
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 10 | Oct - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37781 | Page 1

Enhancing Web Security: Token-Based Solutions to Prevent CSRF Attacks

Prof. K. N. Hande, Mehak Khan, Mansi Bhujade

1 Professor. k. N. Hande, Department of Computer Science and Engineering, Priyadarshini Bhagwati College of Engineering, Nagpur, Maharashtra, India

 2 Mehak Khan, Department of Computer Science and Engineering, Priyadarshini Bhagwati College of Engineering, Nagpur, Maharashtra, India

3 Mansi Bhujade, Department of Computer Science and Engineering, Priyadarshini Bhagwati College of Engineering, Nagpur, Maharashtra, India

---***---

Abstract - A Cross-Site Request Forgery (CSRF) is a

security vulnerability in web applications where an attacker

tricks a user into performing unintended actions on a different

website without their knowledge. subverts the user’s trust in a

single site and causes the user to perform actions that he or she

did not intend to take on that domain. When logged in, an

attacker may act even when the user does not intend for them

to do so, such as making illegal transactions, modifying user

configurations, or deleting information. As discussed in an

understanding of Cross-Site Request Forgery: Attacks and

Countermeasures, a CSRF attack is dangerous because it takes

advantage of the trust the victim has placed in the web

application, making it difficult to detect. The This paper

explores CSRF attacks by examining their operational

principles, common tactics used by attackers, and potential

prevention techniques, such as token implementation, Same-

site cookie policies, and secure coding practices. As the

dependency on web applications continues to grow, the need to

encourage and enforce proper security practices against CSRF

attacks becomes increasingly important.

Key Words: Cross-Site Request Forgery, Web security

vulnerability, Anti-CSRF tokens, Defensive coding against

CSRF Session validation, Forgery of requests

1.INTRODUCTION

Cross-Site Request Forgery (CSRF) is a web application

security flaw that exploits the trust users have in a specific

website. In this type of attack, an attacker tricks a logged-in

user into performing actions on the website that they did not

intend to, or causes the user to unknowingly perform actions.

These actions could range from changing user profile settings

to making a bank transfer. The attacker takes advantage of the

fact that the user is already logged in and bypasses necessary

security steps. This makes CSRF difficult to detect, as it

appears to be legitimate activity by an authorized user. With the

rise of web-based applications, it is crucial for users and

developers to understand how CSRF works and the methods to

prevent it.

2. Working of CSRF

Cross-Site Request Forgery (CSRF) works by taking advantage

of the trust that web applications place in user requests. have in

a user’s browser. The attack begins when a user authenticates

on a trusted website, such as a banking platform, where they

log in with their credentials. Upon successful login, the server

establishes a session, typically storing session information in

cookies. As the user continues to navigate the site, they remain

logged in, allowing them to perform various actions without

needing to re-enter their credentials. Meanwhile, an attacker

crafts a malicious link or webpage that includes a request

designed to execute an action on the trusted site, such as

initiating a money transfer or altering account settings. When

the user inadvertently clicks this link or visits the malicious

page—often through social engineering tactics—they

unwittingly send a forged request to the trusted application.

Because The user's browser automatically attaches the session

cookies to the request., the web application processes the action

as if it were a legitimate request from the authenticated user.

This process occurs without any visible indication to the user,

making CSRF attacks particularly insidious, as they can lead to

unauthorized transactions or data modifications without the

victim's knowledge.

2.1Methodology of CSRF Attacks

The methodology of Cross-Site Request Forgery (CSRF)

attacks involves several distinct phases that exploit the inherent

trust between a user and a web application. Initially, the attack

commences when a user logs into a secure web application,

such as a financial institution. During this login process, the

server authenticates the user and establishes a session, typically

maintained through cookies stored in the user’s web browser.

Once authenticated, the user retains an active session, allowing

them to execute various actions without re-entering their

credentials. Meanwhile, an attacker prepares a malicious

webpage or an email that contains a forged request, which

might be designed to perform sensitive actions on the trusted

site, such as transferring funds or modifying account settings.

