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Abstract— Despite being widely used in nanosatellite 

operations, the I2C bus has dependability issues that can 

result in catastrophic failures. In the framework of 

CubeSat missions, this study performs an extensive fault 

analysis of the I2C bus, looking into necessary hardware 

and software, important failure reasons, and possible 

mitigation techniques. To gain a comprehensive 

understanding of I2C bus characteristics, failure modes, 

and operational requirements, experimental testing  is 

used. This work presents checksum strategies to improve 

data integrity and reliability during  I2C bus transactions 

in addition to conventional fault analysis techniques. 

Checksums are incorporated into the communication 

protocol to greatly increase data transfer dependability and 

lower the chance of mission-critical failures. Through 

qualitative risk analysis, the suggested mitigation strategies 

are assessed, emphasizing their influence on the overall 

mission success and CubeSat health. This study 

emphasizes how important it is to take into account both 

runtime fault management and strong design 

considerations while reducing I2C bus vulnerabilities to 

maintain operational reliability for nanosatellite missions. 

 
Keywords: Nanosatellites, CubeSats, I2C bus, reliability, 

fault mitigation, checksums. 

 

I. INTRODUCTION 

 
Due to its ability to provide affordable access to space for a 

range of commercial and scientific uses, nanosatellites, also 

known as CubeSats, have completely changed space 

exploration. The performance, success rates, and trends of the 

first 100 CubeSat missions are statistically analyzed in this 

article[1]. The Inter Integrated Circuit (I2C) bus is a widely 

used protocol because of its ease of use, low power 

consumption, and adaptability in connecting various 

electronics in the limited space of a CubeSat [2]. Examination 

of CubeSat missions statistically [3]. 

 
However, the success of nanosatellite missions depends on the 

dependability of communication protocols like the I2C 

bus[3][4]. 

 

Because CubeSats are operated under strict size, weight, 

and power limits, as opposed to bigger spacecraft, 

communication failures can have a greater impact on 

mission outcomes. With an emphasis on performance 

concerns and design constraints, this study examines the 

implementation and dependability of electrical bus 

interfaces used in CubeSats[4]. 

 

With a particular focus on the I2C bus, this research 

investigates the complexities of protocol dependability in 

nanosatellite missions[5]. We explore the difficulties 

brought about by protocol malfunctions, look at the 

hardware and software prerequisites for dependable 

performance, and assess the main causes of protocol 

vulnerabilities [5] [6]. 

 

II. THE MAIN TEXT 

 
 

Developed by Philips Semiconductor (now NXP 

Semiconductors) in the early 1980s, the Inter-Integrated 

Circuit (I2C) protocol, pronounced as "I-squared-C," is a 

popular synchronous serial communication protocol[5]. It 

was intended to reduce the amount of wires needed for 

communication between integrated circuits (ICs) on a 

circuit board. Fundamentally, a serial data line (SDA) and a 

serial clock line (SCL) are the only two signal wires needed 

for two-way communication between several master and 

slave devices under the I2C protocol[6]. Because of its 

simplicity, it is perfect for uses where power and space are 

limited, including in embedded systems and nanosatellites. 

In an I2C system[7], a master device or many master 

devices establish communication and manage the  bus, 

while slave devices carry out the master's instructions. 

Multiple devices can share a bus thanks to this architecture, 

which improves scalability and flexibility. 

 
A clock signal produced by the master device synchronizes 

data transfer on the I2C bus. Eight-bit bytes are used  to 

send data, with the most significant bit (MSB) being sent 

first. 
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Over the same bus, devices can send and receive data  as 

master and slave devices. The master device can choose which 

slaves to communicate with by assigning each slave on the 

I2C bus a distinct 7-bit or 10-bit address. Up to 128 devices 

can be supported by the 7-bit addressing system, while up to 

1024 devices can be supported by the 10-bit addressing 

scheme[6][7]. numerous master arrangements, in which 

numerous master devices can start a bus conversation, are 

supported by advanced I2C systems. Data corruption and bus 

contention are avoided by arbitration logic, which makes sure 

that only one master device is able to manage the bus at once. 

