

ERGONOMIC TECHNIQUES FOR ENHANCEMENT IN SPRAYING OPERATION AND REDUCING HUMAN INTERVENTION TO A MINIMUM BY MACHINE CONTROL OR CYBERNETICS

Kedar Vipat¹, Prof. Ibrahim Kanchwala², Prof. Manish Soni³

¹P.G. Scholar (IEM) ²Assistant Professor(Mech. Engg. Dept.) ³Asso. Professor & Head (Mech. Engg. Dept.) Mahakal Institute Of Technology, Ujjain, M.P., (India) ^{1,2,3}

Abstract - To safeguard the workers of industrial sprayers who involved in grimy, smeared activities and affected by MSDs (Musculoskeletal diseases) due to unsanitary condition and slovenly environment. Spray paint materials are toxic, flammable to the workers and surroundings.

The aim of the research was to establish a strategic model for ergonomics implementation for spray painting workers, basing on the theoretical background of ergonomics in order to improve the management of spray painting workers. This study has focused on finding a solution to the necessity of ergonomics approach in spray painting enterprises. The theoretical model and its implementation will enable organizations to apply the knowledge of ergonomics to production operations, in relation with interaction of technologies, work organization and human resources. A significant point made in this thesis is that the matter of ambiguous responsibilities can also be connected to organizational structure. This research will then focus on how the results of the ergonomic analysis can be used to drive the justification and design of potential automated solutions to improve the ergonomics of the task for the worker.

Key Words: OSHA, Musculoskeletal disorder, Heat Stress, EMIT Model.

1.INTRODUCTION

An industrial spraying operation, as defined by The Occupational Safety and Health Administration (OSHA), is "the employment of methods wherein organic or inorganic materials are utilized in dispersed form for deposit on surfaces to be coated, treated, or cleaned"

Musculoskeletal disorders (MSD) contains a wide variety of degenerative and inflammatory conditions which are causing pain and discomfort among the tendons, ligaments, muscles, joints, supporting blood vessels and nerves. Any mismatch between the requirements of the work, worker's physical capacity and work environment leads to WMSDs. The etiology of WMSDs ranges from forceful or repetitive movements to poor working postures or environments and it affects worker's body (Kuorinka, et al. 1987). Da Costa and Vieira

(2010) studied that excessive repetition, awkward posture and poor working environment are the main risk factors of WMSDs.

Ergonomic studies may reveal that the risk to exposure to toxic chemicals is negligible, but the risk of heat stress is large

The product must meet not only functional and aesthetic requirements, but ergonomic quality requirements as well.

From the view point of design, evaluation of the psychological, morphological, physiological and biomechanical behavior of the users during the product use could significantly help in improving the product quality and its usability

2. METHODOLOGY

From the current literature on the human factors of industrial spraying tasks, it was evident that the ergonomic risks consisted of the two areas

General Risk	Details		
Area			
Environmental	Exposure of chemicals in the air, heat, burns, etc.		
Musculoskeletal	Musculoskeletal disorders (MSDs)in the back, hands, shoulders, wrists and otherupper extremities.		

Table 1: General Risk areas for industrial sprayingtasks, from the literature

Using this research knowledge, it was determined that the ergonomic measures should specifically focus on the more detailed areas.

Impact Factor: 7.185

ISSN: 2582-3930

Risk Area	Details	Measure
Overall	Examples include exposure to	OSHA
environmental	harmful chemicals and	recordable
risk	substances	injuries and
		illnesses rate
Wrists and hands	Loads experienced by the wrists	Job Strain
	and hands, specifically from	Index (JSI)
	holding heavy equipment in	
	unnatural postures	
Postures (Lower	Industrial spraying operations	State
Back and upper	typically force people to hold	Screening
extremities)	unnatural positions with	Tool
Heat risk	These tasks typically require	Heat Stress
	workers to work in not air-	tool from the
	conditioned environments in	Health and
	non-permeable protective	Safety
	clothing (ex- HAZMAT suit)	Executive

Table 2: Specific risk areas and their measures, forindustrial spraying operations

The non-fatal occupational injuries and illness incidence rate is defined as "the number of employees per 100 full-time employees that have been involved in a recordable injury or illness". , this incident rate measures and covers the general environmental risks of industrial spraying tasks, such as slips, falls, injuries from equipment, and muscle strains.

