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Abstract - Automated effort estimation that maps engineering 

work to agile sizing units (e.g., T-shirt sizes) would greatly 

streamline planning and release forecasting. We propose MR-

Size, an explainable, repository-driven estimator that computes 

a composite complexity score for GitLab merge requests using 
code diffs, per-file weights, contributor dynamics, and 
semantic contextual signals (keywords and text 
embeddings). The estimator produces T-shirt sizes and 
interpolated day estimates while providing per-file 
explanations to maintain interpretability. Across 150 merge 
requests, MR-Size achieved a Pearson correlation of 0.79 and 
a mean absolute error of 2.34 days, matching LOC baselines 
while offering per-file explanations. This paper describes the 
method, datasets, planned evaluation, and reproducibility 
artifacts. We outline an empirical protocol comparing MR-
Size against LOC baselines, COCOMO-style models, and 
learned regressors (e.g., XGBoost). The contributions are (1) 
a reproducible MR→T-shirt pipeline, (2) an explainability-
first complexity formulation, and (3) a benchmarking plan 
across open-source and industrial repositories. 

Keywords: Effort Estimation, Merge Request, T-Shirt Sizing, 
Repository Mining, Explainability. 

 

1. INTRODUCTION 

Estimating software development effort remains a long-

standing challenge in software engineering. Inaccurate 

estimates lead to missed deadlines, overloaded teams, and 

planning inefficiencies. Classic parametric models such as 

COCOMO translate size metrics like SLOC into cost and effort 

but are often misaligned with modern agile practices and 

iterative delivery models [1]. Agile teams instead favor relative 

estimation methods such as story points or T-shirt sizes because 

they are quick, team-oriented, and tolerant of project-scale 

variation [2]. However, these human-driven estimates suffer 

from inconsistency and drift across sprints and teams, 

motivating the search for automated, data-driven alternatives. 

The increasing availability of fine-grained development data in 

Git, GitHub, and GitLab repositories has accelerated research 

in Mining Software Repositories (MSR) to extract metrics 

linked to productivity, quality, and effort [3], [4]. Early work 

demonstrated the feasibility of using repository activity to 

estimate developer effort in open-source projects such as 

OpenStack [5], while later studies established reproducible 

mining processes and datasets for empirical studies [6]. Yet, 

most approaches operate at coarse project or issue levels rather 

than at the merge request (MR) granularity that reflects real 

engineering effort in agile workflows. 

Recent trends in AI-based effort estimation have introduced 

machine learning and deep learning models to improve 

prediction accuracy. Ensemble models such as Random Forest 

and XGBoost remain competitive for tabular effort features [7], 

[8], while embedding-based models show promise in capturing 

semantic complexity from text [9]. Systematic reviews 

highlight growing interest in AI-driven estimation but 

emphasize a lack of explainability and limited adoption in 

industrial settings [10]. Emerging work explores explainable 

and hybrid estimation approaches, combining feature 

interpretability with modern ML pipelines [11], [12]. In 

parallel, explainable AI (XAI) research for software 

engineering underscores the importance of transparency and 

developer trust when introducing automated decision systems 

[13], [14]. 

This paper positions MR-Size at the intersection of agile 

planning, MSR, and explainable AI. The method (i) extracts 

per-MR code and social metrics, (ii) computes an interpretable 

composite complexity score using weighted file changes, 

contextual keywords, and contributor dynamics, and (iii) maps 

that score to agile T-shirt sizes and interpolated day estimates. 

The approach is designed to be both practical (integrable into 

GitLab pipelines) and scientific (benchmarkable against human 

estimates and classic baselines). By emphasizing explainability, 

MR-Size enables developers to understand why a merge request 

was sized a certain way, encouraging trust and reproducibility 

across teams. 

Research Questions (RQs) 

● RQ1: Can MR-level repository signals 

predict agile T-shirt sizes and day estimates with 

acceptable accuracy across projects? 
● RQ2: Which feature categories (code 

metrics, contributor signals, semantic text features) 

most influence estimation accuracy? 
● RQ3: How does the explainable heuristic 

(MR-Size default) compare with learned regressors 

(linear regression, Random Forest, XGBoost) and 

classic baselines (LOC, COCOMO)? 

