
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39503 | Page 1

Ensuring I2C Bus Reliability in Nanosatellite Operations Fault Analysis

and Mitigation Strategies

MS.G.AJITHA

Department of Electronics and Communication

Engineering,

Institute of Aeronautical Engineering, Hyderabad

g.ajitha@iare.ac.in

S. JAYANTH

Department of Electronics and Communication

Engineering,

Institute of Aeronautical Engineering, Hyderabad

21951A0465@iare.ac.in

G. HARSHAVARDHAN

Department of Electronics and Communication

Engineering,

Institute of Aeronautical Engineering, Hyderabad

21951A0460@iare.ac.in

A.GOWTHAM RAO

Department of Electronics and Communication

Engineering,

Institute of Aeronautical Engineering, Hyderabad

21951A0456@iare.ac.in

Abstract— Despite being widely used in nanosatellite

operations, the I2C bus has dependability issues that can

result in catastrophic failures. In the framework of

CubeSat missions, this study performs an extensive fault

analysis of the I2C bus, looking into necessary hardware

and software, important failure reasons, and possible

mitigation techniques. To gain a comprehensive

understanding of I2C bus characteristics, failure modes,

and operational requirements, experimental testing is

used. This work presents checksum strategies to improve

data integrity and reliability during I2C bus transactions

in addition to conventional fault analysis techniques.

Checksums are incorporated into the communication

protocol to greatly increase data transfer dependability and

lower the chance of mission-critical failures. Through

qualitative risk analysis, the suggested mitigation strategies

are assessed, emphasizing their influence on the overall

mission success and CubeSat health. This study

emphasizes how important it is to take into account both

runtime fault management and strong design

considerations while reducing I2C bus vulnerabilities to

maintain operational reliability for nanosatellite missions.

Keywords: Nanosatellites, CubeSats, I2C bus, reliability,

fault mitigation, checksums.

I. INTRODUCTION

Due to its ability to provide affordable access to space for a

range of commercial and scientific uses, nanosatellites, also

known as CubeSats, have completely changed space

exploration. The performance, success rates, and trends of the

first 100 CubeSat missions are statistically analyzed in this

article[1]. The Inter Integrated Circuit (I2C) bus is a widely

used protocol because of its ease of use, low power

consumption, and adaptability in connecting various

electronics in the limited space of a CubeSat [2]. Examination

of CubeSat missions statistically [3].

However, the success of nanosatellite missions depends on the

dependability of communication protocols like the I2C

bus[3][4].

Because CubeSats are operated under strict size, weight,

and power limits, as opposed to bigger spacecraft,

communication failures can have a greater impact on

mission outcomes. With an emphasis on performance

concerns and design constraints, this study examines the

implementation and dependability of electrical bus

interfaces used in CubeSats[4].

With a particular focus on the I2C bus, this research

investigates the complexities of protocol dependability in

nanosatellite missions[5]. We explore the difficulties

brought about by protocol malfunctions, look at the

hardware and software prerequisites for dependable

performance, and assess the main causes of protocol

vulnerabilities [5] [6].

II. THE MAIN TEXT

Developed by Philips Semiconductor (now NXP

Semiconductors) in the early 1980s, the Inter-Integrated

Circuit (I2C) protocol, pronounced as "I-squared-C," is a

popular synchronous serial communication protocol[5]. It

was intended to reduce the amount of wires needed for

communication between integrated circuits (ICs) on a

circuit board. Fundamentally, a serial data line (SDA) and a

serial clock line (SCL) are the only two signal wires needed

for two-way communication between several master and

slave devices under the I2C protocol[6]. Because of its

simplicity, it is perfect for uses where power and space are

limited, including in embedded systems and nanosatellites.

In an I2C system[7], a master device or many master

devices establish communication and manage the bus,

while slave devices carry out the master's instructions.

Multiple devices can share a bus thanks to this architecture,

which improves scalability and flexibility.