Thresholds for OSHA incidence rates (R)

3. JOB STRAIN INDEX

The job strain index, developed by Cornell University's Ergonomics and Human Factors (Moore, J.S. and Garg, A. (1995) American Industrial Hygiene Journal 56:443-58) sector, measures the risk of injury to the hands and wrists based on the relevant factors of repetition, force, duration and posture of the hands and wrists

	Intensity of Exertion (IE)	Durat ion of Exert ion (DE)	Effo rts/ Min ute (EM)	Hand/ Wrist Posture (HWP)	Spee d of Work (SW)	Durat ion per Day (DD)
Expo sure data	EFFOR TFUL	72 %	15	BIASE D	BIAS ED	6-10 hrs
Ratin gs	2.5	2.5	1.5	1	2	1.5

JSI = IE x DE x EM x HWP x SW x DD

JSI = 2.5 x 2.5 x 1.5 x 1 x 2 x 1.5 = 24.75 Table 3 :Job Strain Index Evaluation tool for the hands and wrists

Thresholds to use interpret results from the Job Strain Index

4. APPLICATION OF THE ERGONOMIC METHODOLOGY

This section aims to clarify and demonstrate the developed methodology.

4.1 The industrial spraying task studied

The industrial spraying operation analysis consist of cleaning several types of small manufacturing, military parts using two pressure washing methods:

(1) High temperature and

(2) High pressure power washing.

4.2 Ergonomic Measures and Data Collection

OSHA incidence rate calculation: The OSHA incidence rate proves to be a simple calculation, requiring the number of OSHA recordable injuries and illnesses and total number of worked hours (among all employees performing that job) over a period. Then, the formula standardizes the injury and illness data to span over 100 employees to allow companies to evaluate how safe a certain job is. The actual calculation is shown in the equation below.

Equation 1: OSHA recordable injuries and illnesses equation

There were 5 recordable injuries or illnesses recorded over a period of 1 year, in which 14 employees worked a total of 38,720 laborhours. These inputs were used to calculate the incidence rate for this task, and were used to analyze the overall safety of the work environment by comparing this number to industry standards.

4.3 Job strain index calculation

The Job Strain Index calculation method first requires the analyst to use the relevant tables toclassify each of the six measures of the tool (intensity of exertion, duration of exertion, etc.)

Figure , below, shows an example of the excel workbook and calculations for using this proxy method to determine the amount of time per shift that workers spent in the different, stressful postures.

Impact Factor: 7.185

ISSN: 2582-3930

Productive hours				
in a				
workday(hrs):	8	Legends	Attention	
			threat	
Area	Description	% of time in this posture	Time per day in this posture(hrs)	
Lower Back Hours spent in be posture *wo	Working with the back bent forward more than 30°(without support or the ability to vary posture) Working with the back bent forward more than 45°(without support or the ability to vary posture) ent over posture orking hours pe	20.10% 65.60% e per shift = r shift * we	0.35 4.19 % of time spent ighting factor	tin
Hours spent in po	sition per shift	= 65.6% *8	8 hours * 80%=4	.19

4.4 Method for combining measures- EMIT model Because these tools were combined as part of this research, to create a unique, intuitive methodology to evaluate industrial spraying operations, a methodology for combining the score swas derived. Due to the nature of the interactions between the different measures, a simple weighted factor model would not prove adequate for deriving an overall score for the overall ergonomics of the spraying task.

SEVERIT Y OF INJURY	EXPOSUR E	AVOIDANC E	RISK REDUCTIO N CATEGOR Y
S2 Serious	E2 Frequent exposure	A2 Not likely	R1
Injury		A1 Likely	R2A
more than first aid	E1 Infrequent exposure	A2 Not likely	R2B
		A1 Likely	R2B
	E2 Frequent exposure	A2 Not likely	R2C
S1 Slight		A1 Likely	R3A
Injury first aid	E1 Infrequent exposure	A2 Not likely	R3B
		A1 Likely	R4

Table 5:	Risk	reduction	classification	matrix
----------	------	-----------	----------------	--------

In addition to providing a means of classifying the different
levels of each category (severity, exposure, avoidance) as an
overall score, this ANSI framework provides requirements
for improving the safety of the robotic work cell. It requires
all R1 and R2 risk levels to be improved, so that they
become R3 or R4 risk levels (very low risk). Regarding the
task of combining my four ergonomic tools for the industrial
spraying operations ergonomic analysis, the ANSI model
provides an excellent inspiration and framework.