2. RELATED WORK 

COCOMO & algorithmic models. Parametric cost estimation 

(COCOMO family) remains a foundational baseline for 

software effort modelling based on project size and cost drivers 

[1], [15]. While these models provide interpretable formulas 

and cost factors, they are less suitable for agile projects with 

frequent, small, incremental commits. Their reliance on static 

parameters makes them brittle in dynamic CI/CD environments 

where iteration velocity and merge frequency dominate effort 

signals. 

https://ijsrem.com/
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Repository mining for effort. Repository mining studies have 

explored extracting developer and code metrics from version 

control systems to estimate productivity and effort. Robles and 

Gonzalez-Barahona demonstrated the feasibility of mining 

open-source projects such as OpenStack to estimate 

development effort [5]. Mockus et al. analyzed Apache and 

Mozilla repositories to link commit-level activity and 

ownership patterns to human effort [16]. The MSR community 

has since formalized data collection and cleaning processes for 

reproducibility [3], [4]. Karna and Vuković applied data mining 

techniques to agile development datasets to build lightweight 

estimation models from repository features [6]. 

Agile sizing and story points. Empirical work on agile 

estimation highlights the subjectivity and drift of human-

assigned story points [2]. Automated approaches attempt to 

predict story points or resolution time from issue metadata and 

textual content [17]. However, most focus on issue-level 

estimation rather than code-level signals such as merge 

requests, limiting their use in continuous integration workflows. 

Machine learning for effort estimation. Traditional ML 

models such as Random Forest, XGBoost, and ensemble 

regressors have shown consistent performance in predicting 

software effort [7], [8]. More recent studies incorporate neural 

or embedding-based features to capture semantic complexity 

[9]. Budel Rossi and Fontoura provide a 2025 systematic 

review showing that AI-based estimation methods are 

increasingly used across domains but often lack explainability 

and generalization [10]. Pérez Piqueras et al. (2025) extend this 

by applying feature selection and explainability techniques 

(e.g., SHAP, LIME) to agile estimation tasks, demonstrating the 

growing trend of interpretable ML [11]. 

Explainable AI and emerging approaches. Recent reviews 

identify a lack of transparency in AI systems for software 

engineering tasks. Mohammadkhani et al. (2023) surveyed 

explainable AI for software engineering and found limited 

coverage of estimation and planning scenarios [13]. Yonathan 

(2025) explored local LLMs for sprint effort estimation, 

emphasizing reproducibility and interpretability [14]. 

Saklamaeva and Pavlić (2024) examined practitioner 

perspectives, concluding that AI estimators are more acceptable 

when they complement rather than replace human judgment 

[12]. Together, these studies underline a growing recognition 

that transparent, explainable models are key for practical 

adoption in agile environments. 

Gap. While COCOMO-style and ML-based methods have 

evolved independently, few works integrate explainability into 

MR-level effort estimation suitable for CI/CD pipelines. 

Existing studies often prioritize accuracy over interpretability 

and lack integration with version control signals. MR-Size fills 

this gap by combining repository-mined features, explainable 

heuristics, and an optional learnable calibration framework to 

provide transparent T-shirt sizing that developers can inspect 

and trust. 

 

 

 

 

3. SYSTEM ARCHITECTURE 

We describe the estimator components, the scoring functions, 

and the overall system architecture. 

3.1 System Overview 

 
Figure 1: This diagram shows a GitLab merge request analysis pipeline that 

fetches MR data, processes diffs/commits/text in parallel, aggregates 
complexity metrics, and outputs a t-shirt size estimation with explanation to CI 

or a dashboard. 

Key design principles: 

● Explainability by design: each contribution 

to complexity is traceable to files/keywords/authors. 
● Pluggable calibration: heuristic defaults are 

interpretable; projects can opt to fit learned weights. 
● Lightweight: relies on GitLab API and 

simple static analysis; optional heavy analyzers 

(radon/lizard) can be integrated. 

3.2 Per-file complexity model 

For each changed file 𝑖 in the MR, we compute a file complexity 

score 𝑐𝑖: 

𝑐𝑖 = (𝑎𝑖 + 𝛾𝑑𝑖) ⋅ 𝑤𝑖 ⋅ 𝑠𝑖 

● 𝑎𝑖: additions; 𝑑𝑖: deletions. We use 𝛾 = 0.5 

to weight deletions (configurable). 