A clock signal produced by the master device synchronizes

data transfer on the I2C bus. Eight-bit bytes are used to

send data, with the most significant bit (MSB) being sent

first.

http://www.ijsrem.com/
mailto:g.ajitha@iare.ac.in
mailto:21951A0465@iare.ac.in
mailto:21951A0460@iare.ac.in
mailto:21951A0456@iare.ac.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39503 | Page 2

Over the same bus, devices can send and receive data as

master and slave devices. The master device can choose which

slaves to communicate with by assigning each slave on the

I2C bus a distinct 7-bit or 10-bit address. Up to 128 devices

can be supported by the 7-bit addressing system, while up to

1024 devices can be supported by the 10-bit addressing

scheme[6][7]. numerous master arrangements, in which

numerous master devices can start a bus conversation, are

supported by advanced I2C systems. Data corruption and bus

contention are avoided by arbitration logic, which makes sure

that only one master device is able to manage the bus at once.

Clock stretching is the ability of slaves to slow down the

master's clock in order to process data or carry out other

operations[8]. Slower devices can communicate efficiently

without flooding the bus thanks to this approach. A start

condition (S) initiates communication on the I2C bus, while a

stop condition (P) ends it. A data transfer sequence is

indicated to begin and finish by these conditions,

respectively[6].

Figure 1. I2c bus Architecture

I2C is a low power, multi-device compatible protocol that is

widely used by nanosatellites, often known as CubeSats, to

connect onboard components such as sensors, actuators,

memory modules, and communication subsystems[8].

Because of this, I2C is perfect for the small size and limited

resources of CubeSats. Wide temperature changes that can

impair device performance and reliability, as well as single-

event upsets (SEUs) brought on by cosmic radiation, pose

serious problems for I2C in the space environment[9].

CubeSat missions need to have strong fault detection, error

management, and mitigation procedures in place to deal with

these problems and avoid mission-critical failures in order to

sustain reliable communication[8].

The onboard computer (master) can connect with peripheral

devices (slaves) thanks to the master-slave design of the I2C

protocol[5]. However, as missions get more complicated,

advances in fault analysis and enhancements to the I2C

protocol will become increasingly important[7]. Future

CubeSat missions depend on these improvements to be

dependable and successful, especially as their reach and

operating difficulties increase[9] in the hostile environment of

space.

CubeSats employ the I2C bus to allow real-time

communication between peripherals like cameras, gyroscopes,

and sensors and the master device, which is often the onboard

computer[10]. Eight-bit bytes of data are transferred,

synchronized with the master clock signal, and acknowledged

by the recipient device.

The I2C bus gives each slave device a distinct 7-bit or 10-

bit address, enabling the master to speak with particular

devices on an individual basis[11]. With the 10-bit

approach, this capacity is increased to 1024, but the 7-bit

addressing system can support up to 128 devices. Multi-

master arrangements, in which several masters can each

manage a bus, are also possible with advanced I2C setups.

Conflicts can be resolved by arbitration logic.

When a device requires more time to finish internal

processes, it can be helpful for slaves to execute clock

stretching in order to slow down the master's clock[8]. A

start condition signals the start of a data transmission

sequence on the bus, while a stop condition signals its

conclusion[10].

A straightforward, inexpensive data transfer protocol called

the Inter-Integrated Circuit (I2C) bus was created to

facilitate short-range communication between

microcontrollers and peripheral devices. Its ease of use and

inexpensive cost of production contribute to its appeal. I2C

allows for both single- and multi-master setups, with two

lines—the Serial Clock Line (SCL) for clock signals and

the Serial Data Line (SDA) for bidirectional data flow—

being used to transfer data between devices. Pullup

resistors, which are linked to both lines, aid in determining

the bus speed, which is normally 400 kbps for fast mode

and 100 kbps for standard mode[9]. Changes in the SDA

line while the SCL is still high indicate start and stop

conditions, which are used by the master to govern data

transmission[10].

