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  This paper presents a network for indoor and outdoor air quality monitoring. 

Each node is installed in a different room and includes tin dioxide sensor 

arrays connected to an acquisition and control system. The nodes are 

hardwired or wirelessly connected to a central monitoring unit. To increase 

the accuracy of gas concentration measurement and prevent false alarms, 

two gas sensor influence quantities, namely temperature and humidity, are 

also measured. Advanced processing based on multiple input single-output 

neural networks are implemented at the   network sensing nodes to get 

temperature and humidity    compensated gas concentration values. The 

anomalous operation of the network sensing nodes and power consumption 

are also discussed. Index Terms—Air quality (AirQ), embedded Web 

server, neural network, wireless networks.  

  

 
  

  

 

  

1    INTRODUCTION  

Air is critical for our survival as it contains the oxygen that 

we need for breathing. Although air is composed of greater 

than 99.9% of nitrogen, it can be argon, oxygen, argon, inert 

gases as well as water vapor, and it is good and essential for 

every form of life. Human activities contribute harmful 

substances in the air which can cause danger to plants, 

animals and humankind as well.   

The amount of pollution inhaled in the air can be measured 

in terms of the carbon monoxide (Co), sulphur dioxide, 

nitrogen dioxide and ozone levels in the air. The European 

Environment Agency  has set minimum limit levels for these 

harmful substances which are 10, 350, 40, and 120 

microgrammes per meter cube respectively.   

Also in the indoor environment pollution has to be solved 

for example in our homes, workplaces, in offices and 

educational centers with the children. Also, some of these 

pollutants can be caused indoors when smoking and cooking 

for instance is done. In most of the developed countries, 

around 80 - 90 percent of time of population is spent indoors  

 

 

 

 

 

 

thus increasing exposure to domestic air particles. The  

certain determination of temperature, carbon monoxide 

(CO) levels and humidity are standard approaches of 

assessing indoor space. Even in the aggregate, these data sets 

do not enable one to make a good indoor air characterization.  

The emergence of WLAN technology together with the 

introduction of cheap Linksys WAP11 active points units 

manufactured Panostal Dry, Wireless Local Area 

PANs(networks) revolutionized the wireless industry For 

instance 11 g wireless solutions such as D link and Cardbus 

as well bridges like DW 810 has the potential of deploying 

indoor and outdoor air monitoring networks which are cost 

effective and have great suitabilitY and modularity.  

Tin oxide –e.g. Tin oxide cheap gas senors such as Fargoro, 

and Nemoto 3 Regis are gas limited. To ease some of their 

cross sensitivities limitations and temperature and humidity 

dependence, prima data preprocessing is needed.  

The objective of this paper is to describe a tin oxide coupled 

multilayer Wi-Fi indoor-outdoor air quality tele-monitoring 

system that enables to accurately measure air quality and 

detect air pollution events and abnormal operation.  
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1   DIRECT AND INVERSE 

MODELING OF THE 

SENSORS’CHARACTERISTICS  

The nonlinearity of the sensors requires the usage of direct 

and inverse modeling in the sensor calibration and on-line 

measurement phase [7]. For the specific case of tin oxide gas 

sensors TGS800, TGS822, TGS842, and TGS203, the 

response of the sensors is significantly affected by 

parameters like temperature, humidity, and cross influence 

of the other gases. For practical and economical reasons, the 

number of calibration points is very low, and thus, a neural 

network (multilayer perceptron architecture), which is a 

global approximator of multivariable characteristics [8], was 

used in this paper. Polynomial modeling is another solution 

for multivariable characteristics modeling.  

Representative of this type of solution is the polynomial 

model that is a part of the IEEE1451.2 standard for smart 

sensors particularly related to smart sensors correction 

engine implementation [9]. The method represents an 

interesting solution.  

However, it requires a large set of data (i.e., a higher number 

of calibration points compared with a neuronal network 

model) for polynomial model coefficients calculation [10], 

i.e. where Xn are the input variables to the sensor 

characteristic block, Hn are the offsets to the input variables, 

and the D(k) represents the degree of the input Xk, i.e., the 

highest power to which [Xk −Hk] is raised in any term of the 

multinomial.The  Ci,j,.,p represent the calculated correction 

coefficients for each term values that are obtained, 

considering the segmentation of the input variable range. 

