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Abstract - HSI is an emerging technology for environmental 

sensing that provides high-resolution spectral data across many 

applications. It is key to monitoring air quality, water resources, 

soil properties, and vegetation health. It is essential for 

addressing global challenges like climate change, pollution, 

and sustainable resource management. The ability to collect 

and analyze data across many spectral bands gives unparalleled 

insights, allowing for precise detection and monitoring of 

environmental changes. Despite this, HSI faces many 

challenges such as high cost, limited datasets and calibration 

complexities preventing accurate analysis requires advanced 

computational resources. This review article will discuss the 

challenges and future advancements that are necessary for 

environmental sensing. HSI technical advancements have 

focused on increasing spatial resolution, portability, and low 

cost. Innovations like drone-mounted hyperspectral sensors, 

machine learning models for data analysis, and cloud 

computing have made the technology more accessible and 

applicable. This allows for real-time environmental 

monitoring, enabling prediction and providing better responses 

to environmental issues. Using advanced technologies it can 

overcome all these limitations of HSI. Distributed processing 

and edge computing can handle big data more efficiently, low-

cost sensors and advanced algorithms are being developed to 

make it cost-effective and accurate. By enabling real-time 

environmental monitoring and informed decision-making. HSI 

will help for a sustainable future and its continued evolution 

will empower researchers and policymakers to address 

environmental issues more efficiently. 
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1. Introduction 

The UN Sustainable Development Goals (SDGs) enable a 

framework for sustainable development, ensuring a better 

world by balancing social, economic, and environmental 

dimensions while addressing broader challenges such as health, 

and climate [1-3]. Recent progress considers plant phenotypic 

plasticity and responses to climate change through 

environmental sensing and signaling [4]. The SDG targets for 

water and sanitation require detailed monitoring and response 

to understand the coverage and quality of safely managed 

sources [5]. Therefore, real-time monitoring is essential for 

addressing climate change and improving water and sanitation, 

tracking pollutants, and ensuring compliance with 

sustainability goals. Environmental sensing is crucial in 

monitoring air, ecological health, and water by 

identifying the challenges related to industrialization by 
providing high-quality, high-resolution images [6] and 

urbanization by improving city environments and avoiding 

resource waste [7] and biodiversity loss by tracking data and 

easily available to policymakers [8].  

Monitoring air quality is essential because particulate matter 

(PM2.5) and PM10 which are fine particles affect the eyes, 

nose, and throat and can make the lungs dysfunctional [9, 10]. 

Therefore, knowing the concentration of air pollution is crucial 

to protect human health. Van Donkelaar, A., et al., developed a 

technique for estimating PM2.5 exposure by combining 

satellite and ground-based data into the Data Integration Model 

for Air Quality (DIMAQ) [11, 12]. A Beta Attenuation Monitor 

(BAM) uses the principle of ray attenuation to measure the 

mass concentration of PM in ambient air [13]. It has high 

measurement accuracy, easy maintenance, and low cost but low 

temporal resolution and loss of volatile substances in PM. The 

tapered element oscillating microbalance (TEOM) with high 

accuracy, high sensitivity, and high temporal resolution [14] 

overcomes the disadvantage as it measures PM concentrations 

using a hollow oscillating microbalance to detect and report 

changes in mass as ambient air passes through a replaceable 

filter [15, 16]. Kinsey, J.S., et al., demonstrated a method that 

compares BAM with TOEM PM mass concentration, where 

TOEM was the best overall correlation [17]. The drawback of 

the TEOM instrument is the requirement to maintain the filter 

at a constant temperature, which can vary based on location, 

environmental conditions, and concentration levels [18].  

Water pollutants severely threaten human health and aquatic 

ecosystems [19]. It mainly consists of nitrogen, phosphorous, 

chlorophyll, heavy metals, biological oxygen demand (BOD), 

and chemical oxygen demand (COD) [20]. Increased BOD and 

COD concentrations can cause the death of aquatic animals, 

and plants [21]. Water quality monitoring is more efficient for 

preventing pollution [22]. Using a multi-wavelength optical 

sensor, the light-emitting diodes (LED) sources can be 

measured and transmitted through water and absorb light at 

specific wavelengths, it is a robust, easily deployable sensor 

[23, 24]. Attivissimo, F., et al., proposed a cheap optical sensor 

for the detection of low chlorophyll levels (such as 0.5 – 8.0 μ 

g/l) in marine water and higher concentration levels (about 200 
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μ g/l) in seawater and based on chlorophyll fluorescence [25]. 

Excess phosphorus and nitrogen concentration increase algae's 

abnormal growth, resulting in eutrophication [26, 27]. Studies 

by Li, Z., et al. have shown that remote sensing of Ch, N, and 

P vegetation biochemical properties is conducted using narrow-

band spectral indices from ground and space hyperspectral data 

[28]. Jupp, D.L., et al., have shown that detecting algae in 

surface layers of turbid waters can be based on chlorophyll-a 

(Chl-a) absorption using airborne scanning [29]. Chang, N.-B., 

et al., used space-borne satellite images, and airborne remote 

sensing nutrients to improve water quality [30]. Gholizadeh., et 

al., combined various properties such as spectral, spatial, and 

temporal using optical sensors with spaceborne and airborne 

sensors to be used as a sensor selection [31]. The disadvantages 

of optical sensors are that they are high-cost, the system 

requires skilled operators, and more sensitive detectors [32]. 

They can be overcome by combining HSI with a machine 

learning (ML) algorithm to enhance the understanding of 

pollutants by providing real-time data, and detailed information 

[33].  

 

Hyperspectral sensors capture the image in hundreds of spectral 

bands including visible wavelength (380nm–700nm), near-

infrared (800–2500 nm), and mid-infrared (2500–15000 nm) 

[34, 35]. Different spectral bands are present in each pixel to 

extract particular information about various pollutants [36]. 

HSI captures the data cube to contain 1D spectral and 2D 

spatial information [37, 38]. A 1D spectrum represents how the 

pollutants at a pixel absorb light across different wavelengths, 

and 2D vectors represent each pixel location in the spectrum in 

a spatial array [39]. HSI has been utilized in various remote 

sensing applications to estimate the physical characteristics of 

complex surfaces and detect similar pollutants with fine 

spectral signatures [40]. The traditional RGB method uses only 

three primary colors [41] by combining different light 

intensities. At the same time, multispectral imaging (MSI) is 

built on RGB that captures (3-10) spectral bands that are non-

contiguous in the electromagnetic spectrum [42]. HSI is 

superior to any other broadband image, as it can provide more 

detailed information. HSI is used in plant detection [43], 

chemical imaging [44], medical analysis [45], and mining [46]. 