Clock stretching is the ability of slaves to slow down the 

master's clock in order to process data or carry out other 

operations[8]. Slower devices can communicate efficiently 

without flooding the bus thanks to this approach. A start 

condition (S) initiates communication on the I2C bus, while a 

stop condition (P) ends it. A data transfer sequence  is 

indicated to begin and finish by these conditions, 

respectively[6]. 

 
 

 
Figure 1. I2c bus Architecture 

 

 
 

I2C is a low power, multi-device compatible protocol that is 

widely used by nanosatellites, often known as CubeSats, to 

connect onboard components such as sensors, actuators, 

memory modules, and communication subsystems[8]. 

Because of this, I2C is perfect for the small size and limited 

resources of CubeSats. Wide temperature changes that can 

impair device performance and reliability, as well as single- 

event upsets (SEUs) brought on by cosmic radiation, pose 

serious problems for I2C in the space environment[9]. 

CubeSat missions need to have strong fault detection, error 

management, and mitigation procedures in place to deal with 

these problems and avoid mission-critical failures in order to 

sustain reliable communication[8]. 

 

The onboard computer (master) can connect with peripheral 

devices (slaves) thanks to the master-slave design of the I2C 

protocol[5]. However, as missions get more complicated, 

advances in fault analysis and enhancements to the I2C 

protocol will become increasingly important[7]. Future 

CubeSat missions depend on these improvements to be 

dependable and successful, especially as their reach and 

operating difficulties increase[9] in the hostile environment of 

space. 

 

CubeSats employ the I2C bus to allow real-time 

communication between peripherals like cameras, gyroscopes, 

and sensors and the master device, which is often the onboard 

computer[10]. Eight-bit bytes of data are transferred, 

synchronized with the master clock signal, and acknowledged 

by the recipient device. 

The I2C bus gives each slave device a distinct 7-bit or 10- 

bit address, enabling the master to speak with particular 

devices on an individual basis[11]. With the 10-bit 

approach, this capacity is increased to 1024, but the 7-bit 

addressing system can support up to 128 devices. Multi- 

master arrangements, in which several masters can each 

manage a bus, are also possible with advanced I2C setups. 

Conflicts can be resolved by arbitration logic. 

 

When a device requires more time to finish internal 

processes, it can be helpful for slaves to execute clock 

stretching in order to slow down the master's clock[8]. A 

start condition signals the start of a data transmission 

sequence on the bus, while a stop condition signals its 

conclusion[10]. 

 
A straightforward, inexpensive data transfer protocol called 

the Inter-Integrated Circuit (I2C) bus was created to 

facilitate short-range communication between 

microcontrollers and peripheral devices. Its ease of use and 

inexpensive cost of production contribute to its appeal. I2C 

allows for both single- and multi-master setups, with two 

lines—the Serial Clock Line (SCL) for clock signals and 

the Serial Data Line (SDA) for bidirectional data flow— 

being used to transfer data between devices. Pullup 

resistors, which are linked to both lines, aid in determining 

the bus speed, which is normally 400 kbps for fast mode 

and 100 kbps for standard mode[9]. Changes in the SDA 

line while the SCL is still high indicate start and stop 

conditions, which are used by the master to govern data 

transmission[10]. 

 
III. LITERATURE SURVEY 

 
The literature on I2C bus dependability and CubeSat 

missions provides important insights into the difficulties 

and developments in tiny satellite technology. A thorough 

examination of mission results, success rates, and failure 

types is offered by Swartwout's statistical analysis of the 

first 100 CubeSats, which also highlights the early 

difficulties and successes of the CubeSat community. In 

order to advance tiny satellite technology, this foundational 

study highlights how important it is for future CubeSat 

developers and mission planners to learn from the lessons 

learned from earlier missions [11]. 

 
Bouwmeester et al. examine several designs from different 

missions and evaluate how well they function in space 

settings with an emphasis on the dependability of electrical 

bus interfaces in CubeSats. Their survey highlights typical 

obstacles that CubeSat engineers encounter while putting in 

place dependable bus interfaces and offers insightful 

suggestions for enhancing robustness. The significance of 

interface design as a vital component in guaranteeing 

mission success and endurance is highlighted by this 

work[10][11]. 