The accuracy of the method is dependent on the polynomial 

degree, the number of segments, and the number of values 

included in defined subranges that make the multivariable 

polynomial inverse modeling for external factors 

compensation computationally expensive. Considering only 

one segment for a given gas concentration, where the voltage 

acquired from gas sensor channel represents the primary 

variable (X1 = VGi), and the number of impact factors on 

gas concentration measuring limited to temperatures and 

humidity expressed through the voltage values obtainedfrom 

temperature and relative humidity sensor channels (X2 = 

VT,X3 = VRH), and compensated values of gas 

concentrations. From here, it follows that in order to 

diminish complexity the first-degree polynomial 

approximation is considered. Higher accuracy can that with 

a higher degree multivariable polynomial model, which of 

course involves an increase in the computational load. 

Comparing the "classical" polynomial modeling with neural 

network modeling indicates that the number of calibration 

points used for the computation of the coefficients of the 

polynomial for the given accuracy of inverse characteristic 

modeling is usually larger than the number of calibration 

points utilized for design the neuronal network sensor 

models [11]. Moving the complex processing from the 

embedded server to the Web browser side permits us to 

overcome some of the drawbacks of neuralnetwork 

processing such as the high number of multiplication and the 

use of nonlinear transfer functions (e.g., tanh()).  

2  SENSORS’NETWORK  

Gas sensor networks present a promising way of extracting 

information from the monitored regions. The following two 

types of WLAN architectures were considered:  

1) an ad hoc architecture and 2) an AP infrastructure 

network, which guarantees additional services (e.g., data 

publishing on the wired Internet), keeping in mind that the 

AP operates like a bridge between the wired and wireless 

network [12]. The Ad hoc architecture seems to be a good 

solution, especially for air quality monitoring in outdoor 

conditions because of reduced numbers of elements and thus 

lower power consumption. The ad hoc smart sensor network 

(Fig. 1, case 1) comprises the following three elements: 1) 

PC with an IEEE802.11g-compatible Wi-Fi cardbus adapter 

(DWL-G650+) as the primary control and processing unit; 

2) a set of sensing nodes (SNj) with air quality sensors 

(GS1,GS2,.,GSi); and 3) a data acquisition, primary 

processing, and transmission control protocol/Internet 

protocol (TCP/IP) communication unit (APC) based on 

IPµ8930 general-purpose network controller whose 

Ethernet port is connected to a DWL-G810 wireless bridge. 

Referring to the AP infrastructure (case 2), the wireless 

network node components are the same as that of case 1, 

with the only difference is that it contains an AP 

(LinksysWAP11), which is a component that expands the 

wireless subnetwork range capabilities and allows wireless 

network traffic to be transmitted over the wired network that 

may incorporate extrawired sensing nodes (SNj) deployed in 

various rooms (Rwjrooms;  

Fig. 2).  

A few key benefits of the adoption of sensor networks are 

cost-effectiveness, scalability, and community engagement 

via an open data platform. In this regard, cheap sensors could 

cover diverse terrains to provide quality data on air for 

policymakers and even the public. However, challenges 

abound. Low-cost sensors  frequently have to be calibrated 

and validated, which may compromise accuracy.     

  

  

Fig. 1. Air quality smart sensor network ad hoc architecture 

associated with different rooms (R1, R2, Rj), where SNj are 

sensing nodes, GSji are gas sensors, TSj are the temperature 

sensors, RHSj is the relative humidity sensor and WBj are 

wireless bridges.  

http://www.ijsrem.com/
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Figure 2. Architecture of an infrastructure WLAN air quality 

smart sensor network That contains the sensor deployed in 

the different rooms. R1, Rj: Rooms With wireless sensing 

nodes. Rw1 and Rw2: Rooms with wired sensing nodes.SNj: 

Sensor’s nodes. GSji: Gas sensors. TSj: Thermometers. 