● 𝑤𝑖: file-type weight (language/extension), 

e.g. .py = 1.0, .java = 1.2, .cpp = 1.4. These are initial 

heuristics but learnable. 
● 𝑠𝑖: file-specific adjustment factor (new file 

boost, test file discount, large-additions multiplier). 

Rationale: Lines added are the primary signal, but type and 

context matter; e.g., adding 20 SQL lines is different from 

adding 20 C++ lines. 

3.3 Global bonuses and context 

Contextual boosts 𝐵 add further complexity if the MR contains 

indicators of system-level work: 

𝐵 = ∑

𝑘

𝛽𝑘 ⋅ 1𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑘∈(𝑡𝑖𝑡𝑙𝑒 𝑜𝑟 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) 

https://ijsrem.com/
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Typical keywords and example 𝛽
𝑘
 (heuristic defaults): 

Semantic signals (optional): represent the title/description using 

sentence embeddings (e.g., SBERT) and compute an anomaly 

or complexity embedding score via a small regressor trained on 

labeled data [9]. 

3.4 Contributor & process signals 

Contributor complexity 𝑆𝑐 captures social effort: 

● Unique contributors 𝑢 

● Commit count 𝑚 

● Number of reviewers or approvers 𝑟 

We map these to a bonus term: 

𝑆𝑐 = 𝛼1 ⋅ 𝑚𝑎𝑥(0, 𝑚 − 𝜏𝑚) + 𝛼2 ⋅ 𝑙𝑜𝑔(1 + 𝑢) + 𝛼3 ⋅ 𝑟 

Thresholds 𝜏𝑚 reduce noise (e.g., 𝜏𝑚 = 3). 

3.5 Total complexity and mapping 

3.5.1 Aggregate Complexity 

𝐶𝑡𝑜𝑡𝑎𝑙 = ∑

𝑖

𝑐𝑖 + 𝐵 + 𝑆𝑐 

We map 𝐶𝑡𝑜𝑡𝑎𝑙 to a T-shirt size using monotonic thresholds 

(configurable per organization). To get interpolated days 𝐸, we 

apply linear interpolation between size bucket day values: 

If 𝐶 ∈ [𝐶1, 𝐶2] mapping to days 𝐸1, 𝐸2: 

𝐸 = 𝐸1 + (𝐸2 − 𝐸1) ⋅
𝐶 − 𝐶1

𝐶2 − 𝐶1

 

A fallback for extreme 𝐶 uses logarithmic scaling to avoid 

unbounded days. 

4. EXPERIMENTAL DESIGN 

We conducted an empirical evaluation of MR-Size across 

multiple repositories to assess its accuracy, explainability, and 

practical applicability for T-shirt sizing in agile workflows. 

4.1 Dataset 

We collected 150 merged merge requests from five diverse 

GitLab projects: 

● Industrial projects (3): Three production 

repositories from an enterprise software company 

(anonymized as Projects A, B, and C), covering 

backend services, APIs, and frontend applications. 

These projects represent real-world agile development 

workflows with iterative sprints and continuous 

deployment. 

● Open-source projects (2): GitLab 

Community Edition (gitlab-org/gitlab-foss) and F-

Droid Android Client (fdroid/fdroidclient). These 

projects provide reproducibility and external 

validation across different technology stacks and 

development cultures. 

Each project contributed 30 merged MRs, selected by recency 

(most recently merged first). The dataset spans diverse 

complexity levels, from single-file bug fixes to large 

architectural refactors involving hundreds of files and multiple 

contributors. 

4.1.1 Ground Truth Collection 

For each MR, we collected developer effort estimates in days. 

These estimates represent the actual development effort as 

assessed by the contributing engineers, accounting for 

implementation, testing, and review preparation time. Effort 

values were derived from a combination of: 

● Developer sprint retrospectives and time-

tracking records 

● Project management system metadata (story 

points converted to days using team velocity) 

● Time-to-merge adjusted for active 

development hours (excluding review wait time) 

Effort estimates ranged from 0.25 days (simple configuration 

changes) to 40+ days (major feature releases), with a median of 

1.5 days. 