Therefore, integrating environmental sensing with 

HSI technology proposes low-cost, accurate data on air and 

water detection and protects ecosystem health. 

2. Fundamentals of Hyperspectral Imaging 

In HSI applications, illumination units such as tungsten and 

halogen lamps, LED, lasers, and tunable lights are utilized for 

light-source management across wavelengths [47]. Electric and 

magnetic fields combine to form an electromagnetic wave 

referred to as light [48], that can be refracted, absorbed, or 

reflected on the surface [49] with different materials 

responding to specific wavelengths. For instance, the primary 

light reflected by a yellow rubber duck is from the middle, and 

longer wavelengths are absorbed by shorter wavelengths which 

do not reach the observer [50]. When radiation is captured 

across multiple wavelengths on a wide spectral band, 

identifying and categorizing materials is possible using the 

resulting spectral signature by unique spectral properties [51, 

52]. This data is structured into a data cube a set of coregistered 

2D images for each wavelength band [53]. To improve the 

interpretability of datasets, Principal Component Analysis 

(PCA) can be employed to reduce their dimensionality and 

minimize information loss [54, 55]. Reduced-dimensionality 

features are fed into artificial neural networks and ML 

algorithms for classification [56]. Optical equipment 

comprised a scanning microscope and imaging spectrographs 

that utilized silicon and InGaAs CCD diode array detectors, 

enabling direct comparison between the intensity of near-

infrared reflectance (NIR) and exNIR light transmitted through 

different samples [57, 58]. 

2.1 Spectral Imaging Methods 

In remote sensing, HSI is captured using pushbroom or 

whiskbroom scanning methods, which involve line-based 

scanning and exploit the motion of an airborne platform to 

collect images [59]. Whiskbroom (also known as a point 

scanner) has a rotating mirror that scans the surface point by 

point to build a 2D image by capturing light from each pixel 

across the flight path, passing it through the dispersion element, 

measuring it with a 1D detector array, with different 

wavelengths recorded by separate array elements [60, 61]. Its 

advantages include a simple design, wide swath coverage, and 

easy calibration. Qian, S.-E., explains that the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS), the first 

operational airborne hyperspectral imager, was developed in 

the mid-1980s and the Compact Airborne Spectrographic 

Imager (CASI), the first commercial airborne hyperspectral 

instrument, was produced in the late 1980s [62]. Reuter, D.C., 

et al., outline that Landsat instruments used during the 

spacecraft traveled in the along-track direction, and moving 

mirroring was utilized to sweep detectors for each channel [63]. 

Kampe, T.U., et al. demonstrated the NEON spectrometer's 

performance requirements have been well-established through 

the development of the NASA AVIRIS program and the 

Carnegie Airborne Observatory [64]. However, whiskbroom 

has drawbacks, such as high spatial and spectral resolution 

constraints because of low integration times, which require a 

mechanical scanner with moving parts in a vacuum chamber 

[62]. Funatomi, T., et al., used a method to terminate the 

temporal illumination variations in whiskbroom HSI by adding 

a pushbroom scan [65]. To overcome these limitations, the 

pushbroom sensor was developed [66], and each spatial 

element has its detector, where integration times are much 

longer and no requirement of moving parts can achieve the 

same signal-to-noise ratio (SNR) as a whiskbroom with slight 

entrance pupil [63]. Tarde, R.W., et al., demonstrated the use 

of pushbroom technology which eliminates the need for large 

calibration shutters and diffusers, resulting in better signal-to-

noise performance with smaller optics, an ideal solution to data 
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acquisition. This improves reliability and performance, by 

developing small and low-cost instruments [67]. 

In a pushbroom, the dataset is acquired by scanning the sample 

line by line to form the hypercube [68]. Each line image 

constitutes a single band of the hyperspectral data, with a 1D 

detector array representing spectral and spatial information [47, 

69]. A pushbroom camera has an optical system that projects 

an image onto a linear array of sensors, imaging only the points 

in the plane defined by the optical center and the line containing 

the sensor array [70]. In pushbroom, the platform’s movement 

allows the sensor to project a continuous, linear scan of the 

ground surface onto the camera focal plane as it travels along 

its path [71]. Johnson, B.R., et al., overviews a CASI developed 

for airborne remote sensing using pushbroom imaging 

spectrometers [72]. Gartley, M. and J. Schott., gathered 

information about the Advanced Land Imager (ALI) and the 

impending Landsat 8 Operational Land Imager (OLI) payload 

is designed to operate in a pushbroom which is common to 

commercial high-resolution [73]. Tarde, R.W., et al., explained 

the development of the next-generation OLI pushbroom filter 

radiometer, capable of meeting challenging radiometric and 

calibration requirements [67]. A sensor model incorporating 

radiometry and orbital mechanics has shown a field-of-view 

(WFOV) [74]. The emitter is difficult for multisubstrate filters 

with soft coatings, as these filters require parallelism within a 

few arc seconds [75]. 

The staring (also known as the band sequential method) is a 

spectral scanning technique that essentially produces a 2-D 

grayscale image with all spatial information at once [76]. To 

obtain high-resolution images, staring array imaging satellites 

usually adopt the low Earth orbit and gradually develop toward 

submeter high-resolution and night-light imaging [77]. 

Magnan, P., explained the key features of CCD, such as a 

minimum read noise, low dark current, and a high level of 

quantum efficiency [78]. Bhan, R. and V. Dhar., explain the 

signal photon detection, optical wave band selection (BS) and 

transmission, and multiplexing of parallel and serial out signals 

are undertaken by FPA's hybrid architecture [79]. Gupta, N. 

developed MEMS-based FP filters to minimize the dimensions 

of staring hyperspectral imagers [80]. The staring array has 

limited spectral resolution due to a low number of spectral 

filters, is not suitable for research [81], and sampling 

limitations cause aliased signal that corrupts the image by pre-

sample blur, post-blur, or sampling frequency [82]. The use of 

new scanning technology, particularly staring focal plane array 

(FPA) introduces new parameters influencing system 

performance that are not adequately addressed by existing 

models [83]. Li, P., et al., designed a real-time attitude 

controller for staring, and the output is based on the prediction 

of the future [84]. 