 

Carvalho and Kastensmidt suggest methods for improving 

the protocol's resilience to soft failures in order to solve I2C 

bus vulnerabilities. Their study looks into ways to identify 

and reduce environmental factor-related errors, which can 

have a big impact on the dependability of communication in 

important applications. 
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These methods' efficacy has been validated experimentally, 

providing information on how improved I2C protocols might 

be used in challenging settings[11]. 

 

 

The literature also highlights creative approaches for 

communication and data management inside CubeSats. Van 

Der Linden and colleagues present a new data bus architecture 

that is especially made for CubeSats, with a focus on 

durability and efficiency in its design. Their validation studies 

demonstrate how the architecture may be adjusted to meet the 

particular difficulties of the space environment, indicating 

possible uses for further advancements in CubeSat 

communication systems[10][13]. 
 

Furthermore, Valdez and Becker give a thorough rundown of 

the I2C protocol, covering important operational facets like 

time, addressing, and troubleshooting methods[13]. 

 

Askari et al. go into additional detail about the significance of 

software development and validation for CubeSat missions, 

emphasizing the integration of subsystems such as the I2C bus 

for dependable data exchange. Their work sheds insight on the 

difficulties encountered in software design and the need for 

extensive in-orbit validation to guarantee functionality. 

Ferrando also covers practical troubleshooting techniques for 

I2C issues, with a thorough manual for identifying typical 

faults. Additionally, Kepko et al. emphasize the importance of 

operational experience in refining designs and operational 

procedures by sharing reliability lessons from the Dellingr 

CubeSat mission[13]. Lastly, in order to strengthen the 

resilience of I2C-based systems, Batista et al. investigate the 

advantages of employing failure emulation techniques during 

subsystem integration tests[14]. 
 

Since it allows numerous peripherals to connect with just two 

wires and has an easy-to-understand communication protocol, 

the I2C (Inter-Integrated Circuit) bus is indispensable in 

embedded systems and CubeSat missions. But data corruption 

can imperil important operations, therefore ensuring data 

integrity in harsh space conditions presents substantial 

challenges[14][15]. The inclusion of checksum techniques, in 

particular Cyclic Redundancy Check (CRC) algorithms, 

which act as digital signatures to confirm data integrity and 

lessen undetected errors, is explored in this study as a way to 

improve the reliability of the I2C bus[10]. 
 

IV. EXISTING SYSTEM 

 
Given its widespread use and susceptibility in CubeSat 

systems, where malfunctions could endanger mission success, 

research on I2C bus failure detection and mitigation is 

essential[12]. To increase CubeSat robustness, a variety of 

techniques, including fault injection tools, mimic  mistakes 

like erroneous values and signal changes during testing[4]. 

Devices for external monitoring examine data flows, identify 

defects such as problems with packet structure and 

checksums, and start corrective measures such I2C master 

resets[13]. Alternative approaches that improve reliability but 

raise system complexity and cost include twin I2C cores and 

protocols such as SMB us. 

In order to resolve address problems, researchers suggested 

using I2C buffers and multiplexers to dynamically manage 

incompatible slave devices and guarantee smooth 

communication. In order to improve I2C bus reliability, 

mission-critical data integrity, and operational continuity in 

CubeSat missions, these initiatives highlight the necessity 

for an extensive architecture for fault detection and 

mitigation[10]. 

 
 

Figure 2 I2C protocol 

 

Innovative data collection approach 

 

This research used a two-pronged strategy for gathering 

data, combining extensive surveys of the literature with 

experimental testing. In order to generate a preliminary list 

of potential failure modes, the team first compiled reports 

and surveys on previous CubeSat failure analyses [2][9]. To 

ensure a solid empirical foundation, experimental sets were 

then carefully created to replicate these proposed 

modes[14][10]. 

 

Advanced Experimental Setup 

 

A combination of state-of-the-art hardware, software, and 

monitoring tools were used in the experimental setup to 

carry out various testing scenarios. The Arduino Uno, 

Arduino Mega, and TI Tiva C Launchpad were important 

hardware elements that enabled many I2C bus 

implementations[10]. Real-time data transfers were 

captured and analyzed with the help of monitoring 

instruments including custom I2C packet sniffers installed 

on Arduino MEGA boards and serial output monitors[14]. 