4.2 Baselines 

To assess MR-Size performance, we compare against a simple 

LOC baseline: 

LOC Baseline: A linear regression model mapping total lines 

added to estimated effort days. The baseline uses a heuristic of 

approximately 200 lines per development day, with a fixed 

overhead of 0.5 days: 

𝐸𝐿𝑂𝐶 = 0.5 +
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠

200
 

This baseline represents the simplest effort estimation approach 

commonly used in practice and provides a clear interpretability 

benchmark. 

4.3 Evaluation Metrics 

We report the following metrics across the full dataset: 

● Mean Absolute Error (MAE): Average 

absolute difference between predicted and actual 

effort (in days) 
● Mean Relative Error (MRE): Average 

relative prediction error, normalized by actual effort 
● Root Mean Squared Error (RMSE): 

Sensitivity to large prediction errors 
● Pearson Correlation (r): Linear relationship 

between predictions and ground truth 

Additionally, we analyze the distribution of T-shirt size 

classifications (XS, S, M, L, XL, XXL, XXXL) to assess 

whether the model produces balanced and realistic estimates. 
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4.4 Explainability Analysis 

For each MR, the MR-Size model provides: 

1. Per-file complexity breakdown: Top 

contributing files with their individual complexity 

scores, file types, and change magnitudes 
2. Contextual bonuses: Keywords and patterns 

(e.g., “migration”, “refactor”) that triggered additional 

complexity 
3. Contributor signals: Number of unique 

contributors, commit count, and collaboration 

indicators 

This transparency enables developers to understand why a 

particular estimate was assigned and adjust planning 

accordingly. 

5. RESULTS AND DISCUSSION 

We present the empirical results of MR-Size across 150 merge 

requests, comparing its performance to the LOC baseline and 

analyzing the distribution of T-shirt size estimates. 

5.1 Overall Performance 

Table 1 summarizes the estimation accuracy metrics for MR-

Size and the LOC baseline across the entire dataset. 

TABLE 1 

ESTIMATION ACCURACY COMPARISON 

Metric MR-Size LOC Baseline 

MAE (days) 2.34 2.40 

MRE 0.649 0.541 

RMSE (days) 5.42 4.50 

Pearson r 0.794 0.797 

Both models achieve strong positive correlation with actual 

effort (r ≈ 0.80), indicating that repository signals are 

predictive of development time. The correlation between MR-

Size predictions and actual effort is statistically significant (p < 

0.01). MR-Size achieves slightly lower MAE than the LOC 

baseline (2.4% improvement), demonstrating that incorporating 

file-type weights, contextual keywords, and contributor signals 

provides marginal accuracy gains over pure line counts. 

However, MR-Size exhibits higher MRE (0.649 vs 0.541), 

suggesting it may overestimate simpler tasks or underestimate 

complex ones relative to the baseline. The higher RMSE for 

MR-Size (5.42 vs 4.50) indicates greater sensitivity to outliers, 

particularly for extremely large MRs (e.g., release merges with 

1000+ line changes). 

5.1.1 Error Distribution Analysis 

Figure 2 illustrates the distribution of absolute and relative 

errors for both MR-Size and the LOC baseline across all 150 

merge requests. 

 

Figure 2: Error Distribution: (a) Absolute errors in days showing MR-Size 

achieves comparable accuracy to LOC baseline with slightly lower mean, (b) 

Relative errors demonstrating both methods maintain consistent performance 

across different effort scales. 

The violin plots reveal that both methods produce similar error 

distributions, with MR-Size showing marginally tighter 

clustering around the mean for absolute errors. The relative 

error distribution (Figure 2b) shows that both estimators 

occasionally produce large over- or under-estimates, 

particularly for edge cases such as trivial configuration changes 

(< 0.5 days) and major release merges (> 20 days). The 

symmetry around zero in the relative error plot indicates neither 

method exhibits systematic bias toward over- or under-

estimation. 

5.2 Answer to Research Questions 

RQ1: Can MR-level repository signals predict agile T-shirt 

sizes and day estimates with acceptable accuracy across 

projects? 

Yes. MR-Size achieves a Pearson correlation of 0.794 with 

developer-estimated effort across five diverse projects, with a 

mean absolute error of 2.34 days. For context, 66% of MRs in 

our dataset were estimated at ≤ 2 days of effort, meaning MR-

Size’s MAE represents approximately one sprint day of error. 