Snapshot (also known as single-shot) acquire 2D spatial and 1D 

spectral information in a single shot [85], offering low memory 

requirements, fast acquisition speed, and potentially lower cost 

and power consumption [86], the efficiency of light collection 

is improved in high-dimensional measurement systems by 

eliminating filtering and scanning [87]. Wagadarikar, A.A., et 

al., developed a mathematical model to describe SD-CASSI, 

how light is transmitted through the coded aperture, and how it 

affects the resulting data cube, outlining how the coded 

aperture modulates spatially each spectral slice of the data [88]. 

Snapshot hyperspectral cameras used for drones further 

increase the spectral resolution of data, often capturing 

hundreds of bands in a contiguous fashion from visible to NIR 

to short wave infrared (SWIR) ranges [89] they are used in 

applications that require vital observations such as industrial 

inspection, environmental monitoring, and medical diagnostics 

[90]. Among whiskbroom, pushbroom, and snapshot, the 

lightweight snapshot and pushbroom imagers have met the 

payload requirements of lightweight unmanned aerial vehicles 

(UAVs) in recent years. Snapshot images can capture an entire 

data cube in a single snapshot without scanning.  Alternatively, 

a pushbroom imager acquires scanned data cubes while edging 

a moving platform and captures vertical slices simultaneously 

[91]. However, challenges faced in snapshot performance 

involve many computational loads, hardware complexity, 

trade-off resolution, and capture speed [90]. 

 

 

Fig. 1 Spectral imaging approaches (a) Whiskbroom (b) 

Pushbroom (c) Staring (d) Snapshot 

3. Applications of HSI in Air Quality Monitoring 

 

HSI is essential for monitoring air pollution by identifying and 

measuring specific gases in the atmosphere. Hyperspectral 

sensors can detect reflectance and absorption variations. These 

sensors can be deployed on satellites, drones, or ground-based 

platforms to gather data across extensive areas. The high-

resolution spectral data allows us to evaluate air quality, track 

pollution, and analyze pollutants. Furthermore, HSI can be 

integrated with machine learning to enhance the precision of 

monitoring pollution and policy development. A bottom-up 

spectroscopy technique to verify airborne HSI was introduced 

by Soffer, R.J., et al., which is compared with the calibration 

and validation (cal/val) targets focused on CASI imagery that 
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exhibits an improvement in the accuracy of reflectance product 

by optimizing the pixel location and applying the Spectral Band 

Ratio (SBR) process and the airborne hyperspectral reflectance 

(HCRF) data were relatively accurate for wavelength greater 

than 450 nm, with less than 4% error [92]. Xing, C., et al., 

developed an HSI to monitor aldehyde volatile organic 

compounds (VOCs), through ultraviolet light signals in the 

300–380 nm spectral range and 0.6 nm resolution and extension 

of the 300-560 nm range, fitting of VOC releases was found by 

the differences in the range from 4 % to 19 % and the WRF-

ARW 4.2 model introducing vertical hybrid pressure-sigma 

layers which are used for the transport [93]. Addabbo, P., et al., 

demonstrated a various method in improving atmospheric 

retrievals of trace gases, such as Weighting Function DOAS 

(WFDOAS), Blind Source Separation (BSS), and PCA, 

absolute errors in the calculated gas concentration ranging from 

10-2 to · 1015 mol/cm2, the spectral range of the SCanner 

Imaging Absorption Spectrometer for Atmospheric 

CHartography (SCIAMACHY) measures 383–628 nm spectral 

range and 0.44 nm of resolution, minimum error in retrieving 

the traced gases is limited to the (437.12–451.40) nm, 

nonpolluted environments (0 − 5 · 1015 mol/cm2) and highly 

polluted environments (30 · 1015 mol/cm2) [94]. An edge-based 

AI UAV system (ETAUS) was proposed by Huang, C.-H., et 

al., that combines HSI (380–780) nm with convolutional neural 

networks (CNN), the dataset in training, validation, and testing 

is 80%, 10%, 10% achieved an accuracy with 86.38% in terms 

of Air Quality Index (AQI) level classification, with 9.3 frames 

per second (FPS) real-time performance and speedup of 2.28× 

to 36.9× in FPS [95]. A quantitative assessment of different air 

pollution (QADAP) models at 500 m resolution was developed 

by Ahmadian Marj, A., et al., 54 satellite images with spectral 

and spatial resolutions consisting of 3 GeoEye, 1 Hyperion, and 

50 MODIS images, lower relative Root Mean Square Errors 

(RMSE) were achieved from 13–25% at high pollution levels 

and 150–400% at low pollution levels, Correlation coefficients 

(R) ranging from 0.75 to 0.85 with good agreement [96]. To 

estimate PM2.5 concentrations utilizing the multi-angle 

implementation of atmospheric correction (MAIAC) aerosol 

optical depth (AOD) satellite data was developed by Just, A.C., 

et al., a hybrid model with a mean cross-validated R² of 0.724, 

the predictions were slightly biased with cross-validated slopes 

of 1.00 ± 0.008 and 1.12 ± 0.009 of standard errors therefore, 

mean-predicted PM2.5 concentrations were 19.7 to 27.2 μg/m³ 

range [97]. An AI-powered learning-based low-cost air quality 

monitoring model was proposed by Su, X., et al., captured HSI 

with a resolution of 512 × 512 × 204 across 51 selected 

channels (400–1000) nm that was tested on 1,487 data points, 

with a Mean Absolute Error (MAE) of 698.65 meters and a 

coefficient of determination (R²) of 0.95 in EnvNet [98]. 

Kalajdjieski, J., et al., developed a CNN, ResNet, Inception, 

and a custom pre-trained Inception model for air pollution 

prediction that can classify the input images, a Generative 

Adversarial Network (GAN) enhanced with data augmentation 

techniques is used to handle the problem of imbalanced datasets 

which leads to the improved performance, this model was 

tested on a dataset of 178792 images, and the results obtained 

indicate an accuracy of 89.6% and 76.3% in training and testing 

set [99]. Bakirci, M., et al., demonstrates a method for the 

vertical distribution and transport of pollutants combined with 

hexacopter UAV and miniature monitors through a commercial 

drone and with Real-Time Kinematic (RTK) capabilities, 

ensuring a level of accuracy of the measurement is high, using 

reliable sensors such as NOVA SDS011 and MICS-4514, 

resulting the zigzag drone flight patterns offering the good 

accuracy for pollution detection [100]. A deep learning method 

for predicting the AQI was developed by Janarthanan, R., et al., 

combining a Support Vector Regression (SVR) model and 

Long Short-Term Memory (LSTM) networks, the average 

RMSE is 7.804 for training and 10.995 for testing and R2 for 

PM2.5 is 0.821, resulting the best-performing pollutant [101]. 