III. LITERATURE SURVEY

The literature on I2C bus dependability and CubeSat

missions provides important insights into the difficulties

and developments in tiny satellite technology. A thorough

examination of mission results, success rates, and failure

types is offered by Swartwout's statistical analysis of the

first 100 CubeSats, which also highlights the early

difficulties and successes of the CubeSat community. In

order to advance tiny satellite technology, this foundational

study highlights how important it is for future CubeSat

developers and mission planners to learn from the lessons

learned from earlier missions [11].

Bouwmeester et al. examine several designs from different

missions and evaluate how well they function in space

settings with an emphasis on the dependability of electrical

bus interfaces in CubeSats. Their survey highlights typical

obstacles that CubeSat engineers encounter while putting in

place dependable bus interfaces and offers insightful

suggestions for enhancing robustness. The significance of

interface design as a vital component in guaranteeing

mission success and endurance is highlighted by this

work[10][11].

Carvalho and Kastensmidt suggest methods for improving

the protocol's resilience to soft failures in order to solve I2C

bus vulnerabilities. Their study looks into ways to identify

and reduce environmental factor-related errors, which can

have a big impact on the dependability of communication in

important applications.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39503 | Page 3

These methods' efficacy has been validated experimentally,

providing information on how improved I2C protocols might

be used in challenging settings[11].

The literature also highlights creative approaches for

communication and data management inside CubeSats. Van

Der Linden and colleagues present a new data bus architecture

that is especially made for CubeSats, with a focus on

durability and efficiency in its design. Their validation studies

demonstrate how the architecture may be adjusted to meet the

particular difficulties of the space environment, indicating

possible uses for further advancements in CubeSat

communication systems[10][13].

Furthermore, Valdez and Becker give a thorough rundown of

the I2C protocol, covering important operational facets like

time, addressing, and troubleshooting methods[13].

Askari et al. go into additional detail about the significance of

software development and validation for CubeSat missions,

emphasizing the integration of subsystems such as the I2C bus

for dependable data exchange. Their work sheds insight on the

difficulties encountered in software design and the need for

extensive in-orbit validation to guarantee functionality.

Ferrando also covers practical troubleshooting techniques for

I2C issues, with a thorough manual for identifying typical

faults. Additionally, Kepko et al. emphasize the importance of

operational experience in refining designs and operational

procedures by sharing reliability lessons from the Dellingr

CubeSat mission[13]. Lastly, in order to strengthen the

resilience of I2C-based systems, Batista et al. investigate the

advantages of employing failure emulation techniques during

subsystem integration tests[14].

Since it allows numerous peripherals to connect with just two

wires and has an easy-to-understand communication protocol,

the I2C (Inter-Integrated Circuit) bus is indispensable in

embedded systems and CubeSat missions. But data corruption

can imperil important operations, therefore ensuring data

integrity in harsh space conditions presents substantial

challenges[14][15]. The inclusion of checksum techniques, in

particular Cyclic Redundancy Check (CRC) algorithms,

which act as digital signatures to confirm data integrity and

lessen undetected errors, is explored in this study as a way to

improve the reliability of the I2C bus[10].

IV. EXISTING SYSTEM

Given its widespread use and susceptibility in CubeSat

systems, where malfunctions could endanger mission success,

research on I2C bus failure detection and mitigation is

essential[12]. To increase CubeSat robustness, a variety of

techniques, including fault injection tools, mimic mistakes

like erroneous values and signal changes during testing[4].

Devices for external monitoring examine data flows, identify

defects such as problems with packet structure and

checksums, and start corrective measures such I2C master

resets[13]. Alternative approaches that improve reliability but

raise system complexity and cost include twin I2C cores and

protocols such as SMB us.

In order to resolve address problems, researchers suggested

using I2C buffers and multiplexers to dynamically manage

incompatible slave devices and guarantee smooth

communication. In order to improve I2C bus reliability,

mission-critical data integrity, and operational continuity in

CubeSat missions, these initiatives highlight the necessity

for an extensive architecture for fault detection and

mitigation[10].

