
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29260 | Page 1

Enhancing Trust and Security in IoT Architecture for Low-Cost

Microcontroller Devices using Elliptic Curve Cryptography

Kaustubh, Dr. Murthy D H R

Computer Science and Engineering - Cyber Security

Presidency University, Bangalore, India - 560064

E-mail: kaustubh.20201ccs0084@presidencyuniversity.in

Abstract—In the rapidly expanding universe of the Internet

of Things (IoT), low-cost microcontroller devices, such as the

NodeMCU, have become ubiquitous. While these devices have

transformed how we interact with the physical world, they also

introduce significant security vulnerabilities. Chief among these

is susceptibility to man-in-the-middle (MITM) attacks, which

pose a serious risk to the confidentiality and integrity of data

transmitted across these networks. This study addresses this

critical issue by proposing the adoption of Elliptic Curve

Cryptography (ECC), a cryptographic method known for its

efficiency and strong security, despite the computational

limitations of low-cost IoT devices. We conducted an experiment

demonstrating the ease with which an MITM attack can

intercept data from a NodeMCU device. Following this, we

implemented ECC to secure data transmission, showcasing its

viability as a lightweight yet robust security solution. Our

research not only highlights the pressing need for enhanced

security measures in the IoT ecosystem but also provides a

practical framework for securing low-cost microcontroller

devices against sophisticated cyber threats. Through our

findings, we contribute to the development of more secure,

trustworthy IoT architectures, ensuring that these devices can

continue to safely serve as integral components of our digital

lives.

Keywords—NodeMCU, ESP8266, Data theft, Elliptic Curve

Cryptography, Man-in-the-middle attack

I. INTRODUCTION

The advent of the Internet of Things (IoT) has ushered in
a new era of technology, fundamentally transforming our
interaction with the physical world around us. This paradigm
shift has been largely facilitated by the proliferation of low-
cost microcontroller devices, such as the NodeMCU, which
have made IoT technology accessible to a wider range of
applications, from home automation to industrial monitoring
systems. Despite their widespread adoption, these devices
introduce significant security vulnerabilities, with the
potential to undermine the integrity, confidentiality, and
availability of data.

One of the most pressing concerns in this domain is the
susceptibility of IoT devices to Man-in-the-Middle (MITM)
attacks. In such attacks, an adversary intercepts
communication between devices to eavesdrop or manipulate
the data being transmitted. This vulnerability is particularly
acute in the context of low-cost microcontroller devices like
the NodeMCU, which, while versatile and cost-effective,
often lack robust built-in security measures. The
ramifications of these security lapses are profound, ranging
from the breach of personal privacy to the compromise of
critical infrastructure.

Addressing these security challenges is not merely a
matter of implementing traditional cryptographic solutions,
such as RSA, which, although secure, are computationally
intensive and ill-suited to the limited processing power and
memory of low-cost IoT devices. This discrepancy between
the need for security and the constraints of the devices
necessitates the exploration of alternative cryptographic
techniques that balance security with computational
efficiency.

In this context, Elliptic Curve Cryptography (ECC)
emerges as a particularly promising solution. ECC is
renowned for its ability to offer strong encryption with
smaller key sizes, reducing the computational overhead and
making it more applicable for resource-constrained
environments like those of the NodeMCU. By leveraging the
mathematical properties of elliptic curves, ECC provides a
robust security framework, enabling secure communication
without imposing undue strain on the device's limited
resources.

This research paper aims to address the critical need for
enhanced security in low-cost IoT devices by proposing the
integration of ECC into the IoT architecture. Through a
detailed exploration of the vulnerabilities inherent in these
devices, particularly focusing on the NodeMCU's
susceptibility to MITM attacks, we underscore the urgency of
adopting advanced encryption methods. We present a
comprehensive methodology for implementing ECC on the
NodeMCU, demonstrating its feasibility and effectiveness in
securing data transmission against potential eavesdropping
and tampering.