RHSj: Relative humidity sensors. WBj: Wireless bridges. 

AP: Access point.  

range capabilities and allows to transfer wireless network 

traffic over the wired network that can be equipped by 

additional wired sensing nodes SNj distributed in different 

rooms Rwjrooms; Fig. 2  

  

  

  

A. Sensing Nodes  

 The sensing nodes are designed and implemented for 

performing air quality (AirQ) monitoring using low-cost gas 

sensors and, at the same time, getting the extra information 

about the temperature T and relative humidity RH. In this 

way, the concentration measurements of these gases can be 

performed more precisely by increasing the accuracy while 

using error compensation caused by temperature and 

humidity influence.  

Used gas sensors are sintered using SnO2 semiconductor.  

heated sensors provided by Figaro [13] that ensure the 

detection of the pollution event (TGS800general air 

contaminant sensor-AC), methane (TGS842-M), alcohol 

and organic solvent (TGS822SV), and CO (TGS203-CO). 

Data on temperature and relative humidity are obtained with 

Smartec SMT160-30 [14] and Humirel HM1500 [15] 

temperature and relative humidity transducers, respectively. 

The experimental direct characteristics of the sensor are 

explained by voltages obtained at the gas sensor 

conditioning circuit.  

  

  

Fig. 4. Gas sensor conditioning circuit. Vc: Circuit  
voltage. VH: Heater voltage. VGS: Gas sensor  
output voltage. RL: Load resistance.   

monitoring of air quality possible. The future of this  

evolving technology will continue to be more  
efficient,  accessible,  and  versatile,  driving  

innovation in the monitoring and analytics of  
environmental data.   
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Output for various concentrations of gas, in parts per 

million. The conditioning circuit for air pollution sensor 

TGS800, solvent vapors sensor TGS822 and the methane 

sensor TGS842 as used is shown in Fig. 4. In order to 

characterize the sensor, each of the considered gas sensors 

(GSi) is individually introduced in a test chamas part of a 

laboratorydeveloped gas sensor calibrationsystem. The 

values of gas concentration are imposed using a mass flow 

controller (MC Alicat Scientific) connected to gas bottles 

with standard concentration (e.g., 100 ppm 

CO).Temperature and humidity are measured using the 

temperature and relative humidity sensors that are also 

incorporated in thechamber. Various values of temperature 

and relative humidity are applied to  with a series of drying 

and saturation chambersthat are connected to the test 

chamber and air pumps (Fig. 5).The drying chamber with 

two Peltiercells is connected to the test chamber to lower the 

humidity. After condensation on the Peltier cells surface, the 

condensed liquid in the drying chambers collected and 

pumped off from the drying chamber. Low this is how values 

of relative humidity can be obtained in this manner (e.g.,RH 

=20%). Higher humidity values are obtained when 

thesaturation chamber is connected to the testing chamber. 

In thiscase, condensed/distilled water is pumped from the 

water tankand vaporized into the air circulation system. 

Values of 95% were reached using this procedure. Using the 

RH variation procedure, gas sensors characteristics for RH1 

= 35%, RH2 =65% and RH3 = 95% were obtained.  

Temperature A Peltier cell is applied. Additionally, there is a 

testing chamber ventilator for forcing cold or warming up air 

in the testing chamber. In the case to be tested, several 

temperature values are set, T1 =10◦C, T2 =15◦C; T3 =20◦C, 

T4 =25◦CandT5  

=30◦C. A gas exhaust circuit is applied for the testing 

chamber cleaning after specific testing of one type of gas 

sensor (e.g., TGS842 Methane gas sensor).  

Sensing nodes are the building blocks of sensors' networks 

and, hence, very key to environmental data analytics in 

monitoring air quality. All sensing nodes are compactly 

designed autonomous systems that encompass all hardware 

and software requirements to measure, process, and transmit 

environmental data. These nodes are specifically deployed 

to monitor various air quality parameters with realtime and 

spatially distributed data critical to understand and mitigate 

air pollution.  

