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Abstract - This research investigates the effectiveness of 

machine learning (ML) techniques in predicting residential 

real estate prices, with a specific focus on integrating spatial 

variables within a Geographic Information System (GIS) 

framework. A case study in Chon Buri, Thailand, is utilized to 

compare the predictive accuracy of the Forest-based 

Classification and Regression (FBCR) algorithm, a GIS-

specific ML tool, against established algorithms such as 

XGBoost (XGB) and Random Forest (RF). The methodology 

includes data collection through web scraping, rigorous 

preprocessing using the Interquartile Range (IQR) method for 

outlier detection, and spatial data integration via ArcGIS Pro. 

Model performance is evaluated using R², Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and Root Mean 

Squared Error (RMSE). The results demonstrate that FBCR 

outperforms both RF and XGBoost in predicting real estate 

prices, evidenced by a higher R² value of 0.6412, lower 

RMSE of 1.529, and lower MAE of 1.131 on the testing 

dataset. This superior performance highlights FBCR's ability 

to effectively capture and model the complex spatial 

relationships that influence property prices. The study 

underscores the potential of GIS-integrated ML tools in 

enhancing the accuracy and reliability of real estate valuation, 

providing valuable insights for urban planning and property 

market analysis. 
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1.INTRODUCTION  
This The accurate estimation of residential real estate 

prices is a crucial task in urban planning, property valuation, 
and investment decision-making. Traditional valuation 
methods often struggle to incorporate the complex spatial 
relationships that significantly influence property prices. To 
address this challenge, researchers have increasingly turned to 
machine learning (ML) techniques, which can capture non-
linear interactions between multiple factors affecting real estate 
values (Adetunji et al., 2022; Hong & Kim, 2022). In 
particular, the integration of ML with Geographic Information 
Systems (GIS) provides a powerful approach to spatially 
informed price prediction models, leveraging both statistical 
and spatial variables. 

Previous studies have demonstrated the effectiveness of 
ML algorithms such as XGBoost (XGB) and Random Forest 
(RF) in predicting housing and land prices (Chen et al., 2024; 
Dang et al., 2020; Hong et al., 2020). These algorithms have 

been widely applied in real estate valuation and financial asset 
pricing, producing highly accurate predictions (Bagnara, 2024; 
Zhang, 2023). However, limited research has explored the 
application of GIS-specific ML tools for real estate valuation, 
particularly the Forest-based Classification and Regression 
(FBCR) technique, which is embedded within ArcGIS Pro. 
This technique is designed to handle large spatial datasets and 
incorporate geographic variables more effectively than 
traditional ML approaches. 

This study aims to evaluate the performance of the FBCR 
algorithm in predicting residential real estate prices while 
considering spatial factors. By comparing its predictive 
accuracy against well-established algorithms such as XGB and 
RF, this research seeks to provide empirical evidence on 
whether FBCR can serve as a viable alternative for spatially 
informed property valuation. The study will analyze the 
efficiency of FBCR by assessing its predictive accuracy and 
model robustness, contributing to the growing body of 
literature on ML-based real estate pricing models. By 
incorporating spatial data within GIS and leveraging advanced 
ML techniques, this research will enhance the understanding of 
how geographic factors influence property prices and offer 
valuable insights for urban planners, real estate professionals, 
and policymakers. 

Through a comparative analysis, this research will 
determine whether FBCR, as a GIS-integrated ML tool, can 
yield results comparable to or exceeding those of commonly 
used algorithms. The findings will provide a solid foundation 
for further exploration of GIS-driven ML methodologies in 
real estate price estimation, potentially leading to more 
accurate and spatially contextualized valuation models.  

2. RELATED WORK 

Machine learning techniques have significantly enhanced 
real estate price prediction by capturing complex, non-linear 
relationships among economic, spatial, and environmental 
factors. Adetunji et al. (2022) demonstrated the effectiveness 
of Random Forest (RF) in predicting housing prices, 
highlighting its ability to manage diverse input variables. 
Meanwhile, XGBoost, an advanced gradient boosting 
algorithm introduced by Chen and Guestrin (2016), has gained 
prominence due to its superior predictive performance, 
particularly in structured datasets. El Mouna et al. (2023) 
compared multiple machine learning models and found that 
both RF and XGBoost outperformed traditional regression-
based approaches in terms of accuracy and robustness. 

