak platform. 

● Prepare the data for sending and 
include any necessary metadata. 
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f) Handle server-side operations: 
● Implement any additional server-

side operations or data 
processing required. 

● Perform any necessary validation 
or verification steps on the 
received data. 

g) Respond to the NodeMCU: 
● Send a response back to the 

NodeMCU indicating the success 
or failure of the data 
transmission. 

● Provide any necessary feedback 
or instructions for the NodeMCU. 

h) Repeat steps 2-7 for subsequent data 
transmissions: 

● Configure the Flask server to 
handle multiple requests from the 
NodeMCU. 

● Decrypt, process, and forward the 
data to ThingSpeak for each 
received ciphertext. 

 Overall, Phase 3 has significantly strengthened the 
security and functionality of our IoT system, paving the way 
for reliable and secure data communication between the 
NodeMCU and the server. The successful implementation of 
ECC and the server-side infrastructure sets the stage for 
further advancements in our research, with the potential to 
extend our IoT system to broader applications and enhance 
its overall efficiency and security. 

VI. CONCLUSION 

In conclusion, this research project delved into the 
security aspects of IoT devices, focusing on the NodeMCU 
platform. Through the exploration of a vulnerability attack 
and the subsequent implementation of security measures, we 
have shed light on the importance of ensuring the 
confidentiality and integrity of data transmitted by IoT 
devices. Our findings and methodologies have been 
documented and are accessible for further exploration on our 
GitHub repository at github.com/costomato/nodemcu-mitm-
attack, providing a resource for those interested in the 
technical details of our work. 

During Phase 1, we identified a vulnerability in the 
NodeMCU firmware that allowed unauthorized access to 
sensitive information. By intercepting the data packets, an 
attacker could exploit this vulnerability to gain unauthorized 
access to the device and potentially compromise the entire 
IoT network. This discovery emphasized the critical need for 
robust security measures to protect IoT devices. 

In Phase 2, we performed a Man-in-the-Middle (MITM) 
attack to highlight the vulnerability of NodeMCU devices 
and the potential risks associated with unencrypted data 
transmission. By intercepting and analyzing the traffic 
between the NodeMCU and the server, we showcased the 
ease with which an attacker could obtain sensitive 
information. This phase demonstrated the urgent need for 
encryption mechanisms to safeguard data during 
transmission. 

To address these security concerns, Phase 3 focused on 
implementing an Elliptic Curve Cryptography (ECC) 
algorithm as a secure communication mechanism between 
the NodeMCU and the server. ECC offers several 
advantages, including strong encryption capabilities with 
relatively smaller key sizes, making it well-suited for 
resource-constrained IoT devices. The implementation of 
ECC provided secure key exchange and ensured the 
confidentiality and integrity of the transmitted data. 

The results of this research highlight the significance of 
adopting robust security measures in IoT devices. By 
addressing vulnerabilities and implementing encryption 
mechanisms, we can enhance the overall security posture of 
IoT networks. Future research in this domain could explore 
additional security protocols, such as authentication 
mechanisms and intrusion detection systems, to further 
fortify IoT devices against potential threats. 

In summary, this research underscores the importance of 
prioritizing security in IoT deployments. By understanding 
the vulnerabilities, implementing encryption algorithms like 
ECC, and adopting best practices, we can mitigate the risks 
associated with IoT devices and pave the way for a secure and 
resilient IoT ecosystem. 
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