Figure 2 I2C protocol

Innovative data collection approach

This research used a two-pronged strategy for gathering

data, combining extensive surveys of the literature with

experimental testing. In order to generate a preliminary list

of potential failure modes, the team first compiled reports

and surveys on previous CubeSat failure analyses [2][9]. To

ensure a solid empirical foundation, experimental sets were

then carefully created to replicate these proposed

modes[14][10].

Advanced Experimental Setup

A combination of state-of-the-art hardware, software, and

monitoring tools were used in the experimental setup to

carry out various testing scenarios. The Arduino Uno,

Arduino Mega, and TI Tiva C Launchpad were important

hardware elements that enabled many I2C bus

implementations[10]. Real-time data transfers were

captured and analyzed with the help of monitoring

instruments including custom I2C packet sniffers installed

on Arduino MEGA boards and serial output monitors[14].

The capabilities of the packet sniffer are demonstrated in

Figure 3, which also shows device addresses, read/write

operations, and exchanged byte streams[11].

Rigorous Testing Procedure

The I2C bus was stress-tested using a rigorous testing

strategy in the study on a variety of Commercial-Off-The-

Shelf (COTS) development platform[10].

Figure 3 I2C Start and Stop Conditions in testing

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39503 | Page 4

Qualitative risk analysis

A qualitative risk analysis that made use of observational data

from experimental testing was at the heart of the study's

analytical framework [10]. This method made it easier to

evaluate the risks of I2C bus failure in a nuanced manner,

allowing for the optimization of dependability and the

reduction of vulnerabilities. The study's objective was to

improve mission-critical data integrity and operational

continuity in CubeSat applications by fusing qualitative

insights with empirical findings[14].

V. PROPOSED WORK

Since it allows numerous peripherals to connect with just two

wires and has an easy-to-understand communication protocol,

the I2C (Inter-Integrated Circuit) bus is indispensable in

embedded systems and CubeSat missions. But data corruption

can imperil important operations, therefore ensuring data

integrity in harsh space conditions presents substantial

challenges[6]. The inclusion of checksum techniques, in

particular Cyclic Redundancy Check (CRC) algorithms,

which act as digital signatures to confirm data integrity and

lessen undetected errors, is explored in this study as a way to

improve the reliability of the I2C bus[10].

Figure 4 run synthesis of checksum code

The purpose of the study is to assess how these checksum

techniques affect the I2C bus's efficiency and dependability in

CubeSat applications [10]. It evaluates the efficacy of CRC in

identifying and reducing data corruption, looks into whether

these algorithms can be implemented given the limitations of

CubeSat hardware and software, and suggests workable

deployment plans. This research is supported by a

comprehensive analysis of the literature on I2C vulnerabilities

and mitigation strategies [6].

The study will compare error detection rates and system

performance between checksum-protected and unprotected

transmissions using specific hardware platforms and

simulation settings. In the end [9], the research aims to

improve the stability of I2C communication protocols,

supporting continued developments in nanosatellite

technology and enhancing the dependability and resilience of

CubeSat missions.

In sensitive applications such as CubeSat missions, where

communication failures might have catastrophic

consequences, ensuring data integrity on the I2C bus is

essential[2][4].

.

The inclusion of CRC (Cyclic Redundancy Check)

checksums is examined in this section as a proactive way to

improve data reliability [10][6]. Because CRC checksums

add a checksum value to sent data, which the recipient

recalculates to find any inconsistencies, they are useful for

error detection [9].

Figure 5 run synthesis of checksum code

To assess how effective CRC checksums are, tests that

mimic severe climatic conditions and electromagnetic

interference were carried out[6]. The findings demonstrated

that checksum-protected transmissions were able to detect

defects like bit flips and noise-induced problems with much

greater accuracy than unprotected ones [9]. CRC

checksums improved the durability of data transmissions by

confirming data integrity at the receiving end. This is

important for the success of the CubeSat mission since it

reduces data loss and stops cascading failures [10].