By bridging the gap between the need for security and the
operational constraints of low-cost IoT devices, this study
contributes significantly to the field of IoT security. It not
only highlights the vulnerabilities that threaten the integrity
of IoT ecosystems but also introduces a practical, efficient
solution to mitigate these risks. Our findings advocate for a
reevaluation of security strategies in IoT deployments,
emphasizing the importance of adopting encryption
techniques like ECC that are both secure and suited to the
constraints of low-cost devices. In doing so, this research lays
the groundwork for a more secure, trustworthy IoT
environment, enabling these technologies to achieve their full
potential in enhancing our lives without compromising our
safety or privacy.

II. EXPLORING VULNERABILITIES IN LOW-COST

MICROCONTROLLER DEVICES

Vulnerability Assessment in Low-Cost IoT Devices

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29260 | Page 2

The advent of low-cost microcontroller devices has
democratized access to the Internet of Things (IoT), enabling
a surge in the development and deployment of IoT
applications across various sectors. Devices such as the
NodeMCU, built on the ESP8266 Wi-Fi SoC, have become
instrumental in this expansion due to their affordability and
ease of use. However, the very attributes that make these
devices attractive also contribute to their vulnerability to
cyber-attacks. This section delves into the inherent
vulnerabilities associated with low-cost microcontroller
devices, with a focus on the NodeMCU platform.

Data Transmission Vulnerabilities

One of the primary security concerns with low-cost IoT
devices is the transmission of sensitive data without adequate
encryption. In the case of the NodeMCU device integrated
with a BMP280 sensor, data is frequently transmitted to
cloud-based platforms such as ThingSpeak for monitoring
and analysis. This data, which can include temperature
readings, humidity levels, and altitude information, is often
sent over the network in plaintext. The lack of encryption not
only exposes this information to potential interception but
also makes it susceptible to modification and misuse. A study
by [1] highlights the prevalence of unencrypted data
transmission in IoT devices, underscoring the critical need for
secure communication protocols.

The Threat of Man-in-the-Middle (MITM) Attacks

The vulnerability of low-cost IoT devices to Man-in-the-
Middle (MITM) attacks is a significant concern. In such
attacks, an unauthorized actor intercepts the communication
between the device and the server, gaining the ability to read,
insert, and modify the messages between the two parties
without detection. This type of attack is particularly effective
against devices that do not employ secure communication
protocols, as demonstrated by [2], where researchers were
able to intercept and manipulate data from IoT devices in
real-time. The implications of successful MITM attacks
range from privacy breaches to the manipulation of device
functionality, posing a serious risk to both users and
infrastructure.

Inadequate Device Authentication and Authorization

Another critical vulnerability of low-cost IoT devices lies
in their often inadequate mechanisms for device
authentication and authorization. Without robust
authentication protocols, these devices can be easily
impersonated, allowing malicious entities to gain
unauthorized access to IoT networks. Similarly, insufficient
authorization checks can enable attackers to perform actions
beyond their permitted scope, further compromising the
security of the system. The work by [3] elucidates the
challenges in implementing effective authentication and
authorization mechanisms in resource-constrained IoT
devices, highlighting the trade-off between security and
performance.

Limited Computational Resources for Encryption

The constrained computational resources of low-cost
microcontroller devices present a significant challenge in
implementing traditional encryption algorithms.

Cryptographic algorithms like RSA, while secure, require
significant computational power and memory, which are
scarce resources in devices such as the NodeMCU. This
limitation not only impedes the adoption of strong encryption
standards but also restricts the device's ability to engage in
secure communication, as noted by [4]. The need for
lightweight cryptographic solutions that can operate within
the constraints of these devices is evident, underscoring the
importance of adopting efficient encryption techniques such
as Elliptic Curve Cryptography (ECC).

III. PHASE 1: VULNERABILITY ASSESSMENT AND DATA

COLLECTION

To investigate the vulnerability of low-cost
microcontroller devices and demonstrate the need for
enhanced security measures, we conducted a comprehensive
vulnerability assessment on a NodeMCU device equipped
with a BMP280 sensor for temperature, humidity, and
altitude sensing. The objective of this phase was to collect
data from the sensor and transmit it to a cloud-based IoT
platform, ThingSpeak, without any encryption, thereby
exposing the data to potential interception and unauthorized
access.

A. Experimental setup:

We assembled a NodeMCU ESP8266 development board
and connected it to a BMP280 sensor. The sensor was
configured to collect temperature, humidity, and altitude
data. The NodeMCU board was connected to the internet via
its built-in Wi-Fi module, allowing us to transmit the
collected data to ThingSpeak.