Thus, inspired by the ANSI/RIA R15.06-1999 risk management framework, I developed a model, called the **EMIT (Ergonomic Measures Integration Tool) model**, to combine the results of the four ergonomic tools into a combined metric.

Activity details	Time with bent more then 45° without support (mins)	Total time observed in the random sample (mins)	
Inspecting and			
moving parts	2.6	5	
Spraying	1.6	3	
Getting supplies and			
spraying	3.93	4	
Spraying and			
inspecting	3.67	6	
	11.8	18	
Total % of time spen	t with back bent		
more than	more than 45°		

Table 4: Time analysis

I

Impact Factor: 7.185

ISSN: 2582-3930

 Table 6: Definitions of terms and classification categories

 for the EMIT model

OSH	Job	State	Heat	Combinati	Ris
А	strain	postur	stress	on of	k
Rate	Index	e	checkli	scores	leve
		Tool	st		1
			Т	TTTT	R1
		Т	А	TTTA	R1
			S	TTTS	R1
			Т	TTAT	R1
	Т	А	А	TTAA	R1
			S	TTAS	R1
			Т	TTST	R1
Т		S	А	TTSA	R1
			S	TTSS	R1
			Т	TATT	R1
		Т	А	TATA	R1
	۸		S	TATS	R1
	А		Т	TAAT	R1
		Α	А	TAAA	R2
			S	TAAS	R2

 Table 7: Part of the actual EMIT model to combine the ergonomic metric

5. RESULT

Current state ergonomic analysis Results

OSHA injuries and incidence rate

The resulting OSHA incidence rate for the industrial spraying operation analyzed was 25.8. This was derived from using the OSHA incidence rate formula with 1 year worth of data from the task studied. The interpretation of this number is that roughly 26 out of 100 employees would have a serious OSHA recordable injury or illness from this job in a span of one year.

The result of R = 25.8 puts this task well over the threshold for a Threat, and is off the scale

OSHA Incident Rate Calculator

Figure 1: OSHA incidence rate metric current state results

5.1 Job Strain Index

The scores for each of the 6 parts of the job strain index tool are shown in the rating row, along with the description for each classification below it. The job strain index assessment resulted in a range from 4.5 to 9, depending on whether the intensity of the task should be rated as somewhat hard or hard. For the purposes of this classification, the resulting overall classification will be the same whether this measure results in a threat (T) or attention(A) ranking.

The final classification of the job strain index for this case study evaluation is a A.

Impact Factor: 7.185

ISSN: 2582-3930

	Intens ity of Exerti on (IE)	Durat ion of Exerti on (DE)	Effor ts/ Minu te (EM)	Hand/W rist Posture (HWP)	Spe ed of Wo rk (S W)	Durat ion per Day (DD)
Ratings	3	2	0.5	1.5	1	1
	6					
Descrip tion	Some what hard or hard	50- 79%	<4	Fair	Slo w	4-8 hrs

JSI = IE x DE x EM x HWP x SW x DDJSI = 3.0x2.0x0.5x1.5x1.0x1.0JSI = 4.5 or 9 (if IE is 6 instead of 3)

Table 9: Job Strain Index current state analysis results

5.2 State posture screening tool

The State posture screening tool assessment resulted in 4 categories (measures) being in the Threat zone, and the rest of the ten measures being in the no risk zone.

Area	Description	Risk	Actual Results (hours per day)
Lower Back	Working with the back bent forward	Threat (>2 hours	4.6
Buck	more than 45°	per day)	
Hands and wrists grasp grip	Gripping Threat plus wrist deviation	Threat (>3 hours per day)	5.9
Hand arm vibration	Using grinders ,sanders,jigsaws or other hand tools that typicallly have moderate vibration levels	Threat(>4 hours per day)	5.9
neck posture	Working with the neck bent forward more than 45°	Threat(>4 hours per day)	4.6

 Table 10: State posture screening tool current state results

5.3 Heat stress assessment tool

The heat stress assessment results indicated 3 measures above 1, and three measures below 1.