The core of the modern air quality monitoring systems lies 

in sensing nodes that deliver the required environmental data 

to be used in analytics. Advanced sensing technologies 

coupled with solid communication and processing 

capabilities within sensing nodes make real-time distributed, 

actionable Fig. 5. Gas sensor calibration system architecture. 

CGB: Calibration gas bottle. MFC: Mass flow control. TCE: 

Testing chamber electrovalve. DCE: Drying chamber 

electrovalve. SC: Saturation chamber electrovalve. DCP: 

Drying chamber pump. SCP: Saturation chamber pump. DC: 

Drying chamber. SC: Saturation chamber. HC: Heater 

control. H: Heater. WT: Water tank. TCV: Testing chamber 

ventilator. SCV: Saturation chamber ventilator.  

values of temperature were given, T1 =10◦C, T2 =15◦C;T3 

=20◦C, T4 =25◦CandT5 =30◦C.  

The gas exhaust circuit is used for cleaning the testing 

chamber. After a specific gas sensor test, for example, 

TGS842 Methane gas sensor testing.  

B. APC  

    Applied are the voltages obtained from sensors' channels 

to the analog inputs of a general-purpose network controller 

and Web server (Ipsil IPµ8930). It performs sensing 

channels data conversion-the voltage is converted in parts 

per million for a particular gas, in degrees in the Celsius 

scale for the other, and in percent, on the otherhand. 

Conversion is done for Webdata publishing (case 1) or 

transmission, using TCP/IP.   

Communication to the main processing and control unit 

(laptopPC) that performs the data logging, data processing, 

and Web publishing through a LabVIEW Web server (case 

2).  

  

  

3  DATA PROCESSING  

  

Two types of sensor data processing architectures that allow 

the calculation of several air quality values are implemented 

using JavaScript and LabVIEW Web publisher technologies. 

The first one is a neural network algorithm implemented in 

JavaScript in the embedded server (Web sensor) and 

represents one of the main novelties of the work. The second 

software architecture is implemented in the network PC and 

performs the following three operations: 1) data reading 

coming from sensing nodes by remote control over TCP/IP; 

2) detection of air pollution events and estimation of gas 

concentration on the basis of neural network inverse models 

of gas sensors; and 3) logging and publishing on the Web of 

data characterizing air quality. Such architecture was 

realized making use of facilities provided by LabVIEW.  

JavaScript is bound with the smart sensor network and 

Guarantees dynamic independent generation of web pages. 

The SNj sensor nodes, sustained by the architectures of 

embedded Web servers, take and treat the voltages coming 

out from the sensors' channels through a set of JavaScript 

functions, JSi that are implemented within the HTML file 

stored in an embedded Web server, Ipsil IPµ8930, whose 

electrically erasable programmable read-only memory 

EEPROM. JSi complexity depends on the sensor it is 

assigned to. Data processing is performed mainly at the Web 

browser level, which reduces the computational load 

associated with embedded Web servers and is also important 

as regard power consumption and Web server autonomy.  

 The utilization of NPBs is related with the inverse modeling 

of gas sensor multivariable nonlinear characteristics, which 

are strongly dependent on temperature and humidity but are 

also influenced by the concentration of other gases as part of 

the analyzed gas mixture.  

http://www.ijsrem.com/
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The concentrations of the analyzed gas mixture are 

determined. Based on designed NPBi, a digital readout of 

the gas concentration with temperature and  compensation is 

acquired .  

  

A. NPB Architecture and Design  

            The used neural processing blocks (NPBi) are two 

inputs-one output multilayer perceptron neural networks 

(Fig. 6)  

  

  

 

  

 

Fig.6. TheNPBiarchitecture.N, N−1: Normalization and denormalization 

blocks. RHj: Humidity selector.CGi: Temperature and humidity 

compensated values of the gas 

concentrationGi.TP:Temperatureinputvalue.VGSi :Input 

voltagevalueontheGSichanne.  

     The internal parameters of the NPBi (weights and biases) 

are calculated offline by MATLAB. The neural network 

training data were obtained in the system calibration phase. 