Existing research highlights the critical role of spatial and 
locational factors in determining residential real estate prices. 
Liang et al. (2018) found that proximity to amenities such as 
schools, parks, and shopping centers positively influences 
property values, increasing their attractiveness. The integration 
of Geographic Information Systems (GIS) with machine 
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learning has further improved predictive modeling in real 
estate. Dang et al. (2020) and Ma et al. (2020) demonstrated 
how spatial data enhances property valuation models, allowing 
for more precise estimations of land values. Hong et al. (2020) 
and Hong & Kim (2022) applied ensemble learning 
techniques, including RF and XGBoost, for mass appraisal of 
residential properties, confirming their capability to process 
large, heterogeneous datasets. Furthermore, Bagnara (2024) 
emphasized the adaptability of machine learning models in 
asset pricing, reinforcing their potential in dynamic and 
evolving real estate markets. 

The Forest-Based Classification and Regression (FBCR) 
tool has emerged as a powerful geospatial machine learning 
technique for predictive modeling in GIS-based applications. 
As an ensemble-based approach, FBCR integrates two widely 
recognized algorithms: the Random Forest (RF) algorithm, 
developed by Breiman (2001), and the Extreme Gradient 
Boosting (XGBoost) algorithm, introduced by Chen and 
Guestrin (2016). These algorithms enhance predictive accuracy 
by capturing complex, non-linear relationships within large 
datasets. FBCR is particularly well-suited for real estate price 
prediction, as it incorporates diverse spatial, environmental, 
and economic variables to model housing values with high 
precision. 

One of the key advantages of FBCR is its seamless 
integration with Geographic Information Systems (GIS). By 
incorporating spatial proximity measures, raster datasets, and 
distance-based explanatory variables, FBCR enhances 
predictive modeling in real estate analysis. Prior studies (Dang 
et al., 2020; Ma et al., 2020) have demonstrated the 
effectiveness of spatially-aware machine learning in urban land 
value assessments, supporting the notion that GIS-based FBCR 
can generate more nuanced and spatially contextualized price 
predictions. 

3. METHODOLOGY 

3.1 RESEARCH DESIGN 

 

Fig -1. Research framework of this study 
This study follows a structured approach to collecting, 

preprocessing, and analyzing residential real estate data, 
integrating spatial attributes to enhance predictive accuracy. 
Real estate data is obtained through web scraping, extracting 
property details such as price, number of bedrooms, and floor 
area. Spatial variables, including road networks, public 
transportation, and green spaces, are gathered from open 
sources. Geocoding services, such as Google Maps API, 
convert property addresses into geographic coordinates, 
enabling spatial analysis. Data preprocessing ensures 
consistency by standardizing formats, removing duplicates, 
and handling missing values. Outliers are detected using the 
Interquartile Range (IQR) method, where values beyond lower 
bound or upper bound are considered extreme and adjusted or 
removed to improve model reliability.   

To incorporate spatial attributes, ArcGIS Pro and the 
'NEAR' Processing Tool calculate proximity to key amenities 
such as parks, transit stations, and major roads, enriching the 
dataset. The refined data is then used to train three machine 
learning models: Forest-Based Classification and Regression 
(FBCR), Random Forest (RF), and XGBoost. FBCR, 
integrated with ArcGIS Pro, is tailored for spatial data, while 
RF and XGBoost provide robust predictive capabilities.   

Model performance is evaluated using R², MAE, MSE, and 
RMSE to compare accuracy. By integrating real estate and 
spatial data, applying IQR for outlier detection, and leveraging 
machine learning techniques, this study enhances real estate 
price prediction, providing valuable insights into the factors 
influencing property values. 

3.2 STUDY AREA 

 
Fig -2. Study area mapping 

 
The study area for this research is Chon Buri, Thailand, a 

province located southeast of Bangkok. Chon Buri was 
specifically selected due to its diverse urban and suburban 
characteristics, making it an ideal setting for examining the 
spatial factors influencing residential real estate prices. The 
region is characterized by a mix of residential, commercial, 
and industrial zones, providing a complex interplay of 
variables that can affect property values. Additionally, Chon 
Buri’s coastal location and proximity to the Gulf of Thailand 
introduce unique spatial elements, such as the influence of 
coastal amenities and potential environmental factors on real 
estate prices. The geographical diversity and dynamic real 
estate market of Chon Buri offer a robust foundation for 
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applying and evaluating machine learning models in the 
context of spatial data integration. 