The capabilities of the packet sniffer are demonstrated in 

Figure 3, which also shows device addresses, read/write 

operations, and exchanged byte streams[11]. 

 
Rigorous Testing Procedure 

 

The I2C bus was stress-tested using a rigorous testing 

strategy in the study on a variety of Commercial-Off-The- 

Shelf (COTS) development platform[10]. 

 

 

Figure 3 I2C Start and Stop Conditions in testing 

http://www.ijsrem.com/
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Qualitative risk analysis 

 

A qualitative risk analysis that made use of observational data 

from experimental testing was at the heart of the study's 

analytical framework [10]. This method made it easier to 

evaluate the risks of I2C bus failure in a nuanced manner, 

allowing for the optimization of dependability and the 

reduction of vulnerabilities. The study's objective was to 

improve mission-critical data integrity and operational 

continuity in CubeSat applications by fusing qualitative 

insights with empirical findings[14]. 

 
V. PROPOSED WORK 

 
Since it allows numerous peripherals to connect with just two 

wires and has an easy-to-understand communication protocol, 

the I2C (Inter-Integrated Circuit) bus is indispensable in 

embedded systems and CubeSat missions. But data corruption 

can imperil important operations, therefore ensuring data 

integrity in harsh space conditions presents substantial 

challenges[6]. The inclusion of checksum techniques, in 

particular Cyclic Redundancy Check (CRC) algorithms, 

which act as digital signatures to confirm data integrity and 

lessen undetected errors, is explored in this study as a way to 

improve the reliability of the I2C bus[10]. 

 
Figure 4 run synthesis of checksum code 

 

The purpose of the study is to assess how these checksum 

techniques affect the I2C bus's efficiency and dependability in 

CubeSat applications [10]. It evaluates the efficacy of CRC in 

identifying and reducing data corruption, looks into whether 

these algorithms can be implemented given the limitations of 

CubeSat hardware and software, and suggests workable 

deployment plans. This research is supported by a 

comprehensive analysis of the literature on I2C vulnerabilities 

and mitigation strategies [6]. 

The study will compare error detection rates and system 

performance between checksum-protected and unprotected 

transmissions using specific hardware platforms and 

simulation settings. In the end [9], the research aims to 

improve the stability of I2C communication protocols, 

supporting continued developments in nanosatellite 

technology and enhancing the dependability and resilience of 

CubeSat missions. 

In sensitive applications such as CubeSat missions, where 

communication failures might have catastrophic 

consequences, ensuring data integrity on the I2C bus is 

essential[2][4]. 

 

 

 
 

. 

The inclusion of CRC (Cyclic Redundancy Check) 

checksums is examined in this section as a proactive way to 

improve data reliability [10][6]. Because CRC checksums 

add a checksum value to sent data, which the recipient 

recalculates to find any inconsistencies, they are useful for 

error detection [9]. 

 
 

Figure 5 run synthesis of checksum code 

 

To assess how effective CRC checksums are, tests that 

mimic severe climatic conditions and electromagnetic 

interference were carried out[6]. The findings demonstrated 

that checksum-protected transmissions were able to detect 

defects like bit flips and noise-induced problems with much 

greater accuracy than unprotected ones [9]. CRC 

checksums improved the durability of data transmissions by 

confirming data integrity at the receiving end. This is 

important for the success of the CubeSat mission since it 

reduces data loss and stops cascading failures [10]. 

 
One proactive way to enhance data integrity in embedded 

devices and nanosatellite missions is to incorporate CRC 

checksums within the I2C protocol [2][10]. This approach 

improves overall system resilience and mission success 

rates while reducing the hazards related to data corruption 

and transmission faults [6]. Subsequent studies may 

concentrate on enhancing checksum systems that are 

customized for certain mission requirements and space 

application environmental factors [9]. 