A system for the spatio-temporal prediction of climate and 

environmental variables was introduced by Amato, F., et al., 

using CNN for spatial analysis and recurrent networks (RNNs) 

for temporal modeling, accomplishing the spatio-temporal 

signal that can be decomposed utilizing Empirical Orthogonal 

Functions (EOFs) with 95% of variance in the 24 components, 

achieving a MAE of 1.978 for deep learning, 6.709 for Random 

Forest (RF), and 8.34 for neural networks (NN) in the simulated 

datasets [102]. Din, A.U., et al., introduced a method to 

examine transport sustainability through spatial transportation 

efficiency relating to climate change, by Structural Equation 

Modeling (SEM) and AMOS with 410 respondent samples and 

simulation sampling of 10,000, with R² of 16% providing 

robustness to the model, RMSEA is 0.081, standardized root 

mean square (SRMR) is 0.060, and Goodness-of-Fit Index 

(GFI) is 0.949 measuring a good fitness [103]. 
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Fig. 2 HSI Applications in Air Quality Monitoring 

4. Applications of HSI in Water Quality 

Monitoring 

HSI helps identify pollutants and contaminants in water bodies 

that are invisible to the naked eye. By examining spectral 

patterns, it can effectively map and measure the pollution level 

including detecting harmful algal blooms and identifying toxic 

substances. Additionally, HSI facilitates the early detection of 

pollution trends, offering valuable insights for management and 

improving the accuracy of water quality assessments. Jiang, Q., 

et al., examined the feasibility of visible and NIR spectroscopy 

(VNIRS) with 103 samples using ASD FieldSpec3 spectral 

radiometer (Analytical Spectral Devices), wavelength of 400-

2350 nm, obtaining r²CV ranging from 0.32 and 0.40, a Partial 

Least Square Regression (PLSR) with a Genetic Algorithm 

(GA) and Competitive Adaptive Reweighted Sampling 

(CARS) increases heavy metals monitoring [104]. A technique 

of remote sensing for UAV-HSI for urban water pollution 

sources has been developed by Cai, X., et al., using 3D 

Excitation-Emission Matrix Fluorescence Spectroscopy, a 

Ubert ultrahigh definition (UHD) 185-Firefly hyperspectral 

camera collected 125 bands ranging 450-950 nm with the 

spatial and spectral resolution of 4 nm and 0.06 m respectively, 

the dataset analyzed had 337 polluted water samples, achieved 

a recognition accuracy (RA) of 71.43%, and concentration of 

Chl-a with RMSE of 6.87 µg/L and 17.58% of mean absolute 

percentage error (MAPE) recognized as better performance 

[105]. Pan, X., et al.,  proposed a method to show that the 

quality of offshore seawater measuring can be effectively 

performed by UAVs and airborne hyperspectral remote sensing 

(HRS) technology, mainly focusing on Chl-a and total 

suspended matter (TSM) concentrations using data from 30 

water samples, the training model achieved an accuracy of R² 

in (0.712 for Chl) and (0.756 for TSM) with relative percentage 

difference (RPD) of 3.72 and 5.83, the Rp² values of both are 

greater than 0.7 resulting high prediction [106]. Leung, J.-H., 

et al., developed a method for quantifying water pollutants 

through spectral analysis by identifying the images of 

biological oxygen demand (BOD) captured through 3D-CNN 

with 2,545 images achieving an accuracy of 80%, with the 

spectral data of 40 nm, achieving an 8% increase in the 

accuracy of the Good category in F1-score [107]. A real-time 

hyperspectral underwater detection based on BS was proposed 

by Fu, X., et al., using hyperspectral digital imagery collection 

experiment (HYDICE) data having 169 spectral bands and 1.56 

m of spatial resolution, and HSI including 256 bands in the 0.4–

1.05 nm in the spectral region, using Constrained-Target 

Optimum Index Factor Band Selection (CTOIFBS) and 

Constrained Energy Minimization (CEM) algorithm, 

evaluating using receiver operating characteristic (ROC) [108]. 

Riaza, A., et al., developed a method using hyperspectral 

remote sensing (HyMap) of spectral range (436-2485) nm and 

resolution (0–20) nm to map the polluted river water with ASD 

FieldSpec3 spectrometer ranging from 400-2400 nm at 1 nm 

spectral resolution to achieve high-resolution maps with 4 m 

[109]. The joint framework for underwater hyperspectral image 

restoration and target detection (JURTD) module was 

developed by Li, Q., et al., enabling high-quality images with 

superior detection of pollutants using GaiaField Portable 

spectral imager with a spectral resolution of 2.8 nm across the 

wavelength of 400 nm to 1000 nm with 120 spectral bands, 

evaluating using the PSNR, spectral angle mapper (SAM) and 

structural similarity index (SSIM) for restoration, receiver 

operating characteristic (ROC) curves and area under the curve 

(AUC) values were utilized for the detection [110]. Hough, 

I.M., developed a novel and adaptable framework using the 

hydro-ecological model in Sedimentation and River Hydraulics 

(SRH-2D) and the Computer Aided Simulation Model for 

Instream Flow and Riparia (CASiMiR), improvements in 

Hydraulic Habitat Suitability (HHS) ranging 0.5–0.6 and 

enhancing peak species habitat qualities by 23–26% while 

reducing water usage by 22% [111]. Qi, J., et al., proposed a 

self-improving underwater target detection framework 

(SUTDF) using deep learning with a range of 400-1000 nm and 

spectral resolution of 2.22 nm for lake water and 366-2495 nm 

at 9.5 nm for seawater with superior detection performance 

with an AUC value of 0.945 in military/civilian applications 

[112]. Yuan, A., et al., developed a cost-effective portable edge 

AI system with an Algal Morphology Deep Neural Network 
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(AMDNN) model for the detection of algae and harmful algal 

blooms (HAB) using NVIDIA Jetson TX1 chip with a range 

10-1000 and 50-1400 pixels, with an accuracy of 99.87% in 

HAB early warning applications and fisheries [113]. UAV-HSI 

data combined with the SpectralUFormer model for the aquatic 

plant classification proposed by Yu, Z., et al., using high-

resolution imagery captured at 100m with 0.1m of spatial 

resolution using the Pika L imaging spectrometer, achieving 

93.15% in overall accuracy (OA), 89.14% in a Kappa 

coefficient, and 84.55% in a mean IoU with a range of 700-

1000 nm, by improving the models such as SegNet, 

Deeplabv3+, and HSI-TransUNet by 3.11% for Kappa and 

2.91% for mIoU [114]. 