3.3 DATA COLLECTION & PRE-PROCESSING 

3.3.1 Residential real estate information 

The collection of housing data in this study is conducted 
through web scraping, an automated technique for extracting 
information from real estate listing websites. To streamline this 
process, the Instant Data Scraper tool is employed, enabling 
efficient extraction of key property attributes, including price, 
number of bedrooms and bathrooms, usable floor area, and 
price per square meter. These variables serve as essential 
explanatory features for real estate price prediction. The 
extracted data is stored in structured formats such as CSV files 
or relational databases, ensuring accessibility for subsequent 
analysis.  To maintain data quality and consistency, rigorous 
preprocessing is applied. First, standardization of formats is 
conducted, wherein price values are converted to a common 
currency and normalized per square meter, while categorical 
attributes are reformatted into consistent numerical 
representations. Second, duplicate detection and removal is 
performed to eliminate redundant property listings, preventing 
skewed analyses caused by multiple postings of the same 
property. Third, handling of missing values is addressed 
through appropriate imputation techniques or the exclusion of 
incomplete records, depending on the context.   

 

Fig -3. Example of residential real estate dataset rows 

 
These preprocessing steps are critical in creating a clean 

and reliable dataset, directly influencing the accuracy and 
interpretability of predictive models. By ensuring data 
consistency, completeness, and standardization, the study 
enhances the robustness of subsequent analyses, contributing 
to a more precise and meaningful real estate price prediction 
model. 

3.3.2 Spatial variables 

Spatial data is an essential component in enhancing the 
housing dataset by incorporating geographic context, which 
significantly influences real estate prices. This study utilizes 
open-source spatial data from Thailand, including road 
networks, public transportation lines, green spaces, and 
neighborhood boundaries, to capture locational attributes that 
impact residential desirability. To integrate spatial information, 
geocoding services from Google Maps are employed to 
convert property addresses into geographic coordinates, 
enabling precise mapping and spatial analysis. Following data 
collection, spatial attributes are integrated with housing data 
through spatial joins, where properties are enriched with 
features such as proximity to public parks, schools, transit 
stations, and major roads. Additional spatial variables, such as 
the density of nearby amenities, are also included to reflect 
accessibility and neighborhood characteristics. To ensure 
spatial accuracy, all layers are aligned to a common coordinate 

reference system (CRS), and any discrepancies in geocoded 
addresses or spatial features are rigorously validated. 

 

Fig -4. Example of collected spatial data from scraping 

technique 

 
Spatial preprocessing further includes feature extraction, 

where distance-based attributes are computed using geospatial 
analysis tools and normalized for consistency. This integration 
of spatial variables provides a comprehensive representation of 
location-specific factors, allowing for a more robust analysis of 
their influence on property values. By incorporating spatial 
data, this study enhances the predictive capability of real estate 
price models, offering valuable insights into the role of 
geographic factors in housing markets. 

3.3.3 The Interquartile Range (IQR) 

The Interquartile Range (IQR) is a crucial statistical 
measure used in data preprocessing to detect and handle 
outliers before training a machine learning model. Outliers, 
which are extreme values significantly deviating from the rest 
of the dataset, can distort model training, leading to biased 
predictions and reduced accuracy. The IQR method is 
particularly effective in real estate price prediction, where 
anomalies in property prices, sizes, or other attributes may 
arise due to errors, rare market conditions, or data 
inconsistencies. By applying IQR, the dataset can be refined to 
ensure that the model learns from relevant and representative 
data points, thereby improving both predictive performance 
and generalizability. The IQR is calculated as the difference 
between the third quartile (Q3) and the first quartile (Q1), 
representing the middle 50% of the data. Mathematically, it is 
expressed as:  

𝐼𝑄𝑅 = 𝑄3 − 𝑄1  (1) 