One proactive way to enhance data integrity in embedded

devices and nanosatellite missions is to incorporate CRC

checksums within the I2C protocol [2][10]. This approach

improves overall system resilience and mission success

rates while reducing the hazards related to data corruption

and transmission faults [6]. Subsequent studies may

concentrate on enhancing checksum systems that are

customized for certain mission requirements and space

application environmental factors [9].

Many proactive mitigation solutions have been proposed in

light of the vulnerabilities in the I2C (Inter-Integrated

Circuit) bus used in CubeSat missions. One such strategy is

the inclusion of checksum algorithms, such as CRC (Cyclic

Redundancy Check) [2] [10].

By making it possible to identify and fix transmission

defects, these techniques improve data integrity and

dependability by guaranteeing that tampered packets are

located and either retransmitted or rectified [6]. By doing

this, transmission faults' negative effects on mission-critical

activities are reduced [9].

Improving operational efficiency and minimizing mission

downtime require real-time mistake detection and repair

mechanisms [2]. These technologies ensure that proper data

is available for onboard decision-making processes by

continuously monitoring data integrity and enabling

CubeSat systems to take prompt corrective action upon

identifying mistakes [4]. Checksum methods are scalable,

which enables them to be adjusted to different CubeSat

platforms and operational settings.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39503 | Page 5

This allows the algorithms to retain data integrity in the face

of difficult circumstances, such as radiation and temperature

swings [9].

Incorporating checksum techniques has greatly increased the

I2C bus's dependability and effectiveness in CubeSat flights,

which has increased mission success rates [10]. Subsequent

investigations ought to concentrate on refining these

algorithms for the resource- and power-constrained situations

typical of CubeSats, in addition to investigating sophisticated

error detection methods and adaptive tactics [9].

VI. METHODOLOGY

Checksum Calculation:

• Compute the checksum using one of the

following methods:

• Simple Sum: Sum all data bytes, then take

modulo to fit within a specified size.

• XOR Method: XOR all bits to generate a

single checksum bit.

• Cyclic Redundancy Check (CRC): Utilize

polynomial division for error detection.

Formula for Simple Sum:

n

Checksum= (∑Datai) mod 256

i=1

Data Transmission:

• Transmit the data along with the computed

checksum to the receiver (Slave)

Data Reception:

• The receiver collects the transmitted data and

checksum.

Checksum Recalculation:

• The receiver recalculates the checksum using

the same method as the sender.

Checksum Comparison:

• Compare the recalculated checksum with the

received checksum:

• If Match: Data is valid (No Error) → Proceed to

End.

• If No Match: Indicates data corruption (Error

Detected)

• → Proceed to Notify.

End:

• Complete the checksum verification process

This methodical approach to checksum verification is essential

for spotting mistakes in data transfer and guaranteeing the

dependability of communication networks. Effective data

corruption detection is made possible by the use of several

checksum techniques, which is crucial for applications that

demand high data integrity.

FLOWCHART FOR CHECKSUM

Checksum verification is a fundamental technique employed

to ensure data integrity during transmission. The

methodology consists of the following key steps:

Data Preparation:

• The sender (Master) prepares the data for

transmission, formatted as fixed-size binary

packets.

VII. SIMULATION AND ANALYSIS

Data integrity during transmission is the main focus of the

simulation analysis of a checksum method written in

Verilog using the Vivado Design Suite. The design makes

use of a [Simple Sum/XOR/CRC] checksum method, which

is contained in a Verilog module that accepts inputs in

binary form and returns the appropriate checksum.

The design's architecture is made easier to understand by

the schematic representation, which emphasizes crucial

elements like the checksum computation logic and input

data registers [8]. To properly evaluate operation, a

comprehensive testbench comprising many input data sets

was constructed to replicate the checksum module.

-Master 1 prepares 8-

bit data (e.g.,

10110010).

Calculation(Master)

- Master 1 calculates a

checksum for the data

(e.g., 11001100).