 

Fig. 3 HSI Applications in Water Quality Monitoring 

5. Applications of HSI in Soil and Vegetation 

Monitoring 

HSI in soil monitoring can identify changes in soil moisture, 

composition, and texture, which are crucial for evaluating soil 

health and fertility. In vegetation, monitoring plant health by 

early identification of disease, stress, or nutrient deficiency 

through variations in leaf reflectance. By examining the 

spectral data, HSI can map the vegetation cover, species 

distribution, and growth patterns, providing valuable insights 

into agricultural productivity, ecosystem health, and real-time 

information on soil and vegetation. Furlanetto, R.H., et al., 

proposed a hyperspectral method for early detection of 

potassium (K+) deficiency in soybean detection, using PCA 

and linear discriminant analysis (LDA) in an ASD Fieldspec 3 

Jr. hyperspectral sensor to collect spectral data, generating 

3024 samples from 252 reflectance spectra with the range of 

400–1000 nm, with 3 nm of resolution, LDA achieved an 

accuracy of more than 70% and 59% for simulation and 

validation, with performance evaluation of 70-30% split for 

training and testing [115]. Banerjee, B.P., et al. proposed a 

UAV-HSI framework to identify challenges of the data 

acquisition, sensor calibration, mosaicking, illumination 

correction, and geometric alignment for environment 

monitoring, capturing of images with a resolution of 1024 × 

1024 in 15 bands in the 500–900 nm spectral range, having a 

geometric accuracy with an absolute RMSE of 5.43cm with a 

standard deviation of 4.24 cm and a SAM of 0.086 rad, high-

precision indices including the Vogelmann index (VOG) and a 

red edge (RE) validated, with SMAPE values of 8.9% and 

17.2% [116]. Ferral, A., et al., combined satellites with 

nanotechnology to avoid pollution and climate change, using 

LANDSAT, Sentinel, and hyperspectral satellite missions such 

as PRISMA, EnMAP, and PACE by collecting more than 100 

spectral bands each having a width of 10–20nm [117]. Dimobe, 

K., et al., examined the drivers of land degradation and 

deforestation (LDD) in the Total Wildlife Reserve of Bontioli 

(TWRB) using advanced remote sensing and geographical 

information system (GIS) analysis for detection of land use and 

land cover (LULC) changes by employing Landsat images such 

as Thematic Mapper (TM), Enhanced Thematic Mapper 

(ETM+), and Operational Land Imager–Thermal InfraRed 

Sensor (OLI–TIRS) with 30m resolution, achieving an OA with 

a kappa coefficient exceeding 85% using maximum likelihood 

classification (MLC) algorithm for mapping and analysis [118]. 

Mao, D., et al., applied different techniques of Surface Energy 

Balance Algorithm for Land (SEBAL) and Integrated 

Valuation of Ecosystem Services and Trade-offs (InVEST) by 

integrating remote sensing, statistical data, and meteorological 

records to estimate effect on land cover and ecosystem services, 

verifying 256 Landsat TM/ETMp and 289 Landsat OLI scenes, 

the OA in land cover classification was 92% and 94%, use of 

water yield reduce by 11.8% and sandstorm prevention 

increased by 1.3% [119]. An 18-class LULC classification 

approach was expertized by Feng, S., et al., by enabling 

detailed and reliable data for the monitoring and analysis of 

ecosystem changes at the level of a basin using images taken 

by Sentinel-2 to obtain data from the Google Earth Engine 

(GEE) system that was used in the RF algorithms with a 10 m 

spatial resolution by integrating the Shuttle Radar Topography 

Mission (SRTM) model on the GEE platform with a spatial 

resolution of 30 m achieving a OA of LULC maps ranging 

87.45% and 93.02% [120]. Thangavel, K., et al., proposed 

another method using an automated system for wildfire 

detection using HSI and a 1D-CNN that was reliable enough 

for ecosystem monitoring at the basin scale using PRISMA 

satellite data with a 5m resolution and 30m of spatial resolution 

spectrometer covering 400-2505 nm spectral bands, achieving 

real-time data processing with a dataset split of 70% for 

training and 30% for validation and enable trusted autonomous 

satellite operations (TASO) for early fire detection and risk 

mapping to support disaster management [121]. The 

enhancement of imaging spectrometers for vegetation mapping 

in forest environments through simulations was introduced by 

Chaity, M.D. and J. van Aardt, using Digital Imaging and 
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remote sensing Image Generation (DIRSIG) technology, 

achieving OA of 84% with high-resolution configurations such 

as ground sampling distances of 1 m and 3 nm resolutions 

ranging from 380–2510 nm using 1D-CNN for accurate species 

identification [122]. Brook, A., et al., proposed a multiscale 

equipped with CNN for the pan-sharpening of Sentinel-2A 

images with 10 m of spatial resolution using UAV images to 

examine plant responses, and evaluated using the QNR index 

of 0.87, Ds spatial component of 0.11, and a Dλ spectral 

component of 0.08 with spectral regions >800 nm supports best 

results, DJI Phantom 4 Pro Quadcopter has 12.4 million pixels, 

a compact field spectrometer OceanOptics USB4000, and NIR-

FLAME ranges from 350–1800 nm with a 0.5 nm bandwidth 

[123]. Mäyrä, J., et al., examined the execution of a 3D-CNN 

in combination with an artificial neural network (ANN), 

support vector machine (SVM), RF, and gradient boosting 

machine for the species classification with high-resolution 

hyperspectral data and LiDAR with 0.5 m of spatial resolution, 

an altitude of 1500 m, achieving a spectral range of VNIR (406-

995 nm) and SWIR (956–2525 nm), with the 3D-CNNs 

achieving F1-score of 0.91 for aspen, 87% of OA and in ANN 

(0.86) of OA [124].  