They are voltage values(VGSi) acquired from the gas 

concentration measurement channel for different values of 

gas concentration CGi and different temperature (Tp) and 

relativehumidity (RHi) conditions.  

The developed MATLAB neural network design program 

calculates different sets of weights and biases for each RHi 

experimental value(e.g.,RH= 45%,55%,65%. In the air 

quality parameters measuring phase, the calculated weights 

are used by JavaScript- or LabVIEW-implemented functions 

for online processing of the acquired voltages.  

 Because GSi characteristics depend on humidity,an accure 

measurement of the gas concentration is provided using 

different NPBiRHs whose weights and biasesare calculated 

using data obtained for different relative humidity 

conditions (i.e.RH=45%,55%, and 65%)and the 

interpolation method presentedin.  

The number of layers in NPBi is three. The hidden layers 

contain two to five tansignoid (tansig(x)) neurons, while the 

output layer contains one linear (l(x)) neuron. This reduces 

the computational load.  

Two design criteria for NPBi: the type of neurons, and the 

quantity of them in the hidden layer which determines its 

ability to be adapted to a certain characteristic.  

  

   

      

Fig. 7. Modeling error versus concentration for different 

NPBCO architectures (T = 10◦C).  

The requirement for different memory space and processing 

capabilities in hardware platforms varies from one type of 

nonlinear activation function to another. In this paper 

(tansignoid activation function), the neural processing task 

is distributed between the sensing node, which comprises an 

embedded Web server, and the Web client, which is the 

laptop PC, thus reducing the complex processing 

requirements at the IPµ8930 level. In this work, having 

taken into account the memory space of the IPµ8930, an 

optimization in terms of the HTML number of pages and 

page size was also performed simultaneously. A study on the 

necessary number of neurons in relation to a required NPBi 

performance, expressed in a modeling error, has been 

conducted to reduce vector weights and biases sizes. More 

neurons mean complex processing but, above all, large 

dimensions of the weights and biases matrices, meaning 

large memory requirements.  

Therefore, the number of hidden neurons was to be reduced, 

and the memory resources of the IPµ8930 (512 kB 

EEPROM) and the ability of the browser to process online 

sensor data were taken into account. In the case of the 

specific CO measuring channel, the training set contains, as 

a target, 15 values of CO concentration uniformly 

distributed in the 30–300 ppm interval.  

The input values are the voltage values obtained from the 

TGS203 CO concentration measuring channel 

corresponding to the concentrations mentioned above.  

The temperature in the testing chamber was measured to be 

Tp [in degrees Celsius] = 10 × p, p = {1,2,3,4,5}, and relative 

http://www.ijsrem.com/
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humidity was RH = 35%. The weights and biases (i.e., 

WNPBi and BNPBi) of the neural network were calculated 

by using the Levenberg–Marquardt algorithm.  

  

  

  

  

Fig.8.MaximuminversemodelingerrorfordifferentN 

PBCOarchitectures(nhidden={4,5,6})and different 

temperatures Tp=10p◦C.  

As the used gas sensors character in respect to temperature 

is, obviously related with CO channel modelling error study 

versus temperature has been done (Fig. 8).  

Since humidity is the influencing quantity, the 

characteristics of primary gas selectivity are different for 

different values of relative humidity and hence, the gas 

concentration measurement accuracy is also different. 

Hence, experimental data obtained for three different values 

of relative humidity, i.e., RH1 = 35%, RH2 = 65%, and RH3 

= 95% and five values of temperatures included in the IT = 

[10;50]◦C were considered. The values of imposed 

concentrations of gases for the tests on the measurement 

system were: ten values of methanol concentration 

distributed in ICM = [500;5000] ppm and 15 values of 

carbon monoxide concentration ICCO = [30;300] ppm, and 

15 values of solvent vapors or ethanol vapors concentration, 

which was CSV = [50;5000] ppm.  

Based on GSi voltages for considered gases concentrations, 

taking temperature and humidity into account, three sets of 

weights and biases were calculated for measurement channel 

of CO, methane, and solvent vapor at 35%, 65%, and 95% 

relative humidity, respectively.  