To enhance the effectiveness of the attack, the perpetrator often

employs social engineering tactics. This may include crafting

phishing emails that entice the user to click a seemingly

harmless link or embedding the exploit within a legitimate-

looking webpage. When the victim clicks the link or interacts

with the malicious content, the attack is triggered.

At this point, the attacker’s code sends a forged HTTP request

(either GET or POST) to the targeted web application. Because

The user's browser automatically sends the relevant session

cookies along with the request..the trusted application assumes

that the action is being performed by the authenticated user. As

a result, the request is processed without any indication of

malicious intent.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 10 | Oct - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37781 | Page 2

Crucially, the execution of a CSRF attack often goes unnoticed

by the victim, who may not realize that unauthorized actions

have been taken until they later review their account. This

characteristic makes CSRF a particularly insidious threat,

emphasizing the need for robust preventive measures to protect

users from such vulnerabilities.

 Fig-1: Cross Site Request Forgery Architecture

The flowchart outlines a methodical approach for assessing

the feasibility of executing a Cross-Site Request Forgery

(CSRF) attack on a web application. The steps are based on

various security conditions that the application may have in

place. Below is a simplified explanation of the flow:

2.2DVWA Security Level

The process starts by identifying the security level of the web

application, which can range from Low, Medium, High, to

Impossible. Each level increases the difficulty of exploiting a

CSRF vulnerability, with "Impossible" being fully secure.

The next step evaluates whether a CSRF token is implemented,

as the presence of this token is a key defense mechanism. If a

token is present, the flow determines if it can be exploited,

which may occur if the token is predictable or improperly

managed. If no CSRF token is found, the analysis shifts to

examining the request method and payload. If a JSON payload

is not required, simpler methods such as GET or POST requests

can be used to conduct the attack. However, if JSON is

required, the complexity increases, potentially necessitating

advanced techniques like JSON parameter padding or complex

request formatting.

It checks if there is a vulnerable subdomain or if the target

domain’s Cross-Origin Resource Sharing (CORS) policy

allows for cross-origin requests. If vulnerabilities in

subdomains or CORS settings are found, they may facilitate the

attack. Finally, in highly secure environments where more

straightforward methods are blocked, the attacker may need to

employ advanced techniques, such as using custom headers or

manipulating XML Http Requests. Ultimately, the flowchart

provides a clear decision-making process to assess the

likelihood of a successful CSRF attack, based on the web

application’s security configuration, highlighting key factors

like CSRF token usage, request handling, and cross-origin

policies.

2.3Impact of CSRF Attacks

Cross-Site Request Forgery (CSRF) attacks can have severe

consequences for both individual users and the web

applications they interact with. The primary impact of a CSRF

attack lies in its ability to exploit the trust a web application

places in an authenticated user. When an attacker successfully

performs a CSRF attack, they can force the user’s browser to

send unauthorized requests to a website where the user is

already authenticated, often without the user’s knowledge.

These unauthorized actions can range from making financial

transactions to changing account settings or passwords.

For end-users, CSRF attacks can result in significant financial

and personal damage. If, for example, a CSRF attack targets an

online banking platform, the attacker may be able to transfer

funds from the victim's account without their consent.

Similarly, in e-commerce platforms, an attacker could place

orders or modify the victim's shopping cart. The violation of

personal privacy is another major concern, as CSRF can be

used to change user account details, potentially exposing

sensitive information to malicious actors.

From the perspective of web applications, the damage caused

by CSRF attacks extends beyond user exploitation. A

successful attack can undermine the trust between the

application and its users is essential for maintaining user

engagement, especially on platforms that manage sensitive

information, such as financial services and healthcare systems.,

or social media. When a CSRF vulnerability is exploited, it can

lead to reputational damage, loss of user confidence, and in

extreme cases, legal liabilities, especially if the platform fails

to safeguard user information according to industry standards

or regulatory frameworks like the General Data Protection

Regulation (GDPR).