 

Fig. 4 HSI Applications in Soil and Vegetation 

Monitoring 

6. Technological Advances in HSI for 

Environmental Sensing 

Recent advancements in HSI for environmental sensing have 

enhanced the data collection. It captures a broad range of light, 

allowing for the identification of spectral differences in 

pollutants. Technological advances are concentrating on 

making hyperspectral sensors portable and affordable, which is 

used in drones, and satellites. Improvements in sensor 

calibration and data fusion techniques have enhanced the 

accuracy and reliability of environmental models. Stuart, M.B., 

et al., proposed a low-cost HSI for laboratory purposes using a 

miniature spectrometer, rotary mirror setup, and Thorlabs 

Plano-convex lens with >97% reflectance, 340-850 nm of 

spectral range and 15 nm of resolution and an image resolution 

of 128 × 128 pixels, which is used in fruit quality, tooth color 

determination, and volcanic rock mineralogy applications 

[125]. To obtain precise spectral details from mm-scale spatial 

regions Stuart, M.B., et al., introduced a semi-portable, cost-

effective, and high-resolution HSI that utilized Canon EF-S 

lens, Edmund Optics diffraction grating, and a Hamamatsu 

imaging sensor ranging from 450 nm to 650 nm and 0.29 nm 

of spectral resolution, and 1000 pixel in spatial resolution 

applied on various applications including mining, 

environmental monitoring, petrology, and geological 

exploration, etc [126]. A systematic image mosaicking method 

for environmental monitoring was introduced by Yi, L., et al., 

using ZK-VNIR-FPG480 HSI equipped with a DJI M600 Pro 

UAV with a medium error of 1.76m in the river course area and 

1.9669 m in the forest area, SIFT and RANSAC achieved good 

results ranging from 400–1000 nm and 2.8 nm of spectral 

resolution in 270 bands applied on applications such as mineral 

exploration, water monitoring, and forestry analysis [127]. 

Horstrand, P., et al., proposed a method using HSI in a 

commercial DJI Matrice 600 drone and a Specim FX10 

hyperspectral camera capturing 224 spectral bands ranging 

from 400–1000 nm and used a HyperLCA compressor to 

perform real-time data acquisition greater than 300 FPS, which 

is applied in applications including target tracking, mining, 

environmental monitoring, and remote sensing [128]. An 

advanced mineral classification system developed by 

Radulescu, M., et al., utilizing machine learning algorithms to 

integrate data using the EfficientDet architecture and FinTech 

solution that enabled deep learning with a high accuracy of 

98% in laboratory spectra ranging from 450–950 nm and1650-

160 mm [129]. Integrating of NIR HSI and DCNN techniques 

used by Nie, P., et al., focused on identifying hybrid seeds using 

200 broad bands within the 780–2500 nm range, the 

discriminant analysis models used PLS Discriminant Analysis 

(PLS-DA), SVM, and DCNN, among all the models DCNN 

was highly stable and achieved a classification precision of 

more than 95% [130]. Ahmed, M.T., has proposed a low-cost 

and quality assessment tool for biological and agricultural 

applications using deep learning based on HSI reconstruction 

with 204 spectral bands with a range of 400–1000 nm and 7 nm 

spectral resolution, High-resolution network (HRNET) 

provides higher performance by achieving the lowest mean 

relative absolute error (MRAE) of 0.07, the root MSE of 0.03, 

and the high PSNR of 32.99 dB [131]. A system that estimates 

crop yield and biomass was developed by Li, K.-Y., et al., using 

R and Python, an auto-generated hyperspectral narrowband 

vegetation index calculations and advanced AutoML 

technology uses 216 spectral bands with a range of 409-989 nm 

and 2.69 nm of spectral resolution achieving the best R² of 0.96  

and NRMSE of 0.12 [132]. A Mobile LiDAR Systems (MLS) 

approach based on open-pit mining was introduced by Wajs, J., 

et al., for a Riegl VMZ 400i measurement platform and a 

Velodyne LiDAR sensor in the Simultaneous Localization and 

Mapping (SLAM) method to collect data and localize within a 
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range of 800 m achieving an accuracy of ±5 cm using the 

SLAM-based method [133]. Yang, G., et al., developed an 

Enhanced Mangrove Vegetation Index (EMVI) using an HSI 

approach for a fast and accurate mangrove mapping by using 

data from ZY1-02D, GF-5, Hyperion, and PRISMA satellites, 

focusing on the spectral bands including Green (533 nm), 

SWIR1 (1660 nm), and SWIR2 (2200 nm), and the 

classification have achieved an OA of greater than 90%, which 

shows the high precision of EMVI in the SVM model [134]. 

Zhao, G., et al., presented a novel dual-branch method for 

vehicle trajectory using Light Detection and Ranging (LiDAR), 

an Inertial Measurement Unit (IMU), a monocular camera, and 

GPS to improve joint classification by combining multisource 

heterogeneous data with HSI analysis with a range of 0.38 to 

1.05 μm applied in applications including precision agriculture, 

semantic segmentation, and urban planning [135]. Zhang, M., 

et al., implemented the Structural Optimization Transmission 

Network (SOT-Net) for land-cover classification using HSI 

data and LiDAR classification ranging between 0.38 and 1.05 

μm obtaining an OA of 91.17% in GSOT, it is applied to 

applications including environmental monitoring, forest 

management, and earth observation [136].  

 

Fig. 5 HSI Advancements for Environmental Sensing 

7. Challenges and Future Directions 

7.1 Spatial resolution 

Despite HSI being an essential technique for monitoring 

environmental factors such as vegetation health, water quality, 

and pollution levels, the limitations in spatial resolution have 

been challenging due to its inability to capture fine details over 

large areas which makes it difficult to distinguish variations 

which is essential for accurate analysis. The development of 

sensors and imaging mechanisms has led to a significant 

increase in spatial resolution. Advanced data processing 

techniques and high-resolution sensors have enabled improved 

image clarity, detailed spatial information, and precision by 

enhancing the capabilities of environmental monitoring.  

The spatial resolution limitation that was previously present at 

the meter level can be overcome using long-distance sensing 

and high-resolution as well as trade-off factors in distributed 

optical fiber sensors (DOFSs) according to Guo, Z., et al., who 

have found that these factors contribute to both high accuracy 

and enhanced temporal and spatial response [137]. The Visible 

Infrared Imaging Radiometer Suite Day/Night Band sensor and 

astronaut photographs have recently been developed by 

McIsaac, M.A., et al., with a spatial resolution higher than the 

satellite-based observations for air pollutant concentrations 

[138]. Carle, M.V., et al., used a commercial high spatial 

resolution WorldView-2 (WV-2) satellite launched by 

DigitalGlobe, which contributed 2 m imagery, applied MLC 

and SVM classification to map freshwater to overcome the 

issue of using only 4 m spatially resolved HyMap data to map 

small river paths [139]. A low-cost, freely available satellite-

based IS imagery is used for species identification having a low 

spatial resolution to overcome this limitation, cloud-free 

mosaics of improved imagery have been developed by Helmer, 

E.H. and B. Ruefenacht, for time-lapse images, a regression 

tree used to estimate the digital numbers (DNs) under clouds 

and cloud shadows in a Landsat image from a cloud-free area, 

and the image adjacent the cloud-free image is matched through 

a histogram based on the corresponding area [140]. By 

reconstructing a module with multiple bands and using Fourier 

transform upsampling Bu, L., et al., overcame the limitations 

of space-borne hyperspectral technologies and achieved a high-

resolution hyperspectral image that includes global information 

[141]. 