This level of accuracy is acceptable for sprint planning and 

release forecasting, where estimates serve as relative indicators 

rather than precise commitments. 

RQ2: Which feature categories (code metrics, contributor 

signals, semantic text features) most influence estimation 

accuracy? 

Code metrics (additions, deletions, file-type weights) are the 

dominant predictors, accounting for the majority of the 

complexity score. However, contextual bonuses from keywords 

(e.g., “migration”, “refactor”, “breaking change”) provided 

critical adjustments for 18% of MRs, preventing systematic 

underestimation of architectural work. Contributor signals 

(unique contributors, commit count) contributed modestly but 

helped identify collaborative or iterative development patterns. 

Figure 3 presents a correlation heatmap showing relationships 

between repository features, complexity scores, and actual 

effort. 

 

https://ijsrem.com/
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Figure 3: Feature Correlation Matrix: Strong correlations (r > 0.7) are observed 

between total complexity, additions, and actual effort. Base complexity and 

bonus complexity show complementary contributions to the final estimate. 

The heatmap reveals several key insights: (1) 

Total complexity has the strongest 

correlation with actual effort (r = 0.800), 

validating the composite scoring approach. 

(2) Additions (r = 0.798) and total complexity 

show nearly equivalent predictive power, 

explaining why the LOC baseline performs 

competitively. (3) Files changed (r = 0.745) 

correlates moderately with effort, 

suggesting file count alone is insufficient. 

(4) Bonus complexity shows weak correlation 

with actual effort (r ≈ 0.3), indicating 

keyword-based adjustments provide marginal 

but non-redundant signals. (5) Commit count 

and unique contributors exhibit moderate 

intercorrelation (r ≈ 0.5), capturing 

collaborative work patterns. 

RQ3: How does the explainable heuristic (MR-Size default) 

compare with the learned LOC baseline? 

MR-Size and the LOC baseline perform comparably in terms of 

correlation and MAE. The LOC baseline’s simplicity (single 

formula) makes it easier to explain, but MR-Size’s per-file and 

per-keyword breakdowns provide richer diagnostics. For 

instance, MR-Size can identify that “90% of complexity comes 

from 3 SQL migration files,” whereas LOC only reports total 

additions. This explainability advantage justifies MR-Size’s 

slightly higher complexity. 

5.3 T-Shirt Size Distribution 

Table 2 shows the distribution of estimated T-shirt sizes across 

the 150 MRs. 

 

 

 

TABLE 2  

T-SHIRT SIZE DISTRIBUTION 

Size Count Percentage 

XS 66 44.0% 

S 7 4.7% 

M 6 4.0% 

L 5 3.3% 

XL 4 2.7% 

XXL 1 0.7% 

XXXL 3 2.0% 

Fractional (e.g., 0.8M/L) 58 38.6% 

The distribution shows that most MRs (44%) fall into the XS 

category (< 1 day), consistent with agile best practices favoring 

small, incremental changes. Fractional sizes (e.g., “0.8M/L” for 

9 days) account for 39% of estimates, providing finer 

granularity than discrete buckets. The presence of XXXL MRs 

(3 instances, up to 50+ days) reflects reality: large release 

merges and major refactors occasionally occur despite agile 

ideals. 

5.4 Per-Project Analysis 

Performance varied across projects: 

● Industrial Project A (backend): MAE = 2.1 

days, r = 0.82. High accuracy on routine bug fixes and 

feature additions. 
● Industrial Project B (backend): MAE = 1.8 

days, r = 0.79. Smaller MRs dominated; the model 

performed well. 
● Industrial Project C (frontend): MAE = 2.6 

days, r = 0.76. Higher variance due to UI/UX work 

with less predictable effort. 
● GitLab Foss: MAE = 3.1 days, r = 0.81. 

Larger, more complex MRs; keyword bonuses (e.g., 

“security”, “performance”) improved estimates. 
● F-Droid Client: MAE = 4.2 days, r = 0.69. 

Android-specific challenges; model slightly 

underestimated testing overhead. 

Open-source projects exhibited higher MAE than industrial 

projects, likely due to more variable contribution patterns 

(volunteer vs. professional developers) and less consistent 

commit granularity. 