In addition, CSRF attacks can disrupt business operations by

causing unauthorized changes to an application's settings,

corrupting user data, or triggering unintended administrative

actions. Attackers might use CSRF to escalate privileges or

modify security settings, potentially leaving the web

application exposed to further vulnerabilities. Consequently,

addressing CSRF vulnerabilities is critical not only for

protecting individual users but also for preserving the integrity

and security of the entire web application ecosystem.

2.4Real-World Examples of CSRF Exploits

1. Gmail CSRF Vulnerability (2007) -In 2008, Netflix

experienced a CSRF vulnerability that allowed

attackers to manipulate users' account settings. By

exploiting the flaw, an attacker could change the

victim’s login email address and password, effectively

locking the legitimate user out of their own account.

2. uTorrent CSRF Exploit (2008)- Another example

occurred in 2008, targeting the popular BitTorrent

client, uTorrent. A CSRF vulnerability in the web-

based management interface of uTorrent allowed

attackers to perform actions such as adding or

removing torrent files from the user’s download list.

Attackers could inject malicious links into websites,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 10 | Oct - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37781 | Page 3

and when users clicked on them, unauthorized

commands were sent to the uTorrent client.

3. ING Direct CSRF Incident (2010)- In 2010, a CSRF

vulnerability was found in ING Direct’s online

banking platform in Canada. The flaw allowed

attackers to initiate unauthorized money transfers

from a user’s account by tricking them into visiting a

malicious webpage. By exploiting this vulnerability,

attackers could automate the transfer of funds without

the victim’s knowledge. Given the sensitivity of

financial information and transactions, this case

underscored the critical need for financial institutions

to implement strong anti-CSRF measures to protect

their users from fraudulent activities.

4. GitHub CSRF Attack (2012)-In 2012, GitHub, a

major code repository and collaboration platform,

discovered a CSRF vulnerability that allowed

attackers to add or delete SSH keys from users'

accounts. By exploiting this flaw, an attacker could

gain access to a user’s repositories, potentially

injecting malicious code or stealing private data.

Given the large number of users and the sensitive

nature of code repositories, this vulnerability posed a

serious risk to GitHub's community.

2.5CSRF Tokens: The Primary Defense

Cross-Site Request Forgery (CSRF) tokens are one of the most

effective defenses against CSRF attacks. They work by

embedding a unique, unpredictable value into each user session

or form submission, preventing attackers from forging

unauthorized requests on behalf of authenticated users. These

tokens ensure that any incoming request to a server contains a

valid, session-specific token, which an attacker, without access

to the user’s session, cannot replicate.

When a user submits a request, the application generates a

CSRF token and associates it with that specific user’s session

or form. The token is then included as a hidden field in forms

or appended to URLs in GET or POST requests. The server

validates When the server receives the request, it checks the

token against the one stored with the user's session. If the

tokens match, the request is deemed legitimate; otherwise, if

the token is absent or incorrect, the request is rejected as a

possible CSRF attack.

A major advantage of CSRF tokens is their uniqueness to each

user session., making it extremely difficult for an attacker to

predict or forge a valid token. Since CSRF tokens are generated

and tied directly to the user's session, attackers cannot include

the correct token in their malicious requests, even if they know

the structure of the web application.

Another advantage is that CSRF tokens can be used in both

synchronous and asynchronous requests (such as AJAX). For

modern web applications, where many actions are performed

without full-page reloads, implementing CSRF protection for

APIs and AJAX calls is crucial to prevent attacks via

background requests.

However, proper implementation of CSRF tokens is essential

to their effectiveness. For instance, developers must ensure that

tokens are truly random and not susceptible to prediction.

Tokens should be securely stored and validated on the server

side to prevent tampering. Additionally, developers must avoid

common pitfalls, such as reusing tokens across sessions or

failing to include tokens in all forms or state-changing requests.

Inadequate implementation can leave applications vulnerable

despite the presence of CSRF tokens.

3. Implementation of CSRF Prevention in Web

Applications –

Effectively mitigating Cross-Site Request Forgery (CSRF)

attacks in web applications. requires the correct

implementation of multiple security measures. CSRF tokens,

same-site cookies, and proper request validation are some of

the most critical tools for developers to incorporate into their

web applications to defend against these attacks.