7.2 Cost 

HSI is expensive because of specialized sensors, optics, high-

resolution detectors, and equipment being used. The process of 

integrating HSI systems into aerial platforms/drones requires 

high deployment and maintenance costs. New approaches have 

been focused on developing low-cost alternatives that would 

utilize cloud computing for storage and data processing in a 

scalable and efficient way. Handling large datasets and 

reducing computational cost, achieving through the use of 

distributed processing algorithms. Cost-effective sensors and 

microfluidic devices can offer precise measurements. 

The cost of IFCB and FlowCAM instruments is too high which 

is why Reale, R., et al., developed a simple and inexpensive 

system that uses microfluidic scanning flow cytometer (μSFC) 

measurements, angle-resolved scattering light can provide 

accurate and quantitative estimates of cellular properties [142]. 

To overcome the limitations of comparable computation 

resources of HSI across increasing camera numbers, Zheng, P., 

et al., discovered cloud computing as a promising solution for 
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HSI storage and processing utilizing Spark, which can be 

scalable for storage capacity and provide high-performance 

computing power, as well as employ distributed parallel 

unmixing algorithms including parallel pixel purity index (PPI) 

and sum-to-one constrained least squares (SCLS) [143]. Using 

HSI instruments is limited to research laboratories because of 

the high cost of collecting data from airborne platforms 

therefore, Stuart, M.B., et al., have introduced a Low-Cost 

High-Resolution HSI for monitoring by enabling an important 

area for further development [126]. Due to computational 

complexity, mathematical optimization techniques and 

manifold learning make solving processes challenging when 

dealing with large datasets that must be eliminated to 

overcome, Yi, W., et al., demonstrate the use of Uniform 

Manifold Approximation and Projection (UMAP) as a cost-

effective function for obtaining arbitrary fuzzy topological 

structures in high-dimensions [144]. Interband redundancy 

analysis (IBRA) removes redundant bands by decreasing the 

search space within a feature extraction framework developed 

by Morales, G., et al., using Dimensionality reduction 

techniques to reduce the spectral bands to address the limitation 

of spectral channels in HSI [145].  

 

7.3 Dataset 

The limitations of datasets including missing data, a lack of 

labeled samples, and imbalanced class distributions pose a 

major challenge to the performance of models and their 

accuracy. To overcome these issues, it is essential to utilize 

advanced technology and innovative approaches such as data 

generation, transfer learning, and data augmentation.  

To overcome the disadvantage of approximately 1% of the 

dataset's missing data, Ambler, G., et al., applied hotdecking 

for incomplete data, which involves sampling and replacing 

observed data and matching can reduce biased regression 

estimates. Additionally, Multiple Imputation by Chained 

Equations (MICE) is used, which is assigned with missing data 

based on the conditional density of each predictor that is best 

performing [146]. The limitation of collecting only a small 

number of labeling samples in practice is overcome by the 

model discovered by Ligthart, A., et al., that self-training is best 

out of 4 semi-supervised models that outperform traditional 

supervised models when data is limited as it can reduce labeling 

data by maintaining high performance which is useful in 

retrieving labeled data [147]. Common hyperspectral datasets 

have a limited number of labeled training samples to overcome 

the limitation Ahmad, M., et al., introduced an MLR-based 

classifier for high-dimensional multi-class HSI data, which 

actively selects data based on the sample’s fuzziness and non-

randomized selection of samples to be random [148]. Utilizing 

two distinct datasets, a simulated spatiotemporal field and an 

actual dataset of temperature measurements requires more 

storage capacity to overcome this da Silva, L.A., et al., 

implemented GAN to address the issue of imbalanced data in 

the manufacturing domain such as videos [149].  Combining 

spectral and visible images from various sensors, Kizel, F. and 

J.A. Benediktsson, proposed a methodology that uses IPs for 

radiometric calibration of RGB values before processing them 

with spatial features-aided neural network (SFANN) data to 

improve resolution and accurate representation of tree species 

to map in complex forests [150]. Previous observations have 

hindered the early results of river channel acid water mapping, 

using satellite images proposed by Wu, T., et al., can overcome 

this disadvantage by combining modified normalized 

difference water index (MNDWI) and Otsu’s feature to extract 

the channel centerlines using water mask maps and 

RivWidthCloud providing high temporal resolution and global 

coverage [151].  

7.4 Spectrometer 

The spectrometer is used for environmental monitoring, 

material evaluation, and atmospheric research but, the 

instruments are not effective because of some limitations like 

environmental sensitivity that changes measurements and 

calibration. The complexity of data processing generates a huge 

amount of data. Technological advancements have focused on 

both hardware and software which has led to more robust 

calibration methods, application of advanced algorithms for 

more efficient data analysis, and designing high-sensitive 

sensors that can operate in a wide range of environments. 

Airborne HSI could not calibrate with rigorous 

spectroradiometric, as artifacts affect the best-behaved 

instruments to overcome this limitation Jia, G., et al., have 

recently demonstrated an Airborne Prism Experiment (APEX), 

and a center wavelength (CWL) shift that aims to minimize 

pressure, temperature, and vibrations during flight operations 

and calibration using atmospheric absorption features and 

characteristics from standardized reference material filters 

within the APEx in-flight characterization facility [152]. The 

measurement of air pollution in a designated area by drone 

scanning is problematic, as the single-flight capacity is 

outweighed by the task area to overcome this disadvantage, 

Baumgart, J., integrated the Carthaginian War Elephant Swarm 

Optimization (CWESO)algorithm, air pollution is monitored 

and analyzed by drones by adapting variability in the wind with 

the addition of supplementary scout drone to explore their 

surroundings and coordinate the entire team [153]. The 

limitations of the underwater spectral imaging system 

employing electric filter wheels to capture single-band images 

in various bands have been overcome by Song, H., et al., who 

designed a Liquid Crystal Tunable Filter (LCTF) that is a 

compact and minimally constructed optical geometry, so it can 

rapidly generate high-quality spectra by arbitrarily switching 

between various spherical bands for reliable spectral image 

data [154]. To overcome the challenges related to the accuracy 

of the input cross-section and the same absorption bands, Zhou, 

J., et al., developed mid-infrared (mid-IR) silicon nitride (SiN) 

waveguides sensor outlined and examined for VOC detection 

to perform on-chip mid-IR spectral measurements [155]. For 
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the identification of pollutants, HSI sensors are necessary to 

have >100 spectral bands between 10–20 nm, and other 

systems range from 500–900 nm with >10 nm resolution and 

spectra at 1 nm to overcome this drawback, Xiao, Y., et al., 

developed high-resolution lidar technique that allows accurate 

retrieval of extinction and transmission through narrower 

spectral filters to differentiate between molecular and 

particulate backscattering patterns [156]. Many spectral bands 

form a complex structure for data to overcome this limitation, 

Zhang, L., et al., used the BS method to decrease the cost and 

computational complexity of HSI in the spectral region [157]. 