Area	Rating	Description of rating
Air temp	0	Neutral
Radiant temp	1	Heat source from sprayer is present and the tubing from the sprayer is hot to touch, Employees feel hot when they stand next to the heat source
Air velocity	-1	Cool air at a moderate air speed
Humidity	6	Vapour impermeable PPE is worn
Clothing	5	Light weight vapour barrier suits
Work Rate	2	Moderate hand and arm work, intermittently handling heavy objects

✓ Case 1 : All times except the summer months
 ✓ Case 2: Summer months(the air temperature category shifts from 0nto 2;all other sources are same)

Table 11: Heat stress assessment tool results

5.4 Overall EMIT model results of the current state analysis

The total combination of results from the four ergonomic analysis tools is TATT.

The user can read off that an TATT combination results in an overall ergonomic analysis score of R1, the highest level of ergonomic risk. Thus, because the task resulted in an R1, steps should be taken to reduce the overall ergonomic risk to the worker. One main way to decrease these ergonomic risks is to automate or partially automate the spraying task. This will be explored in the following discussion/analysis section.

6. ANALYSIS

Areas of concern from the results of the classification tool

Based on the results from the full ergonomic analysis, the following areas proved to be the biggest causes for the unsafe ergonomics of the task (R1 ranking): (1) environmental safety, (2) wrist, (3) humidity, clothing, and metabolic rate (heat stress), (4) the lower back posture, (5) hands and wrists-grip, (6) hands and wrists-vibration, and (7) neck posture. These areas should be what is focused on when designing an alternative to improve the ergonomics of this industrial spraying task

Using the ergonomic analysis results to drive automation design decisions

Upon deciding to improve the ergonomics of this task with a partially automated solution, where robots clean the actual parts, engineers can use the results of the initial ergonomic analysis to drive some of the design decisions. For example, the environmental Threats were a Threat originally, so engineers should design the robotic work cell with extra attention to environmental Threats such as slippery surfaces, uneven surfaces, and ample warning signs, along with the robotic work cell safety features, such as an interlocking barrier around the robot. Secondly, to address the area of risk to the wrist, engineers should ensure that operators do not have to hold or manipulate controls or parts at awkward wrist angles

Regarding postures, engineers should pay special attention to all postures that were classified as Threats in the original ergonomic assessment, as well as new, relevant postures that may spring up with the new tasks of the workers

Potential solution: collaborative path planning, semiautomated work cell

One potential solution to greatly improve the ergonomics of this industrial spraying task is to partially automate is via collaborative path planning. Collaborative path planning is a way of using robotic algorithms to generate a path to follow after gathering a point cloud of data.

Workers' new job tasks

Now, because the robot arm now automatically generates a path to clean the parts and cleans the parts, the worker has a monitoring role, often called a supervisory role. Table 7 shows the worker's job duties before and after this collaborative path planning solution to improve worker ergonomics.

Figure 2: Potential Collaborative Path Planning solution work cell

	Before partial automation	After partial automation
Worker's job duties	 Moving parts, Inspecting parts, Gathering supplies, Spraying parts 	 Supervising the robots, which are doing the spraying, modifying the robot's path as needed, addressing any errors made by the robot

 Table 12: Worker's job duties before and after the collaborative path planning partialautomated solution

Evaluation of the new, semi-automated work-cell

Based on the workers' new job duties in this partially automated solution, the ergonomic analysis will be reassessed to see if the scores will improve, as desired. Note, that the reassessments are on the new, hypothetical role of the workers in this new, partially automated industrial spraying operation.

Out of the four measures will almost certainly be classified in the no risk category (N), instead of the Threat category (H). This is because if the worker does not have to hold the sprayer, bendover to spray parts, and move parts for most of their day, the posture and wrist risks will disappear.