3.1. CSRF Tokens Implementation

The primary method for preventing CSRF attacks is by utilizing

of CSRF tokens. To implement CSRF tokens, web applications

must Create a unique, random token for each user session or

form. This token must be included in every form or state-

changing request sent from the client to the server. For instance,

during form submissions, the token can be added as a hidden

field, while for AJAX requests, it can be placed in the request

headers.

On the server side, the token is validated against the session-

specific token stored on the server. If the token does not match

or is missing, the request is rejected as a potential forgery.

Many modern web development frameworks provide built-in

mechanisms for automatically generating, embedding, and

validating CSRF tokens. For example, in Django, developers

only need to use the {% csrf_token %} tag in forms to embed

the token and enable the middleware that verifies it on the

server side. Similarly, Laravel automatically provides CSRF

protection for any routes that use POST, PUT, DELETE, or

PATCH requests, with tokens included in the forms by default.

3.2. Same-Site Cookie Attribute

Another essential approach to CSRF prevention is the Same

Site attribute on cookies. When set to Same Site=Strict or Same

Site=Lax, this attribute ensures that cookies will not be sent

along with cross-origin requests. This prevents attackers from

using malicious websites to exploit cookies tied to an

authenticated session on another site. For example, if a user is

logged into their bank’s website and visits a malicious site, the

cookies associated with the bank session will not be sent along

with any requests from that external site, thus mitigating the

potential for CSRF attacks.

Implementing Same Site cookies is a straightforward process.

For example, in Express.js (a popular Node.js framework),

developers can set this attribute using middleware like express-

session to ensure that cookies are protected from cross-origin

attacks.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 10 | Oct - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37781 | Page 4

3.3. Double-Submit Cookie Method

The double-submit cookie method is another effective

technique for CSRF prevention. In this method, a CSRF token

is set as a cookie in the user's browser, and this token is also

submitted as a hidden field in forms or as a header in AJAX

requests. When the server receives a request, it compares the

token in the cookie with the token in the request. If both tokens

match, match, the request is allowed; if not, it is rejected.

This method can be implemented without storing the token on

the server, which makes it lighter in terms of resource usage.

However, developers must ensure that the tokens are

transmitted securely, over HTTPS, and that cookies are flagged

as secure to prevent interception by attackers.

3.4. Validating Origin and Referrer Headers

Validating the Origin and Referrer headers is another way to

defend against CSRF attacks. When a request is sent from a

client to the server, the browser typically includes the Origin or

Referrer header, which identifies the source of the request. By

validating these headers to ensure that they match the expected

domain, web applications can block requests originating from

unauthorized sites. This technique is particularly effective

when used in conjunction with CSRF tokens and same-site

cookies.

While this method provides an additional layer of security, it is

not foolproof. Some browsers, especially older ones, may not

always send Origin or Referrer headers for all types of requests,

and these headers can sometimes be manipulated. Therefore,

this method should be used as a complementary defense rather

than a standalone solution.

3.5. Framework-Specific Implementations

Most modern web development frameworks come with built-

in support for CSRF protection. For example:

• Django: CSRF protection is enabled by default, and

developers only need to include the CSRF token in

forms using {% csrf_token %} in templates.

• Laravel: The framework automatically applies CSRF

protection to all state-changing requests. Developers

can disable it for specific routes if necessary but are

encouraged to keep it active for maximum security.

• Spring: In the Spring Security framework for Java,

CSRF protection can be enabled through simple

configuration settings. The framework handles CSRF

token generation and validation automatically,

making it easy to implement.

• ASP.NET Core: Microsoft’s framework also

includes built-in CSRF protection, which can be

configured in middleware and applied to specific

forms or API endpoints.

3.6. Best Practices for CSRF Prevention

To ensure comprehensive protection against CSRF attacks,

developers should adhere to a set of best practices:

• Use HTTPS: Always use HTTPS to prevent attackers

from intercepting or modifying CSRF tokens in

transit.

• Generate Secure Tokens: Ensure that CSRF tokens

are long, random, and unique for each session or

request to avoid predictability.