Fan, S., et al., utilized the spectral data from spectroscopic 

techniques by analyzing the feature selection method, PLS-DA, 

and SVM combined with data level, decision level, and feature 

level, achieving better classification and overcoming the issue 

of GaiaField Hyperspectrometer ranging from 400-1000 nm 

and 2.8 nm of spectral resolution [158].  

7.5 Band determination 

The development of robust band-determination methods is 

required to overcome challenges such as overlapping spectral 

bands, background noise, and huge amounts of information, 

requiring appropriate analysis and modeling frameworks to 

provide more accurate predictive analyses and optimize data 

interpretation. Many studies have proposed new methods to 

overcome these limitations using machine learning, statistical 

models, and hybrid approaches to select spectral bands for 

specific applications. 

The instrument’s limitation of the magnitude of background 

noise and the similar absorption and composition of VOC 

species pose significant challenges to accurate VOC detection. 

Zatta, D., et al., proton transfer reaction-mass spectrometry 

(PTR-MS) can overcome these challenges to enable VOC 

detection with higher time resolution, approximately ten 

seconds/minute for quadrupole mass analyzers and almost 

instantaneous for time-of-flight mass analyzers [159]. 

WResVLM, a semi-supervised learning framework that 

employs vision-language models (VLMs) to restore images in 

diverse weather conditions, has been developed by Xu, J., et al. 

to overcome the disadvantage of air pollution caused by low 

light levels during adverse weather events. The technique 

evaluates the images using VLM and selects pseudo-labels to 

train the restoration model by applying prompt learning to 

adapt the VLM for modifying the restoration process. The 

framework addresses the domain gap between real and 

synthetic data during early training stages by combining 

existing image restoration techniques with the proposed VLM 

evaluation and gradually updating pseudo-labels, and weather 

prompts to maximize performance [160]. The limitation of the 

nonspecific and multi-collinear nature of Soil VNIR spectra 

due to redundant noise and spectral overlap hinders its ability 

to predict soil properties accurately to overcome this, 

Laamrani, A., et al., introduced a multimethod modeling 

approach that utilizes Random Forest, SVM, and PLSR models 

for band selection and to examine the selected bands by 

identifying optimal bands within the VNIR and SWIR spectral 

ranges that are sensitive to Soil Organic Carbon (SOC) and 

useful for mapping by providing a new framework for 

developing sensors designed for SOC detecting [161]. BS 

techniques are incorporated into terrestrial HTD techniques for 

detecting underwater targets, which rely on appropriate BS 

techniques to select band subnets with spectral wavelengths 

that connect to the target of interest by lowering the size of the 

dataset to overcome this limitation, Song, M., et al., adopted the 

virtual measurement (VD) method to determine the number of 

unsupervised clusters to overcome the minimum evaluation of 

band sets, the local optimal solution of the multi-objective 

development algorithm [162]. 

7.6 Hardware complexity 

HSI technology faces severe challenges because of hardware 

complexity, including sensor design, energy efficiency issues, 

and high manufacturing costs. These limitations restrict the 

widespread use of HSI in expert research. Using of advanced 

technology can overcome these problems through improved 

system design, lightweight components, and the refinement of 

measurement techniques by increasing data accuracy and 

efficiency. 

Sensor design and storage capacity limitation can be overcome 

by implementing sensor node architectures by Lopriore, L., 

who posed significant challenges in terms of hardware 

complexity and energy consumption, limits the use of highly 

complex devices like memory management units for virtual-to-

physical address translation. An interface for protection 

hardware is formed inside the microcontroller, the memory 

protection unit (MPU), interposed between the processor and 

the memory devices consisting of primitives called protection 

operations. To ensure memory separation between tasks, the 

compiler inserts the calls to these operations at specific 

locations within the object code while keeping the application 

programmer from explicitly calling them [163]. The use of HSI 

instruments is restricted to research laboratories because of 

weight and high cost to overcome this limitation, Guo, T., et 

al., implemented spectral resolution that is primarily 

determined by the quality of an optical path and the thickness 

of one grating in the prism for spectrum capture, as well as the 

mechanical scanning component for image acquisition [164]. 

The limitation of weak scattering sunlight at 200-350 nm, using 

the blackbody calibration down to 200 m used by Thuillier, G., 

et al., is necessary for the enhancement of the UV light signal 

rather than simply combining the deuterium lamp and black 

beam for the SL1 instrument for absolute calibration. The 

utilization of a double monochromator with holographic 

gratings greatly minimizes scattered light, making UV 

measurements more effective [165]. SCanning Imaging 

Absorption Spectrometer for Atmospheric CHartographY 
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(SCIAMACHY) is a passive instrument to overcome this 

limitation, Shea, Y.L., et al., discovered that Earth-reflected 

radiation from SCIAMACHY for atmospheric reflectance over 

large spatial scales is advantageous for studying climate change 

achieved by changing Shannon entropy across different 

instruments and scale [166]. 

8. Conclusion 

In conclusion, HSI in environmental sensing has been enhanced 

by technological advancements. The development of imaging 

techniques has enabled to obtain data with greater accuracy, 

and machine learning models have been introduced to improve 

the interpretation of large datasets. The advancement in 

portable and cost-effective technology has enabled HSI to be 

integrated with drones and satellites, making it more suitable 

for remote and large-scale monitoring. By combining AI, IoT, 

and sensor systems, HSI can offer significant progress. In 

future developments, spatial resolution should be improved. 

HSI can enhance model performance by incorporating multi-

modal datasets and deep learning algorithms. Low-cost and 

rapid small-scale sensors offer substantial potential for 

decentralized monitoring. Additionally, implementing cloud-

based solutions and collaborative data fusion techniques can 

facilitate the establishment of sustainable environmental 

management strategies. HSI can be instrumental in 

environmental monitoring by providing valuable insights to 

monitor climate change, biodiversity loss, and pollution. The 

future is promising, with a lot of potential to contribute to 

sustainable development and environmental preservation.  
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