 The BMP280 has SDA and SCL pins that should be
connected to D2 and D1 pins on NodeMCU, respectively.
The VCC and GND pins should be connected to the 3V3 and
G pins on NodeMCU, respectively.

B. Programming the NodeMCU:

● Using the Arduino IDE, we developed a code snippet
to read data from the BMP280 sensor and establish a
connection to the ThingSpeak platform through the
Wi-Fi module. The code included necessary libraries,
such as Adafruit_BMP280 and ESP8266WiFi, to
interface with the sensor and enable Wi-Fi
connectivity.

1. Libraries:
● The code includes the necessary libraries

for ESP8266 Wi-Fi functionality
(ESP8266WiFi.h) and communication with
ThingSpeak (ThingSpeak.h).

● Additionally, it includes libraries for
communication with the BMP280 sensor
(Wire.h, SPI.h, Adafruit_BMP280.h).

#include <ESP8266WiFi.h>

#include <ThingSpeak.h>

#include <Wire.h>

#include <SPI.h>

#include <Adafruit_BMP280.h>

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29260 | Page 3

2. Pin Definitions:
● The code defines the pin connections for

the BMP280 sensor (BMP_SCK,
BMP_MISO, BMP_MOSI, BMP_CS).

#define BMP_SCK (13)

#define BMP_MISO (12)

#define BMP_MOSI (11)

#define BMP_CS (10)

3. Global Variables:
● The code defines the Wi-Fi credentials

(ssid and pass).
● It also sets the ThingSpeak channel ID

(channelID) and the write API key
(writeAPIKey).

Adafruit_BMP280 bmp;

const char *ssid = "<wifi_ssid>";

const char *pass = "<wifi_password>";

long channelID = 1234567;

const char* writeAPIKey = "<api_key>";

WiFiClient client;

4. Setup Function:
● The setup() function initializes the serial

communication for debugging purposes
(Serial.begin()) and checks the BMP280
sensor's presence (bmp.begin()).

● It sets the sampling settings for the sensor
using the setSampling() function.

● The ThingSpeak.begin() function initializes
the ThingSpeak client with the specified
client object.

void setup()

{

 Serial.begin(9600);

 if (!bmp.begin(0x76)) {

 Serial.println(F("Could not find a

valid BMP280 sensor, check wiring!"));

 while (1);

 }

 /* Default settings from datasheet. */

bmp.setSampling(Adafruit_BMP280::MODE_NORM

AL, /* Operating Mode. */

Adafruit_BMP280::SAMPLING_X2, /* Temp.

oversampling */

Adafruit_BMP280::SAMPLING_X16, /*

Pressure oversampling */

Adafruit_BMP280::FILTER_X16, /*

Filtering. */

Adafruit_BMP280::STANDBY_MS_500); /*

Standby time. */

 ThingSpeak.begin(client);

}

5. Loop Function:
● The loop() function is the main execution

loop of the program.
● It checks the Wi-Fi connection status and

attempts to connect to the specified SSID
and password if not connected.

● Once connected, it reads the temperature,
pressure, and altitude from the BMP280
sensor using the corresponding
bmp.read...() functions.

● The collected data is then printed to the
serial monitor for debugging purposes.

● Next, the data is assigned to specific fields
in the ThingSpeak channel using the
ThingSpeak.setField() function.

● The data is sent to the ThingSpeak channel
using the ThingSpeak.writeFields()
function, and the HTTP response code is
checked.

● Depending on the write status, a
corresponding message is printed to the
serial monitor.