To identify outliers, data points that fall below 𝑄1 −
1.5 × 𝐼𝑄𝑅  or above 𝑄3 + 1.5 × 𝐼𝑄𝑅  are considered extreme 
values and may be removed or adjusted depending on the 
modeling approach. This technique ensures that the machine 
learning model is not disproportionately influenced by extreme 
values that do not reflect general market trends. By 
implementing IQR-based outlier detection, the dataset remains 
balanced, reducing noise and enhancing the model’s ability to 
generalize well to unseen data. This step is essential in 
predictive modeling, as it prevents overfitting to irregularities 
and contributes to more reliable and interpretable real estate 
price estimations. 
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Fig -5. Dataset before IQR process (top-2,159 rows) and 

dataset after IQR process (bottom-1,987 rows) 

 
Table-1.  Dataset Description 

Features Data Type Description 

Bed 
Int64 (Numeric) 

Total bedrooms of 

the area 

Bath Int64 (Numeric) Total bathrooms of 

the area 

Floor area Int64 (Numeric) Size of usable area 

(Floor space) 

Public Park Point / Distance 

(Float64, Numeric) 

Address point of 

Public park 

Healthcare Point / Distance 

(Float64, Numeric) 
Address point of 

Healthcare 

Convenient Point / Distance 

(Float64, Numeric) 
Address point of 

Convenient 

Travelist 

Point 

Point / Distance 

(Float64, Numeric) 
Address point of 

Travelist Point 

Education Point / Distance 

(Float64, Numeric) 
Address point of 

Education 

Transportation Point / Distance 

(Float64, Numeric) 

Address point of 

Transportation 

Road Polyline 

Shapefiles 
Location of Road 

Sea Polygon 

Shapefiles 
Location of Sea 

 

3.4 CONCEPTUAL FRAMEWORK 

This study employed a rigorous machine learning 
framework to develop a predictive model.  The process 
commenced with the acquisition of a dataset comprising 2,159 

rows. To ensure the robustness and reliability of the model, a 
preprocessing step was undertaken to address potential 
outliers. An Interquartile Range (IQR) analysis was conducted, 
resulting in the identification and removal of 172 rows that fell 
outside the defined lower and upper bounds. This outlier 
removal process yielded a refined dataset of 1,987 rows, which 
served as the input for subsequent model development. 

 

Fig -6. Conceptual of model processing 

 
The refined dataset was then partitioned into training, 

validation, and testing subsets.  Eighty percent of the data was 
allocated for training and validation, while the remaining 
twenty percent (398 rows) was reserved for testing, ensuring 
the model’s ability to generalize to unseen data. The training 
and validation set was further divided, with sixty percent 
(1,191 rows) used for model training and twenty percent (398 
rows) for hyperparameter tuning and performance validation. 

Three machine learning algorithms were selected for model 
development: Forest-based Classification and Regression 
(FBCR), Random Forest (RF), and Extreme Gradient Boosting 
(XGBoost).  Each algorithm was trained on the designated 
training dataset, learning the underlying patterns and 
relationships within the data. Subsequently, the trained models 
were evaluated on the testing dataset using established 
performance metrics, including R-squared, Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), and 
Mean Squared Error (MSE).  These metrics provided a 
comprehensive assessment of each model’s predictive 
accuracy and generalization capability. 

The model demonstrating superior performance based on 
these metrics was selected as the most suitable for the given 
task. This systematic approach, encompassing outlier removal, 
data partitioning, model training, validation, and rigorous 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 03 | March - 2025                          SJIF Rating: 8.586                                 ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM42310                                               |        Page 5 

evaluation, ensures the development of a robust and reliable 
machine learning model capable of accurate prediction and 
effective application in real-world scenarios. 

3.5 MACHINE LEARNING 

3.5.1 Forest-based Classification and Regression 

The Forest-based Classification and Regression tool uses 
an adaptation of Leo Breiman’s random forest algorithm to 
create models and generate predictions of both categorical and 
continuous variables.  

The random forest algorithm works by creating decision 
trees. They Create a set of rules for predicting a feature’s 
category or value based on its attributes. The random forest 
algorithm so powerful is that it creates an ensemble of many 
decision trees, hence the name forest and the reason it is called 
a random forest is because each tree is trained using only a 
random subset of the training data and a random subset of the 
explanatory variables. Each tree does its best to predict with 
the random subset of data and variables it was given. (But in 
the end, following the majority vote wins) Any individual tree 
on its own is not a strong predictor because it is prone to 
overfitting to the training data. Overfitting happens when the 
model mimics the training dataset to closely instead of 
generalizing a trend, making it so that the model can only 
predict the data it was trained with. Training each tree with 
random subset od data and variables and using the entire forest 
to generate a final prediction rather than any single tree helps 
to prevent overfitting to the training data.  