Transmission

- Master 1 sends both

the data and the

calculated checksum to

Slave 1 over the I2C

bus.

- Slave 1 receives the

data and recalculates the

checksum based on the

received data.

Checksum Comparison

- Slave 1 compares the received

checksum with the recalculated

checksum.

- If the two match, the

transmission is considered valid

(No Error). If they do not

match, an Error is detected.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39503 | Page 6

Figure 6 simulation output

As seen in the accompanying graphs, simulation results show

a substantial link between input changes and the estimated

checksum. The timing diagram shows the exact times of data

processing and checksum calculation by capturing important

signal changes.

Figure 7 schematic diagram

All things considered, the simulation verifies that the applied

checksum effectively identifies flaws, and the performance

metrics show that the FPGA is using its resources effectively.

The checksum design is validated by this effective

implementation, which also lays the foundation for future

project improvements.

According to the analysis, the installation of the checksum

successfully tackles the problem of error detection during

data transfer. The robustness of the algorithm was confirmed

by testing a range of scenarios, including single- and multi-

bit mistakes, throughout the simulation.

The outcomes show that the checksum offers a trustworthy

method for integrity verification by correctly identifying

corrupted data. The simulation also demonstrated the

design's temporal efficiency, with very little latency seen

during checksum calculation.

Figure 8 run implementation image

The aforementioned results highlight the significance of

resilient error detection strategies in digital communication

networks, demonstrating that the Verilog implementation

satisfies functional specifications while maintaining optimal

performance limits [7]. The effective validation of this

design opens up new avenues for investigation into more

intricate error detection methods and practical applications

[9].

Moreover, the simulation results show that there is little

cost when integrating the provided checksum technique into

larger communication systems [5]. Because of the Verilog

design's flexibility, it is simple to explore various checksum

techniques or upgrades, including adding more complex

algorithms like CRC for better error detection capabilities

[9]. The algorithm's capacity to retain data integrity under a

variety of transmission situations is visually confirmed by

the graphical results [8].

All things considered, this analysis not only shows how

well the checksum implementation works, but also how

flexible and scalable it can be in the future, which makes it

an important tool for building more durable digital systems.

Figure 9 schematic image

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39503 | Page 7

Figure 10 schematic image(2)

VIII. CONCLUSION AND DISCUSSION

In summary, this study has discussed the essential

dependability issues related to the I2C bus in nanosatellite

missions, highlighting both its critical function and

vulnerability to malfunctions that could jeopardize mission

success. We have investigated the complex hardware and

software requirements of the I2C bus through a thorough

fault analysis [9], revealing important aspects that could lead

to probable failures in CubeSat applications.

The utilisation of experimental testing has shown to be

crucial in expanding our comprehension of I2C bus

characteristics and failure modes. It has also yielded

invaluable insights into operational issues and required

modifications [7]. Checksum algorithms have been added to

traditional fault analysis techniques as preventative steps to

improve data reliability and integrity during I2C bus

transactions [12].

This work has shown that the reliability of data transfer may

be significantly improved by incorporating checksums into

the communication protocol [13], which substantially reduces

the risks related to data corruption and transmission mistakes

[15].

Through qualitative risk analysis, the suggested mitigation

techniques have been thoroughly assessed [7], highlighting

their beneficial effects on both the overall mission success

and the health of the CubeSat. In order to protect against I2C

bus vulnerabilities, our research emphasizes the significance

of robust design considerations and real-time fault

management [12].

CubeSat missions can achieve long-term operational

reliability and resilience in demanding space settings by

implementing proactive measures and utilizing cutting-edge

technologies [11].

Going forward, research should concentrate on developing

adaptive ways to prevent changing I2C bus vulnerabilities

and optimizing checksum algorithms for CubeSat platforms

with limited resources. In order to increase the overall

resilience of nanosatellite missions and guarantee their

continuous success in space exploration initiatives, it will

be imperative that fault-tolerant design and real-time

monitoring systems continue to progress.