Tool/ Measure	Before partial	Ergo
	automation	Improvements
	solution	
OSHA recordable		Uncertain, but
injuries		would likely
		improve the
		OSHA rate
Job strain Index		Duration would
		likely decrease to
		less than 10%
		,intensity of
		exertion decrease
		to light (1)
State screening	After partial	All postures
tool	automation	threats go away
	solution	
Heat stress		Humidity and
checklist		clothing heat
		threat would go
	×	away

Tool /Measure	Threats Attention Safety
OSHA recordable injuries and illness incidence rate	25.8 ■ R between 10 & 2 ↓ R =8 ■ R =4 ■ ●
Job strain index	4.5 -9 JSI = 7 JSI between
(JSI)	JSI=3 0.25 & 2
State screening	4 or more Ts 1 or more T
tool (posture)	No Threats

Justification for automation

Overall, the resulting score of R4 from the ergonomic evaluation of the partially automated solution shows that the ergonomics for workers drastically improved from implementing this solution with automation. Thus, this provides a justification for automation from an ergonomics perspective. Although other factors will likely still be considered when automating, such as the financial return on investment and productivity, this ergonomic measure is also important in justifying automation. Although improvements in safety can, to some degree, be quantified in dollars, protecting employees should be a toppriority for companies.

7. CONCLUSION

This research accomplished the initial goals of the analysis, namely creating a tool to comprehensively evaluate the ergonomics of industrial spraying tasks, using the tool to assess a task before and after implementing a potential partial automated solution, and using these results justify a solution involving automation. The overall conclusions from this research are as follows:

1. Industrial spraying tasks can be comprehensively evaluated, and the tool developed from this research can be used by people without ergonomics backgrounds to evaluate the ergonomics of any industrial spraying task.

2. The ergonomic methodology derived from this research can be used to effectively improve the ergonomics of an industrial spraying task by helping to justify automated (or partially automated) solutions and make design decisions regarding new environments and work tasks for workers.

8. REFERENCES

01. Hindawi Mathematical Problems in Engineering Volume 2021, Article ID 9957299, 25 pages

https://doi.org/10.1155/2021/9957299 developing a Model with Ergonomic Aspects Using Endurance Time and Rest Allowance for Supporting the Optimization of Production Line Material Supply: A Case of Single-Operator Multi-Materials

02. Development of an intelligent ergonomic model for Threats predictions in Domestic TasksIOP Conf. Series: Materials Science and Engineering by H O Adeyemi QR2MSE 2020

03. https://www.researchgate.net/publication/347311430 Work Practices and Health Problems of Spray Painters Exposed to Organic Solvents in Ile-Ife, Nigeria Temitope O Ojo Article in Journal of Health and Pollution · December 2020

04. https://www.researchgate.net/publication/319851863 A study on the ergonomic assessment in the workplace Conference Paper in AIP Conference Proceedings · August 2017 DOI: 10.1063/1.5002052

05. Ergonomics Awareness and Employee Performance: An Exploratory Study Vol. 17, No. 4 (44/2017), 813-829, December 2017

06. Strategic Model for Ergonomics Implementation in Operations Management Henrijs Kalkis1* and Zenija Roja2 1Management Science, Dr sc admin, Eur Erg, Riga Stradins University, Dzirciema street 16, Riga, Latvia 2Dr med, Eur Erg, University of Latvia, Jelgavas street 1, Riga, Latvia *Corresponding author: Henrijs Kalkis, Management Science, Dr sc admin, Eur Erg, Riga Stradins University, Dzirciema street 16, Riga, Latvia, Tel: +371 29739399; Email: Henrijs.Kalkis@gmail.com Received date: May 15, 2016; Accepted date: July 22, 2016; Published date: July 29, 2016

07. https://www.researchgate.net/publication/303774685 Ergonomics-A Way to Occupational Wellness of Workers Engaged in Industrial Activities: Specific Reference to Assam Article in Journal of Ergonomics · January 2016 DOI: 10.4172/2165-7556.1000164

08. Operations management practices and performance of schneider electric kenya by washington kilonzo mbolonzi school of business, university of nairobi 2016 REG. NO: D61/72470/2014

09. Digital human modeling in Ergonomic design and Evaluation M. Satheeshkumar Department of Mechanical Engineering College of Engineering Trivandrum Thiruvananthapuram International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN 2229-5518

10. Ergonomics Job Threat Evaluation of Building Cleaners Kyung-Sun Lee, Inseok Lee, Hyunjoo Kim, Kyunghee Jung-Choi, Jinwook Bahk, Myung-Chul Jung Department of Industrial and Information Systems Engineering, Ajou University, Suwon, 443-749 Journal of the Ergonomics Society of Korea Vol. 30, No. 3 pp.427-435, June 2011