● Finally, there is a delay of 15 seconds
before the loop restarts.

void loop()

{

 if (WiFi.status() != WL_CONNECTED) {

 Serial.print("Attempting to connect to

SSID: ");

 Serial.println(ssid);

 WiFi.begin(ssid, pass);

 while (WiFi.status() != WL_CONNECTED)

{

 Serial.print(".");

 delay(5000);

 }

 Serial.println("\nConnected.");

 Serial.println("IP address: ");

 Serial.println(WiFi.localIP());

 }

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29260 | Page 4

 float t = bmp.readTemperature();

 float p = bmp.readPressure();

 float a = bmp.readAltitude(1013.25);

 Serial.print("Temperature: ");

 Serial.print(t);

 Serial.println(" deg. C");

 Serial.print("Pressure: ");

 Serial.print(p);

 Serial.println(" Pa");

 Serial.print("Altitude: ");

 Serial.print(a);

 Serial.println(" m");

 Serial.println("Writing data to

ThingSpeak...");

 ThingSpeak.setField(1, t);

 ThingSpeak.setField(2, p);

 ThingSpeak.setField(3, a);

 int writeStatus =

ThingSpeak.writeFields(channelID,

writeAPIKey);

 if (writeStatus == 200)

 Serial.println("Channel updated

successfully. Writing again in 15

seconds...");

 else

 Serial.println("Problem updating

channel. HTTP error code = " +

String(writeStatus) + ". Trying again in

15 seconds...");

 delay(15000);

}

C. Data Transmission to ThingSpeak:

Once the code was uploaded to the NodeMCU device, it
initiated the data collection process from the BMP280 sensor.
The collected data, including temperature, humidity, and
altitude, was packaged into a message and sent to ThingSpeak
using the established Wi-Fi connection. The transmitted data
was in plaintext, without any encryption or security
mechanisms.

D. Data Reception and Analysis:

On the ThingSpeak platform, we created a channel to
receive and visualize the data transmitted by the NodeMCU

device. We monitored the data reception process to verify the
successful transmission of the sensor readings.

E. Vulnerability Demonstration:

With the data transmission in progress, we set up a
separate machine on the same Wi-Fi network to act as an
attacker system. Using popular network analysis tools like
Wireshark, we intercepted the network traffic between the
NodeMCU device and the ThingSpeak server. Through ARP
spoofing techniques, we performed a man-in-the-middle
(MITM) attack to capture the unencrypted data packets
transmitted by the NodeMCU device.

F. Data Interception and Analysis:

By capturing the network traffic, we were able to intercept
the unencrypted sensor readings in real-time. We analyzed
the intercepted data to demonstrate the severity of the
vulnerability. This step emphasized the ease with which an
attacker can obtain sensitive information, such as
temperature, humidity, and altitude data, from low-cost IoT
devices like NodeMCU.

The vulnerability assessment performed in this phase
successfully demonstrated the lack of security in the data
transmission process of low-cost microcontroller devices.
The interception and analysis of unencrypted data
highlighted the potential risks and the urgent need for
implementing effective security measures. In the subsequent
phases of our research, we will propose and implement
Elliptic Curve Cryptography (ECC) as a solution to mitigate
these vulnerabilities and ensure secure communication
between low-cost microcontroller devices and IoT platforms.

IV. PHASE 2: PERFORMING MAN-IN-THE-MIDDLE

(MITM) ATTACK ON NODEMCU

In Phase 2 of the research, we will focus on conducting a
Man-in-the-Middle (MITM) attack on the NodeMCU device
to intercept the traffic between NodeMCU and the server.
This experiment aims to highlight the vulnerabilities in the
communication channel and emphasize the importance of
implementing stronger security measures. The following
steps outline the process of performing the MITM attack
using mitmproxy CLI tool:

A. Install Wireshark:

Install Wireshark on the MacBook or any other computer
that will be used as the attacker machine. Wireshark will be
used to capture and analyze network traffic.

B. Connect the Devices:

Ensure that both the MacBook and NodeMCU are
connected to the same Wi-Fi network. This is necessary for
successful interception of the traffic.

C. Download and Install mitmproxy:

a) Download and install mitmproxy, an open-source

tool used for intercepting, modifying, and replaying

HTTP/HTTPS traffic.

b) On macOS, mitmproxy can be installed using the

Homebrew package manager. Open the terminal and

execute the command: brew install mitmproxy.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29260 | Page 5

D. List Devices on the Network:

In the terminal, execute the command arp -a to list all the
devices connected to the same network. This will help
identify the IP addresses of the devices involved.

E. Enable IP Forwarding:

a) To enable IP forwarding, execute the following
command in the terminal:

sudo sysctl -w net.inet.ip.forwarding=1

b) This step is necessary to allow the MacBook to act
as a router for the intercepted traffic.