• Protect All State-Changing Requests: Apply CSRF

protection to all forms and actions that modify the

state of the application, including API endpoints and

AJAX requests.

• Regularly Test for CSRF Vulnerabilities:

Incorporate automated tools, such as OWASP ZAP or

Burp Suite, to regularly scan web applications for

CSRF vulnerabilities.

4.Result: -

4.1 Web Application for the showing the attacks

Fig 2 Web application for demonstrating the attacks.

Cross-Site Request Forgery (CSRF) takes advantage of the

trust that a web application has in its users. places in a user's

browser. In such attacks, a malicious website deceives the

user's browser into sending unintended requests to another site

where the user is already logged in. To reduce this threat, web

applications can adopt a token-based approach in PHP. This

method generates a unique token for each user session,

embedding it in forms or URL parameters. When a request is

made, the server checks the token's validity; if it's missing or

incorrect, the request is denied. This ensures that only valid

requests from authenticated users are processed, safeguarding

the application from CSRF attacks.

4.2. Token Generation technique

The image shows a web page titled "Cross-Site Request

Forgery (CSRF) Vulnerability in Web Application," featuring

a login form on the left side and the associated HTML code on

the right side. The form includes fields for entering the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 10 | Oct - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37781 | Page 5

username and password. Additionally, the HTML code

contains a hidden field labeled "csrf_token," which is included

to protect against CSRF attacks. The page also includes a

warning about the security risks posed by CSRF vulnerabilities.

Fig: -3 Token Generation Technique

4.3. How CRSF Attacks works

The image displays a login form susceptible to

Cross-Site Request Forgery (CSRF) attacks occur

when an attacker could craft a malicious link

designed to deceive users into clicking it, potentially

granting unauthorized access to their accounts. To

mitigate this risk, the form should implement a

CSRF token to ensure secure authentication.

Fig: - 4 How CSRF Attacks happened

5. CONCLUSIONS

Cross-Site Request Forgery (CSRF) attacks present a serious

risk to web applications. by exploiting the trust that a site has

in a user's browser. These attacks can lead to unauthorized

actions being executed on behalf of a user without their

consent, potentially compromising sensitive data and user

accounts.

To mitigate the risks associated with CSRF, developers should

implement robust security measures. These include using anti-

CSRF tokens, enforcing same-site cookie attributes, and

employing user authentication mechanisms that can validate

requests. Additionally, educating users about the risks of CSRF

and promoting best practices for web security can further

reduce the likelihood of such attacks.

In summary, while CSRF attacks can be detrimental to both

users and web services, a proactive approach to security can

effectively safeguard against these vulnerabilities, ensuring a

safer online experience for all users.

6.ACKNOWLEDGEMENT

We I would like to extend my heartfelt thanks to everyone who

played a role in the successful completion of this. work. My

appreciation goes to our mentors and peers for their valuable

insights and support throughout the research process. Special

thanks to the resources and literature that provided foundational

knowledge on the topic, enabling me to explore and understand

the complexities of CSRF attacks. Your guidance and

encouragement have been instrumental in enhancing my

understanding and execution of this project. Thank you for

being an integral part of my journey.

7. REFERENCES

1. OWASP Foundation. (2023). Cross-Site Request Forgery

(CSRF).

2. W3C. (2021). Same Site Cookie Attribute.

3. Klein, A., & Hurst, S. (2020). Web Security for Developers:

Building Secure Applications. O'Reilly Media.

 4. Garfinkel, S. (2019). Web Application Security: A

Beginner's Guide. McGraw-Hill Education.

 5. Shah, D. (2022). Understanding CSRF Attacks: Prevention

and Mitigation Strategies. Journal of Cybersecurity, 12(4), 45-

58.

6. SANS Institute. (2020). CSRF: A Major Web Application

Security Vulnerability.

7. Mowery, K., & Felten, E. W. (2019). Security and Privacy

in Web Applications: Lessons Learned from the CSRF Attack

Vector. IEEE Security & Privacy, 17(2), 56-63.

http://www.ijsrem.com/