IX. REFERENCES
[1]M. Swartwout, ‘‘The first one hundred CubeSats: A statistical

look,’’ J. Small Satell., vol. 2, no. 2, pp. 213–233, 2013.

[2]J. Bouwmeester, M. Langer, and E. Gill, ‘‘Survey on the

implementation and reliability of CubeSat electrical bus

interfaces,’’ CEAS Space J., vol. 9, no. 2, pp. 163–173, Jun. 2017.

[3]V. Carvalho and F. L. Kastensmidt, ‘‘Enhancing I2C

robustness to soft errors,’’ in Proc. IEEE 8th Latin Amer. Symp.

Circuits Syst. (LASCAS), 0 Feb. 2017, pp. 1–4.

[4]S. Van Der Linden, J. Bouwmeester, and A. Povolac, ‘‘Design

and val idation of an innovative data bus architecture for

CubeSats,’’ in Proc. Reinventing Space Conf., 2016, pp. 1–13.

[5]J. Valdez and J. Becker, ‘‘Understanding the I2C bus,’’ Texas

Instruments, Dallas, TX, USA, Tech. Rep. SLVA704, 2015.

[Online]. Available:

https://www.ti.com/lit/an/slva704/slva704.pdf

[6]R. Arora, ‘‘I2C bus pullup resistor calculation,’’ Texas
Instruments, Dallas, TX, USA, Tech. Rep. SLVA689, 2015

[7]H. Askari, E. W. H. Eugene, A. N. Nikicio, G. C. Hiang,

L. Sha, and L. H. Choo, ‘‘Software development for Galassia
CubeSat—Design, implementation and in-orbit validation,’’ in

Proc. Joint Conf. 31st Int. Symp. Space Technol. Sci. (ISTS),
2017, pp. 1–8.

[8]M. Ferrando, ‘‘Troubleshooting I2C bus protocol,’’ Texas

Instruments, Dallas, TX, USA, Tech. Rep. SCAA106, 2009.

[9]L. Kepko, L. S. Soto, C. Clagett, B. Azimi, D. Chai,

A. Cudmore, J. Marshall, and J. Lucas, ‘‘Dellingr: Reliability
lessons learned from on orbit,’’ in Proc. Conf. Small Satell., 2018,
pp. 1–14.

[10]C. L. G. Batista, E. Martins, and M. D. F. Mattiello-

Francisco, ‘‘On the use of a failure emulator mechanism at
nanosatellite subsystems integration tests,’’ in Proc. IEEE 19th
Latin-Amer. Test Symp. (LATS), Mar. 2018,

pp. 1–6.

[11]F. Ryan, D. Leonard, H. R. L. Robert, and C. Savio, ‘‘I2C bus
protocol controller with fault tolerance,’’ U.S. Patent 6 728 908,
Apr. 27, 2004.

[12]B. Patrick, H. Daniel, L. Vinh, W. Kirby, and W. Lee,

‘‘Systems and methods for correcting errors in I2C bus

communications,’’ U.S. Patent 02 400 19A1, Oct. 11,2007.

[13]System Management Bus (SMBus) Specification Version 2.0,

SBS Imple menters Forum, Aug. 2000.

http://www.ijsrem.com/
http://www.ti.com/lit/an/slva704/slva704.pdf

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39503 | Page 8

[14]J. Bouwmeester and J. Guo, ‘‘Survey of worldwide pico- and

nanosatellite missions, distributions and subsystem technology,’’ Acta

Astron., vol. 67, nos. 7–8,
pp. 854–862, 2010.

[15]M. Noca, F. Jordan, N. Steiner, T. Choueiri, F. George, G.

Roethlisberger, N. Scheidegger, H. Peter- Contesse, M. Borgeaud,

R. Krpoun, and H. Shea, ‘‘Lessons learned from the first Swiss pico-

satellite: SwissCube,’’ in Proc. 23rd Annu. AIAA/USU Conf. Small

Satell., 2009, pp. 1–20.

http://www.ijsrem.com/