F. Perform ARP Spoofing:

a) Execute the following command in the terminal to
perform ARP spoofing:

arpspoof -i en0 -r -t <default gateway>

<victim device IP address>

b) Replace <default gateway> with the IP address of
the router and <victim device IP address> with the
IP address of the NodeMCU device.

c) This step redirects the network traffic from the
NodeMCU device to the attacker machine.

G. Enable Port Forwarding:

a) To capture the intercepted traffic, port forwarding
needs to be enabled.

b) Execute the following command in the terminal:

echo "rdr pass inet proto tcp from any to

any port <port on which data is being

sent> -> 127.0.0.1 port <port on which

mitmproxy is running>" | sudo pfctl -ef -

c) Replace <port on which data is being sent> with the
specific port number on which the data is being sent
from NodeMCU to the server.

d) Replace <port on which mitmproxy is running> with
the port number on which mitmproxy is running
(typically 8080).

H. Run mitmproxy:

a) Start mitmproxy by executing the following
command in the terminal:

mitmproxy --mode transparent --showhost -p

<port on which mitmproxy is running> -k

b) The --mode transparent flag specifies the attack
mode as transparent, meaning the victim
(NodeMCU) won't be aware of the attack.

c) The --showhost flag displays the host name of the
server.

d) The -p flag specifies the port number on which
mitmproxy is running (in this case, 8080).

e) The -k flag disables TLS verification as we are
intercepting HTTPS traffic.

I. Intercept Data:

a) At this point, mitmproxy is actively intercepting the
traffic between NodeMCU and the server.

b) Monitor the terminal running mitmproxy to observe
the data being sent from NodeMCU to the server.

c) Note that since the data is not encrypted, sensitive
information can be easily captured during this
interception.

J. Revert Port Forwarding Rule (optional):

a) Once the interception is complete, it is important to
revert the port forwarding rule to restore normal
network traffic flow.

b) Execute the following command in the terminal to
revert the port forwarding rule:

sudo pfctl -f /etc/pf.conf

c) This step is only applicable to macOS. For Linux,
use the appropriate iptables command to revert the
port forwarding rule.

The successful execution of the MITM attack in Phase 2
sheds light on the critical vulnerabilities that exist in the
communication between NodeMCU and the server. By
intercepting and analyzing the unencrypted data, we have
underscored the urgent need for stronger security measures.
Moving forward to Phase 3, we will explore advanced
encryption techniques, specifically focusing on
implementing elliptic curve cryptography (ECC) to secure
the communication channel effectively. ECC offers improved
security, reduced computational overhead, and resistance
against timing attacks, making it a promising solution for
safeguarding the integrity and confidentiality of the
transmitted data. In Phase 3, we will delve into the
implementation and evaluation of ECC in the NodeMCU
device, aiming to establish a robust and secure framework for
IoT applications.

V. PHASE 3: IMPLEMENTING ELLIPTIC CURVE

CRYPTOGRAPHY (ECC) FOR SECURE COMMUNICATION

In this phase, we will focus on implementing Elliptic
Curve Cryptography (ECC) as a robust security measure for
ensuring secure communication between the client-side
(NodeMCU) and the server-side. ECC is a modern public-key
cryptographic algorithm known for its efficiency and strong
security properties. By leveraging the mathematical
properties of elliptic curves, ECC offers smaller key sizes,
reduced bandwidth requirements, lower energy consumption,
and enhanced security compared to traditional algorithms like
RSA. This makes ECC particularly well-suited for low-cost
IoT devices with limited computational resources. In this
phase, we will explore the principles of ECC, its advantages
for IoT devices, and proceed to implement ECC on the client
and server sides to establish a secure communication channel.