Creating a generalized model is crucial in being able to 
predict values of new features that were not used to train the 
model. One importance way to evaluate model performance is 
by using the model to predict values for features that were not 
included in the training dataset. By default, the Forest-based 
Classification and regression tool holds back 10 percent of the 
data for validation but this time the dataset were divided into 
60 precent of dataset to be training, 20 percent to be validation 
after trained a model, it can check how well it predicts the 
feature that were held back from training. And another 20 
percent of dataset is used for testing to evaluate model 
efficiency that how good is this machine learning model truly 
compare with others model. 

 
Fig -7. Forest-based Classification and Regression  

(figure credit, original) 

 
In this study, the random forest model is configured with 

the following setting: Explanatory Training Variables: 'bed', 
'bath', 'floor area'. Explanatory Training Distance Features: 
'public park', 'healthcare', 'convenient, 'travelist point', 
'education', 'transportation', 'road’, and 'sea'. For advances 

forest options setting: number of trees='300': The number of 
trees to create in the forest model. More trees will generally 
result in more accurate model prediction, but the model will 
take longer to calculate (default number of trees is 100). data 
available per tree (%) ='100': Specifies the percentage of the 
Input Training Features used for each decision tree. The 
default is 100 percent of the data. Samples for each tree are 
taken randomly from two-thirds of the data specified. Each 
decision tree in the forest is created using a random sample or 
subset (approximately two-thirds) of the training data 
available. Using a lower percentage of the input data for each 
decision tree increases the speed of the tool for very large 
datasets. number of runs for validation='5': The tool will run 
for the number of iterations specified. The distribution of the 
R2 for each run can be displayed using the Output Validation 
Table parameter. When this is set and predictions are being 
generated, only the model that produced the highest R2 value 
will be used for predictions. 

3.5.2 Random Forest 

Random Forest (RF) is a robust ensemble learning method 
that employs multiple decision trees to improve predictive 
accuracy and reduce overfitting. In this study, RF is utilized for 
predicting house prices. The algorithm works by training 
numerous decision trees, each built on a randomly sampled 
subset of the data, and aggregating their predictions. This 
approach mitigates the overfitting risk commonly associated 
with individual decision trees and enhances model 
generalization. The random forest algorithm introduces 
randomness in two primary ways: through bootstrapping 
(random sampling with replacement) to generate diverse 
training subsets for each tree, and by selecting a random subset 
of features at each split. These mechanisms ensure that the 
individual trees are decorrelated, which improves the overall 
model’s performance and robustness. Random forest’s 
flexibility allows it to handle large datasets with numerous 
features, making it particularly effective for high-dimensional 
regression tasks, such as real estate price prediction. 

 
Fig -8. Random Forest Algorithm  

(figure credit, original) 

 
In this study, the random forest model is configured with 

the following hyperparameters: n_estimators='300': The 
ensemble consists of 300 decision trees, balancing model 
accuracy and computational efficiency. 
criterion='squared_error': The mean squared error (MSE) is 
used to evaluate potential splits during tree construction, 
aiming to minimize the squared difference between predicted 
and actual values. max_depth='6': The maximum depth of 
each tree is set to 6, controlling the complexity of the trees and 
ensuring that the model captures essential patterns without 
overfitting. min_samples_split='0.1': This parameter ensures 
that nodes are split only when a significant number of samples 
are present, reducing the likelihood of overfitting to noise in 
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the data. min_impurity_decrease='0.01': A minimum threshold 
for impurity reduction is set to 0.01, meaning splits are only 
made if they lead to a meaningful decrease in the impurity 
measure, further limiting unnecessary complexity. 

All remaining parameters adhere to the default values in 
the scikit-learn implementation, with the model being run 
using Python and the scikit-learn library. These settings were 
chosen to achieve a balance between predictive performance, 
model interpretability, and computational efficiency, with the 
goal of providing a stable and accurate model for predicting 
real estate prices. Furthermore, default configurations were 
used for feature selection and handling missing values, 
ensuring consistency across varying data distributions. 