  

    B.  NPBi JavaScript Implementation           The 

weights and biases data are stored in numerical arrays 

used by the JavaScript neural processing functions 

JSNAC, JSNM, JSNCO, and JSNSV that are 

embedded in the APC's HTML pages.  

The implementation of JSN uses JavaScript 

arithmetic operators and the JavaScript "exp" method 

of the JavaScript Math object. Other implemented 

functions perform the sums associated with the 

calculation.  

The method applied to transmit data from the APC to 

the JavaScript functions as portions of the HTML 

pages stored in the memory of the AirQ node relies on 

the IPµ8930 dynamic WebHoles feature [20].  

Therefore, with every access made by the  

PC browser of the given HTML page (e.g.,  

70_AirQ_G.htm) to the IPµ8930 Web server (e.g., 

http://193.136.143.205/70_AirQ_  

G.htm), the decimal code DACHj correlated with 

measuring channel j voltage, ACHj (such as 625 code 

corresponding to VGsi =  

3 V) is entered into dynamically configured  

WebHole (which was pre-configured by IPµ8930 

WebHole Editor). Inputting the preset sequence of the 

digits "00000" (after which DACHj had been replaced 

using dynamic WebHoles technique) into the JSN 

acquires calculated values of gas concentration. The 

JST and the JSRH also utilize dynamic WebHoles for 

computation of RH and T.  

                V. DATA PUBLISHING  

The air quality data at each sensing node are 

published using APC Web server capabilities and 

APC–laptop PC TCP/IP communication, together 

with PC LabVIEW Web server capabilities.  

A. APC Web Server Publishing  

      The capabilities of the APC Web server permit the 

laptop PC in the network to access dynamic web 

pages related to the present values of the 

concentrations of the gases using the browser, like 

Internet Explorer. Thus, each APC in the network 

holds the main page of the distributed air quality 

monitoring system, such as it is presented at Fig. 9, 

which contains a collection of hyper-links called 

sensing node i, such as sensing node 2. For each 

sensing node, temperature in degrees Celsius, percent 

relative humidity, and the air quality index in XAirQ 

are shown.  

The air quality index is defined as the ratio of V 

_AirQ, that is, the voltage value found in the air 

quality sensor channel, to the value denoting the clean 

air condition, namely no pollution, (V_pal, in volts) 

http://www.ijsrem.com/
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by which the air quality level is measured (XAirQ = 

100% for no pollution, and XAirQ = 0% for extreme 

air pollution).  

  
Fig. 9. Air quality monitoring webpage [Ti (in degrees Celsius), RHi (in 

percent), and XAirQi are the temperature, relative humidity, and air quality 

index associated with the network sensing nodes i  

= 1,...,4).  

The values of V _pal have been experimentally determined for an indoor 

laboratory wherein a mimic field condition and several simulation 

experiments of pollution events took place. Thus, values of 1.2–1.7 V have 

been taken for V _pal while using the Figaro TGS800 inside in clear air. As 

discussed above, while monitoring the V _AirQ of the captured voltage was 

used to determine the air quality index the XAirQ. Fig. 10 shows the 

development of XAirQ for some kinds of pollution events.  

Each hyperlink corresponds to a sensing node URL (e.g., 

http://193.136.143.205/74_sens2.htm), and upon selection, a detailed air 

quality measurement page is displayed (Fig. 11).  

The HTML META tag sets the refresh rate of the webpage to a value in the 

time interval of 5–60 s according to the air dynamics as follows: META 

HTTP-EQUIV="refresh" CONTENT="20".  

Whenever there is a pollution event in the region for whose air quality page 

is given below, the alert message "Pollution event on  

SNj" is issued. Then the operator can click on the associated  button "measurement details" of the alert message to request from the Web server the detailed 

information, namely gas concentration levels (methane, CO, and solvent vapors in this paper).  