1. Exploring Elliptic Curve Cryptography (ECC) for
IoT Devices
In this phase, we will delve into the principles of
Elliptic Curve Cryptography (ECC) and its
suitability for low-cost IoT devices. ECC is a public-
key cryptographic algorithm that offers strong
security with relatively shorter key lengths

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29260 | Page 6

compared to traditional algorithms such as RSA. It
is based on the mathematical properties of elliptic
curves and provides efficient and secure operations
for key generation, encryption, and digital
signatures.
ECC is particularly well-suited for low-cost IoT
devices due to the following reasons:

a) Smaller Key Sizes: ECC provides the same
level of security as RSA but with
significantly smaller key sizes. This
advantage is crucial for IoT devices with
limited computational resources, as
smaller key sizes require less memory and
processing power.

b) Reduced Bandwidth Requirements: The
smaller key sizes of ECC result in shorter
ciphertexts, reducing the bandwidth
required for secure communication. This is
beneficial for IoT devices operating on
low-power and low-bandwidth networks.

c) Lower Energy Consumption: The
computational efficiency of ECC
contributes to lower energy consumption,
making it suitable for battery-powered IoT
devices. The reduced computational
overhead results in extended battery life
and increased operational efficiency.

d) Enhanced Security: ECC offers strong
security against various cryptographic
attacks, including brute-force attacks and
key compromise. The mathematical
properties of elliptic curves make it
computationally difficult to derive the
private key from the public key, ensuring
the confidentiality and integrity of the
communication.

2. Client-Side implementation
In this part, we will focus on the client-side
implementation of Elliptic Curve Cryptography
(ECC) on the NodeMCU board. The purpose of this
implementation is to establish a secure
communication channel with the server using a one-
sided key sharing mechanism. Since the NodeMCU
will only be sending data to the server and not
receiving any data in return, there is no need for a
key exchange process. Instead, we will acquire the
server's public key during the initial connection
establishment.

a) Acquiring the Server's Public Key
During the connection establishment
phase, the NodeMCU will request the
server's public key. The server will respond
by sending its public key to the client. This
public key is necessary for the encryption
process on the client-side.

b) Encrypting Data with the Server's Public
Key
Once the server's public key is acquired,
the NodeMCU can use it to encrypt the
data that needs to be sent to the server. The

encryption process involves applying the
ECC algorithm, which leverages the
mathematical properties of elliptic curves
to ensure secure communication.

c) Establishing a Secure Communication
Channel
By implementing ECC on the client-side,
the NodeMCU can establish a secure
communication channel with the server.
The data sent from the NodeMCU will be
encrypted using the server's public key,
ensuring that only the server can decrypt
and access the information. This provides
confidentiality and integrity to the
transmitted data, safeguarding it from
potential eavesdroppers or unauthorized
access.

The client-side implementation of ECC on
the NodeMCU board enhances the overall
security of the IoT system, mitigating
potential security risks and ensuring the
confidentiality of the transmitted data. In
the next part, we will focus on the server-
side implementation of ECC to complete
the secure communication channel.

3. Server-Side implementation
In this part, we will focus on the server-side
implementation that handles the decrypted data
received from the NodeMCU and sends it to
ThingSpeak platform using ThingSpeak API.

a) Set up a Flask server:
● Create a Flask application on the

server to handle incoming
requests from the NodeMCU.

● Define appropriate routes to
handle different types of requests.

b) Receive encrypted data from the
NodeMCU:

● Configure the Flask server to
receive encrypted data from the
NodeMCU.

● Define a route to handle the
incoming encrypted data.

c) Decrypt the received data:
● Implement the decryption

algorithm using the server's
private key.

● Decrypt the received data using
the appropriate ECC decryption
process.

d) Extract the decrypted data:
● Retrieve the decrypted data from

the received ciphertext.
● Extract the relevant information

from the decrypted data.
e) Send the extracted data to ThingSpeak:

● Use the ThingSpeak API to send
the extracted data to the
ThingSpeak platform.

● Prepare the data for sending and
include any necessary metadata.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 03 | MARCH - 2024 SJIF RATING: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29260 | Page 7

f) Handle server-side operations:
● Implement any additional server-

side operations or data
processing required.

● Perform any necessary validation
or verification steps on the
received data.

g) Respond to the NodeMCU:
● Send a response back to the

NodeMCU indicating the success
or failure of the data
transmission.

● Provide any necessary feedback
or instructions for the NodeMCU.

h) Repeat steps 2-7 for subsequent data
transmissions:

● Configure the Flask server to
handle multiple requests from the
NodeMCU.