 
Many proactive mitigation solutions have been proposed in 

light of the vulnerabilities in the I2C (Inter-Integrated 

Circuit) bus used in CubeSat missions. One such strategy is 

the inclusion of checksum algorithms, such as CRC (Cyclic 

Redundancy Check) [2] [10]. 

 

By making it possible to identify and fix transmission 

defects, these techniques improve data integrity and 

dependability by guaranteeing that tampered packets are 

located and either retransmitted or rectified [6]. By doing 

this, transmission faults' negative effects on mission-critical 

activities are reduced [9]. 

 
Improving operational efficiency and minimizing mission 

downtime require real-time mistake detection and repair 

mechanisms [2]. These technologies ensure that proper data 

is available for onboard decision-making processes by 

continuously monitoring data integrity and enabling 

CubeSat systems to take prompt corrective action upon 

identifying mistakes [4]. Checksum methods are scalable, 

which enables them to be adjusted to different CubeSat 

platforms and operational settings. 

http://www.ijsrem.com/
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This allows the algorithms to retain data integrity in the face 

of difficult circumstances, such as radiation and temperature 

swings [9]. 

 
Incorporating checksum techniques has greatly increased the 

I2C bus's dependability and effectiveness in CubeSat flights, 

which has increased mission success rates [10]. Subsequent 

investigations ought to concentrate on refining these 

algorithms for the resource- and power-constrained situations 

typical of CubeSats, in addition to investigating sophisticated 

error detection methods and adaptive tactics [9]. 

 

VI. METHODOLOGY 

Checksum Calculation: 

• Compute the checksum using one of the 

following methods: 

• Simple Sum: Sum all data bytes, then take 

modulo to fit within a specified size. 

• XOR Method: XOR all bits to generate a 

single checksum bit. 

• Cyclic Redundancy Check (CRC): Utilize 

polynomial division for error detection. 

 

 
Formula for Simple Sum: 

n 

Checksum= (∑Datai) mod 256 

i=1 

 

Data Transmission: 

• Transmit the data along with the computed 

checksum to the receiver (Slave) 

 
Data Reception: 

• The receiver collects the transmitted data and 

checksum. 

 

Checksum Recalculation: 

• The receiver recalculates the checksum using 

the same method as the sender. 

Checksum Comparison: 

• Compare the recalculated checksum with the 

received checksum: 

• If Match: Data is valid (No Error) → Proceed to 

End. 

• If No Match: Indicates data corruption (Error 

Detected) 

• → Proceed to Notify. 

End:  

• Complete the checksum verification process 

 
 

This methodical approach to checksum verification is essential 

for spotting mistakes in data transfer and guaranteeing the 

dependability of communication networks. Effective data 

corruption detection is made possible by the use of several 

checksum techniques, which is crucial for applications that 

demand high data integrity. 
 

 

 

FLOWCHART FOR CHECKSUM 

 
Checksum verification is a fundamental technique employed 

to ensure data integrity during transmission. The 

methodology consists of the following key steps: 

 
Data Preparation: 

• The sender (Master) prepares the data for 

transmission, formatted as fixed-size binary 

packets. 

VII. SIMULATION AND ANALYSIS 

 
Data integrity during transmission is the main focus of the 

simulation analysis of a checksum method written in 

Verilog using the Vivado Design Suite. The design makes 

use of a [Simple Sum/XOR/CRC] checksum method, which 

is contained in a Verilog module that accepts inputs in 

binary form and returns the appropriate checksum. 

 

The design's architecture is made easier to understand by 

the schematic representation, which emphasizes crucial 

elements like the checksum computation logic and input 

data registers [8]. To properly evaluate operation, a 

comprehensive testbench comprising many input data sets 

was constructed to replicate the checksum module. 

-Master 1 prepares 8- 

bit data (e.g., 

10110010). 

Calculation(Master) 

- Master 1 calculates a 

checksum for the data 

(e.g., 11001100). 

Transmission 

- Master 1 sends both 

the data and the 

calculated checksum to 

Slave 1 over the I2C 

bus. 

- Slave 1 receives the 

data and recalculates the 

checksum based on the 

received data. 

Checksum Comparison 

- Slave 1 compares the received 

checksum with the recalculated 

checksum. 