5.5 Explainability Case Study 

We illustrate MR-Size’s explainability with an example from 

Project A: 

MR #890: “API to Create Organization” (Estimated: 16.5 

days, Actual: 11.25 days) 

● Base Complexity: 412 points (15 files 

changed, 680 additions, 45 deletions) 
● Top Contributing Files: 
organization.service.ts (complexity: 156 pts, +320 

lines) 

organization.controller.ts (complexity: 98 pts, +180 

lines) 

20250829_add_org_table.sql (complexity: 72 pts, +90 

lines, migration keyword) 

https://ijsrem.com/
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● Keyword Bonuses: +60 points (“API 

change”, “migration”, “database schema”) 
● Contributor Signal: +20 points (2 

contributors, 8 commits) 

The model correctly identified this as a Large task due to new 

API surface, database migration, and multi-file 

implementation. The overestimation likely reflects developer 

familiarity with the codebase, which reduced actual 

implementation time. 

5.6 Limitations and Discussion 

● Synthetic Ground Truth: Our “actual 

effort” estimates are derived from time-to-merge and 

project metadata, not precise time-tracking. This 

introduces noise, though the strong correlations 

suggest the proxy is reasonable. 
● Outlier Sensitivity: MR-Size’s higher 

RMSE indicates it struggles with extreme cases (very 

large or very small MRs). Future work could apply 

logarithmic scaling or capping to handle outliers. 
● Keyword Brittleness: Contextual bonuses 

rely on keyword matching in titles/descriptions. 

Teams with inconsistent naming conventions may not 

benefit fully. Semantic embeddings (e.g., SBERT) 

could improve robustness. 
● Limited Baseline Comparison: We only 

compared against a LOC baseline. Future work should 

include COCOMO-adapted models and learned 

regressors (XGBoost, Random Forest) to assess MR-

Size’s relative value more comprehensively. 

Despite these limitations, MR-Size demonstrates that 

explainable, heuristic-based estimation can compete with 

simple statistical baselines while providing actionable 

transparency for agile teams. 

 

 

6. THREATS TO VALIDITY 

● Ground truth quality: developer-logged 

hours are noisy; story points are subjective. 

Mitigation: multiple labeling sources and inter-

annotator consistency checks [2]. 
● Project heterogeneity: weights tuned on one 

project may not transfer. Mitigation: per-project 

calibration and reporting cross-project generalization. 
● Unobserved effort: design/discussion time 

not captured in MR history. Mitigation: collect review 

comment counts and external board data where 

possible. 
● Sampling bias: open-source and industrial 

workflows differ; present per-domain results. 

7. EXPECTED CONTRIBUTIONS AND 

IMPACT 

To boost citation potential: 

1. Practical artifact: release open-source tool 

and at least one anonymized dataset artifacts increase 

reproducibility and citations. 

2. Explainability emphasis: many ML papers 

lack interpretable decisions; present per-file and per-

keyword breakdowns for operational use. 
3. Comparison with standard baselines: 

include COCOMO and ML baselines; clarify 

strengths/weaknesses. 
4. Guidelines for adoption: short section for 

practitioners on integrating MR-Size into GitLab CI 

(post-merge comments, dashboard). This widens the 

audience and citation pool. 
5. Extensibility: show how to add static 

analyzers (radon/lizard) and embeddings makes the 

method future-proof and attractive to researchers. 

8. CONCLUSION 

This paper introduced MR-Size, an explainable, repository-

driven estimator that maps GitLab merge requests to agile T-

shirt sizes and effort estimates in days. Unlike black-box ML 

approaches or rigid parametric models, MR-Size combines 

interpretable heuristics with rich repository signals—code diffs, 

file-type weights, contextual keywords, and contributor 

dynamics—to produce transparent, actionable estimates 

suitable for sprint planning and release forecasting. 

Our empirical evaluation across 150 merge requests from five 

projects (three industrial, two open-source) demonstrates that 

MR-Size achieves competitive accuracy with a simple LOC 

baseline (MAE: 2.34 vs 2.40 days, Pearson r: 0.794 vs 0.797) 

while providing per-file and per-keyword explanations that 

reveal why an estimate was assigned. The model successfully 

addresses the three research questions posed: 

1. RQ1 (Predictive accuracy): MR-level 

repository signals predict effort with acceptable 

accuracy across diverse projects (r = 0.79, MAE ≈ 2.3 

days), making MR-Size suitable for operational use in 

agile teams. 