● Decrypt, process, and forward the
data to ThingSpeak for each
received ciphertext.

 Overall, Phase 3 has significantly strengthened the
security and functionality of our IoT system, paving the way
for reliable and secure data communication between the
NodeMCU and the server. The successful implementation of
ECC and the server-side infrastructure sets the stage for
further advancements in our research, with the potential to
extend our IoT system to broader applications and enhance
its overall efficiency and security.

VI. CONCLUSION

In conclusion, this research project delved into the
security aspects of IoT devices, focusing on the NodeMCU
platform. Through the exploration of a vulnerability attack
and the subsequent implementation of security measures, we
have shed light on the importance of ensuring the
confidentiality and integrity of data transmitted by IoT
devices. Our findings and methodologies have been
documented and are accessible for further exploration on our
GitHub repository at github.com/costomato/nodemcu-mitm-
attack, providing a resource for those interested in the
technical details of our work.

During Phase 1, we identified a vulnerability in the
NodeMCU firmware that allowed unauthorized access to
sensitive information. By intercepting the data packets, an
attacker could exploit this vulnerability to gain unauthorized
access to the device and potentially compromise the entire
IoT network. This discovery emphasized the critical need for
robust security measures to protect IoT devices.

In Phase 2, we performed a Man-in-the-Middle (MITM)
attack to highlight the vulnerability of NodeMCU devices
and the potential risks associated with unencrypted data
transmission. By intercepting and analyzing the traffic
between the NodeMCU and the server, we showcased the
ease with which an attacker could obtain sensitive
information. This phase demonstrated the urgent need for
encryption mechanisms to safeguard data during
transmission.

To address these security concerns, Phase 3 focused on
implementing an Elliptic Curve Cryptography (ECC)
algorithm as a secure communication mechanism between
the NodeMCU and the server. ECC offers several
advantages, including strong encryption capabilities with
relatively smaller key sizes, making it well-suited for
resource-constrained IoT devices. The implementation of
ECC provided secure key exchange and ensured the
confidentiality and integrity of the transmitted data.

The results of this research highlight the significance of
adopting robust security measures in IoT devices. By
addressing vulnerabilities and implementing encryption
mechanisms, we can enhance the overall security posture of
IoT networks. Future research in this domain could explore
additional security protocols, such as authentication
mechanisms and intrusion detection systems, to further
fortify IoT devices against potential threats.

In summary, this research underscores the importance of
prioritizing security in IoT deployments. By understanding
the vulnerabilities, implementing encryption algorithms like
ECC, and adopting best practices, we can mitigate the risks
associated with IoT devices and pave the way for a secure and
resilient IoT ecosystem.

ACKNOWLEDGMENT

This work was supported by the invaluable guidance and
support of Dr. Murthy DHR, Assistant Professor at
Presidency University, Department of Computer Science and
Engineering. I am grateful for his expertise in blockchain and
cryptography, as well as his enthusiasm for these fields. Dr.
Murthy's knowledge and teachings on Elliptic Curve
Cryptography (ECC) laid the foundation for this research.
The vulnerability attack on the NodeMCU, which inspired
this study, was a result of an assignment given by Dr. Murthy
in the course of Cyber Threats for IoT and Cloud. His
mentorship and encouragement have been instrumental in the
successful completion of this research project. I am deeply
thankful for his contributions and the impact he has had on
this work.

REFERENCES

[1] Zhang, Y., & Lee, W. (2017). Security in the Internet of Things: A
Review. International Journal of Distributed Sensor Networks, 13(8),
1550147717718010.

[2] Raza, S., Wallgren, L., & Voigt, T. (2013). SVELTE: Real-time

intrusion detection in the Internet of Things. Ad Hoc Networks, 11(8),
2661-2674.

[3] Alrawais, A., Alhothaily, A., Hu, C., & Cheng, X. (2017). The role of

authentication in the Internet of Things. Computer Networks, 112, 137-
147.

[4] Gupta, M., & Sandhu, R. (2018). The challenges of cryptographic
operations in IoT devices. Network Security, 2018(2), 5-8.

http://www.ijsrem.com/
https://github.com/costomato/nodemcu-mitm-attack
https://github.com/costomato/nodemcu-mitm-attack