- If the two match, the 

transmission is considered valid 

(No Error). If they do not 

match, an Error is detected. 

http://www.ijsrem.com/
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Figure 6 simulation output 

 
As seen in the accompanying graphs, simulation results show 

a substantial link between input changes and the estimated 

checksum. The timing diagram shows the exact times of data 

processing and checksum calculation by capturing important 

signal changes. 

 
 

 

 

 
Figure 7 schematic diagram 

 
All things considered, the simulation verifies that the applied 

checksum effectively identifies flaws, and the performance 

metrics show that the FPGA is using its resources effectively. 

The checksum design is validated by this effective 

implementation, which also lays the foundation for future 

project improvements. 

 

According to the analysis, the installation of the checksum 

successfully tackles the problem of error detection during 

data transfer. The robustness of the algorithm was confirmed 

by testing a range of scenarios, including single- and multi- 

bit mistakes, throughout the simulation. 

The outcomes show that the checksum offers a trustworthy 

method for integrity verification by correctly identifying 

corrupted data. The simulation also demonstrated the 

design's temporal efficiency, with very little latency seen 

during checksum calculation. 

 
 

 

Figure 8 run implementation image 

The aforementioned results highlight the significance of 

resilient error detection strategies in digital communication 

networks, demonstrating that the Verilog implementation 

satisfies functional specifications while maintaining optimal 

performance limits [7]. The effective validation of this 

design opens up new avenues for investigation into more 

intricate error detection methods and practical applications 

[9]. 

 
Moreover, the simulation results show that there is little 

cost when integrating the provided checksum technique into 

larger communication systems [5]. Because of the Verilog 

design's flexibility, it is simple to explore various checksum 

techniques or upgrades, including adding more complex 

algorithms like CRC for better error detection capabilities 

[9]. The algorithm's capacity to retain data integrity under a 

variety of transmission situations is visually confirmed by 

the graphical results [8]. 

 

All things considered, this analysis not only shows how 

well the checksum implementation works, but also how 

flexible and scalable it can be in the future, which makes it 

an important tool for building more durable digital systems. 

 

 
 

 
Figure 9 schematic image 

http://www.ijsrem.com/
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Figure 10 schematic image(2) 

 
VIII. CONCLUSION AND DISCUSSION 

 
In summary, this study has discussed the essential 

dependability issues related to the I2C bus in nanosatellite 

missions, highlighting both its critical function and 

vulnerability to malfunctions that could jeopardize mission 

success. We have investigated the complex hardware and 

software requirements of the I2C bus through a thorough 

fault analysis [9], revealing important aspects that could lead 

to probable failures in CubeSat applications. 

 
The utilisation of experimental testing has shown to  be 

crucial in expanding our comprehension of I2C bus 

characteristics and failure modes. It has also yielded 

invaluable insights into operational issues and required 

modifications [7]. Checksum algorithms have been added to 

traditional fault analysis techniques as preventative steps to 

improve data reliability and integrity during I2C bus 

transactions [12]. 

 

This work has shown that the reliability of data transfer may 

be significantly improved by incorporating checksums into 

the communication protocol [13], which substantially reduces 

the risks related to data corruption and transmission mistakes 

[15]. 

 

Through qualitative risk analysis, the suggested mitigation 

techniques have been thoroughly assessed [7], highlighting 

their beneficial effects on both the overall mission success 

and the health of the CubeSat. In order to protect against I2C 

bus vulnerabilities, our research emphasizes the significance 

of robust design considerations and real-time fault 

management [12]. 

CubeSat missions can achieve long-term operational 

reliability and resilience in demanding space settings by 

implementing proactive measures and utilizing cutting-edge 

technologies [11]. 

 

Going forward, research should concentrate on developing 

adaptive ways to prevent changing I2C bus vulnerabilities 

and optimizing checksum algorithms for CubeSat platforms 

with limited resources. In order to increase the overall 

resilience of nanosatellite missions and guarantee their 

continuous success in space exploration initiatives, it will 

be imperative that fault-tolerant design and real-time 

monitoring systems continue to progress. 
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