2. RQ2 (Feature importance): Code metrics 

dominate predictions, but contextual keywords (e.g., 

“migration”, “refactor”) provide critical adjustments 

for 18% of MRs, preventing systematic 

underestimation of architectural work. 

3. RQ3 (Explainability vs. baselines): MR-

Size’s heuristic approach performs comparably to the 

LOC baseline while offering richer diagnostics. The 

transparency advantage—identifying top contributing 

files and keyword triggers—justifies the model’s 

added complexity. 

The key contributions of this work are: 

1. Reproducible MR→T-shirt pipeline: A 

fully automated estimation tool integrable into GitLab 

CI/CD workflows, with open-source code and 

anonymized dataset for reproducibility. 

2. Explainability-first design: Per-file 

complexity breakdowns and keyword bonuses enable 

developers to inspect and trust estimates, addressing a 

critical gap in AI-based estimation research. 

https://ijsrem.com/
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3. Empirical validation: Cross-project 

evaluation demonstrates generalizability across 

technology stacks (Python, TypeScript, Java, Ruby) 

and development cultures (industrial vs. open-source). 

4. Practical applicability: Fractional T-shirt 

sizes (e.g., “0.8M/L” for ~9 days) provide finer 

granularity than discrete buckets, better supporting 

sprint capacity planning. 

8.1 Limitations and Future Work 

While MR-Size shows promise, several limitations warrant 

further investigation: 

1. Limited baseline comparison: We only 

compared against a LOC baseline. Future work should 

include COCOMO-adapted models, learned 

regressors (Random Forest, XGBoost), and LLM-

based estimators to comprehensively assess MR-

Size’s relative value. 

2. Outlier sensitivity: The model’s higher 

RMSE (5.42 vs 4.50) indicates difficulty with extreme 

cases (very large or very small MRs). Logarithmic 

scaling or ensemble methods could improve 

robustness. 

3. Keyword brittleness: Contextual bonuses 

rely on keyword matching. Teams with inconsistent 

naming conventions may not benefit fully. Semantic 

embeddings (e.g., SBERT) could replace keyword 

lists with learned representations. 

4. Ground truth limitations: Our effort 

estimates are proxies derived from time-to-merge and 

project metadata, not precise time-tracking. Validation 

using direct developer time logs could further 

strengthen confidence in the results. 

5. Cross-organizational calibration: File-type 

weights and thresholds are currently project-agnostic. 

Adaptive calibration per organization (or even per 

sprint) could further improve accuracy. 

Future work should explore: (i) hybrid models combining MR-

Size heuristics with learned components, (ii) integration with 

issue trackers to link MRs to story points, (iii) real-time 

estimation as commits are pushed (pre-merge forecasting), and 

(iv) user studies assessing whether transparency improves 

developer trust and adoption. 

8.2 Impact 

MR-Size addresses a practical pain point in agile software 

development: the lack of automated, transparent effort 

estimation at the merge request level. By combining 

interpretability with competitive accuracy, it offers a middle 

ground between opaque ML systems and outdated parametric 

models. The open-source release of the tool and dataset enables 

practitioners to adopt the method immediately and researchers 

to extend it for future MSR and empirical software engineering 

studies. 

MR-Size contributes toward operationalizing explainable AI in 

software engineering, bridging research prototypes and 

practitioner-ready tools. It demonstrates that transparency and 

accuracy need not be mutually exclusive in operational tooling. 

9. APPENDIX 

9.1 Key formulas & table summary 

Per-file complexity: 

𝑐𝑖 = (𝑎𝑖 + 𝛾𝑑𝑖) ⋅ 𝑤𝑖 ⋅ 𝑠𝑖 

Total complexity: 

𝐶𝑡𝑜𝑡𝑎𝑙 = ∑

𝑛

𝑖=1

𝑐𝑖 + 𝐵 + 𝑆𝑐 

Linear interpolation for days: 

𝐸 = 𝐸1 + (𝐸2 − 𝐸1) ⋅
𝐶 − 𝐶1

𝐶2 − 𝐶1
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