Further "pollution pages" are connected to the measuring gas sensor channels whose hyperlinks are designated in Fig. 11 by C_M, C_CO, and C_SV. Those pages 

contain the voltage values of the given channel, say VC_M, and its concentration value, say C_M, obtained from processing the NN, and also the temperature and 

humidity measurements on the SNj level. In order to prevent false alarms due to anomalous functioning of the considered gas concentration measuring channel, 

values obtained from general air contaminant channel (AC channel) are used. Anomalous situations such as temperature and relative humidity that are out of range 

for the considered monitored region, e.g., T = 60 ◦C and RH = 0%, and false pollution alarms expressed in high).  

   

http://www.ijsrem.com/
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Fig. 11. Detailed air quality monitoring page—sensing node 2. T2: Temperature value (in degrees 

Celsius). RH2: Humidity values (in percent). XAirQ2: Air quality index (in percent). C_M: Methane 

concentration. C_CO: CO concentration. C_SV: Solvent vapors concentration.  

Concentration values produced by selective gas sensors, like CM = 325 ppm, in case the sensor AC 

sends a low concentration value, say 10 ppm, in relation to the same measured air.  

 B.  APC LabVIEW Web Server Publishing  

Above this, communication was implemented through TCP/IP function in LabVIEW to perform tasks 

such as advanced data processing and data logging by being based on TCP/IP communication. Making 

use of the LabVIEW software executed in the PC, it fetches VGsi values from sensing nodes SNj, 

processes and writes down data to the data logging files, enabling us to obtain the historical evolution 

of air quality in monitored areas and to evaluate the trends of air quality. Fig. 12 Graphical User 

Interface (GUI) corresponding to the channel monitoring of SNi.  

As seen from the figure, in addition to the output voltage levels concerning the air quality sensors, T, 

and relative humidity values, pollution events are  

  
signalled once the output voltage of ITGS800 exceeds  
the set alarm threshold 4.7 V of this paper  
Fig. 10. Evolution of XAirQ index for two home air pollution events. corresponding to 10 ppm of ethanol. 
On the  
(a) Ethanol vapors pollution. (b) Smoke pollution.  
configuration panel of SNi elements of IP address and  

  port are represented.  

  The interface implemented allows verification of  

laptop PC–SNi network communication using the  

  ping function.  

    

VI.  POWER REQUIREMENTS  

To characterize the power required by the wireless network for air  

quality monitoring, a general- purpose-interface-bus-based virtual  

system was developed that included a set of Agilent 34401A  

multimeters to evaluate the dissipated power through 

measurement of current and voltage at SNi, GSji, and WBi 

levels.  

A. SNi and GSji Power Dissipation  

The SNi power dissipation evaluation was performed with 

respect to the different measurement activities and active 

sensors counts. Thus, under normal conditions that is, no 

pollution event occurred, only temperature, relative 

humidity, and air quality sensors are active. SNi−GSji  

Fig. 13. SNi and GSji current and power consumption (Ic and 

Pc) over time for a main webpage refresh rate of 5 s. 

associated power consumption is PSN_GSji = 2.05 W for a 

voltage supply Vs = +9 V.  

The second set of measurements deals with the SNi−GSji 

power dissipation for different operating conditions, like 

continuous acquisition with Web publishing and continuous 

acquisition with TCP/IP data communication based on 

LabVIEW. Some results are shown in Fig. 13.  

As it can be seen from Fig. 13, assuming an air quality 

webpage refresh rate trefresh = 5 s, the fluctuation of the 

consumed power Pc = PSNi + PGSji is about 59 mW. Such 

fluctuation can be associated with data acquisition and 

dynamic webpage publishing. When the SNi only gets sensor 

channel voltages and transmits them to the laptop PC by 

IEEE803.11b through the DWL-810+ wireless bridge to be 

processed and published by the LabVIEW Web server 

features, the average power consumption PC-PC is about 

98% of PC. Therefore, from that point of view, both web 

page presentation solutions are equal in the sense of power 

consumption.  

The used gas sensors are big power consumers of the 

analyzed network. Therefore, with general air monitoring 

mode of nonpollution event while only TGS800, 

temperature, and relative humidity sensors are turned on, the 

average corresponds to the PSN_GSji value mentioned 

above. Inducing a pollution event, for example, 400 ppm 

ethanol, the power consumption associated with air quality 

sensor is shown in Fig. 14.  

Once the general air quality sensor detects a pollution event, 

all the gas sensors of the SNi are activated, which consumes 

http://www.ijsrem.com/
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approximately 4 × 1.24 W GSji power. The GSji power 

consumption is part of the total power consumption that 

includes the SNi and WBi consumption.  

  

  

B.WBiPower Dissipation  

   The major consumer of power during operation of the 

system is through wireless communication. On a power-on 

active state mode, the used average power dissipation for 

wireless bridge is approximately 3.14  

W. As long as the link that connects SNi and WBi is  

  

  
Fig. 14TGS800 power consumption with and without a pollution event.  

established, PWBi reaches 3.58 W. This value is due to the 

TCP/IP communication between the SNi and the laptop PC 

through the implemented WLAN.  

  

                          VII. CONCLUSION  

This paper reports the implementation of a measuring system 

for air quality monitoring. Two architectures are proposed 

for wireless communication between the sensing nodes and 

a personal computer that manages the whole system. 

Because of the communication range of the hardware used, 

the systems are particularly suited for indoor applications. 

The outdoor range limitation can be overcome using high-

gain omnidirectional antennas, such as D-Link ANT24-

1500, providing extended coverage for an existing 802.11b/g 

wireless network without the cost and complexity of adding 

additional wireless APs or wireless repeaters. Coverage of 

the Wi-Fi designed network can be extended to tens of 

kilometers by including in the system extended coverage Wi-

Fi repeaters, such as Duganit WL-2410.  

With the increasing number of low-cost or even free Wi-Fi 

Internet hotspots and the capabilities of the distributed air-

quality-developed system (based on air-quality-embedded 

Web sensors), different locations can be monitored and the 

air quality values Web published as long as they have Wi-Fi 

coverage.  

The output of the used gas sensors depends not only on the 

cross influence of the primary measured gas but also on 

external influence factors, namely temperature and humidity. 

Thus, several NPBs were implemented to obtain the 

temperature and humidity corrected values of the gases' 

concentrations. The merits of this type of technique for the 

required purpose, that is the accurate inverse modeling of the 

gas measuring channel for a small number of calibration 

points, are well established.  

The main novelties of this paper are presented as follows: 1) 

the development of a wireless network based air quality 

monitoring system using smart sensors; 2) embedding neural 

network processing blocks which distribute the charge of the 

processing between an embedded systems (Web sensor) and 

the Web browser installed on a personal computer; and 3) PC 

software for remote TCP/IP controlling of the sensing node 

with advanced data processing, storing, and the Web-

publishing associated software with an air quality monitoring 

system. Special emphasis was laid on the best deployment of 

the neural network and on the practical assessment of the 

power consumption of the distributed sensing system.  

Advantages of the proposed air quality monitoring system 

based on a wireless smart sensor network and on neural 

network processing blocks embedded on the sensing nodes' 

HTML pages: • It provides extra capabilities for the air 

quality monitoring for indoor and outdoor conditions.  

•\tIt makes good accuracy of gas concentration 

measurements by compensating the temperature and 

humidity influences using neural networks. •\tIt describes a 

client-side JavaScript solution for neural network 

implementation.  

•\tIt is based on TCP/IP read and write functions 

implemented in LabVIEW, allowing the advanced 

processing of air quality data by a PC.  

The power requirements of the system, measured for each 

node, are about 8 W. It is thus clear that only if recharge 

capabilities of the batteries are included, by means of, for 

example, solar panels, will a system's autonomy reach days 

or months.  

The output of a specific tin dioxide sensor arrays depends not 

only on temperature and humidity but also on the 

concentration of other gases and vapors. The effect of this 

cross influence on the accuracy of the measurement can be 

minimized using also neural networks. We will address this 

problem in a future work.  

  

  

  

http://www.ijsrem.com/
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