3.5.3 Extreme Gradient Boosting 

XGBoost (Extreme Gradient Boosting) is an advanced and 
highly efficient gradient boosting algorithm used to improve 
predictive accuracy, particularly in structured data tasks. In this 
study, XGBoost is employed to predict house prices. Unlike 
Random Forest, where decision trees are constructed 
independently, XGBoost builds trees sequentially. Each tree is 
trained to correct the errors of the previous tree, progressively 
improving the model’s accuracy through an iterative process 
known as gradient boosting. 

XGBoost uses a combination of decision trees and gradient 
descent to minimize the objective function, which includes 
both the loss function and regularization terms to prevent 
overfitting. The model’s sequential nature enables it to learn 
complex feature interactions effectively. Additionally, 
XGBoost supports dynamic handling of missing values and is 
known for its computational efficiency, making it highly 
suitable for large datasets with intricate relationships, such as 
real estate price prediction. 

 
Fig -9. Extreme Gradient Boosting Algorithm  

(figure credit, original) 

 
In this study, the XGBoost model is configured with the 

following hyperparameters: n_estimators=300: The model 
consists of 300 boosting rounds, providing a sufficient number 
of base learners while controlling the model’s complexity. 
objective='reg:squarederror': The objective function is set to 
squared error, optimizing the model for regression tasks by 
minimizing the mean squared error between the predicted and 
actual values. max_depth=6: The maximum depth of each tree 
is set to 6, limiting the complexity of the individual trees and 
ensuring the model captures key patterns in the data without 
overfitting. learning_rate=0.1: The learning rate determines 
the contribution of each individual tree to the final prediction. 
A learning rate of 0.1 strikes a balance between model stability 
and convergence speed, allowing for gradual learning and 
enhancing generalization. 

All remaining parameters follow the default values in the 
xgboost library, with the model implemented and executed 
using Python. These hyperparameter settings were chosen to 
optimize the trade-off between computational efficiency and 
predictive performance. By applying these settings, the 
XGBoost model can effectively capture complex relationships 
in the data while maintaining robustness and preventing 
overfitting. Default configurations were used for additional 
parameters, ensuring consistency and efficiency in model 
training and evaluation. 

3.6 EVALUATION METRICS 

The evaluation of machine learning models is fundamental 
for determining their predictive accuracy and generalizability. 
Various statistical metrics are employed in regression tasks to 
assess model efficacy, including the coefficient of 
determination (R²), root mean square error (RMSE), mean 
square error (MSE), and mean absolute error (MAE). These 
metrics collectively provide insights into the model’s 
explanatory power, error magnitude, and overall predictive 
reliability. 

3.6.1 Coefficient of Determination (R²) The coefficient 
of determination (R2R^2R2) quantifies the proportion of 
variance in the dependent variable explained by the 
independent variables, serving as an indicator of model fit: 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

  (2) 

where 𝑦𝑖 represents observed values, 𝑦̂𝑖  denotes predicted 
values, 𝑦 is the mean of observed values, and 𝑛 is the number 
of observations. An R² value approaching 1 indicates a 
stronger model fit, signifying that a higher proportion of 
variance is explained. In real estate price prediction, R² is 
widely used to compare the performance of machine learning 
algorithms, such as Random Forest and XGBoost, in modeling 
housing market fluctuations. 

3.6.2 Root Mean Square Error (RMSE) The root mean 
square error (RMSE) measures the average deviation between 
predicted and observed values, with a higher penalty assigned 
to larger errors: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1  (3) 

As RMSE retains the same unit as the dependent variable, 
it provides an interpretable measure of prediction accuracy. 
Due to its sensitivity to large deviations, RMSE is particularly 
valuable in applications where minimizing substantial 
prediction errors is essential, such as property valuation and 
mass real estate appraisal. 

3.6.3 Mean Square Error (MSE) The mean square error 
(MSE) quantifies the average squared difference between 
observed and predicted values: 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1    (4) 

As the squared counterpart of RMSE, MSE amplifies the 
impact of larger errors, making it a crucial metric for 
optimizing machine learning models. However, its lack of 
direct interpretability in the original measurement units limits 
its standalone use in practical applications. Many predictive 
algorithms, including regression-based and gradient boosting 
methods, minimize MSE during training to improve model 
performance. 
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3.6.4 Mean Absolute Error (MAE) The mean absolute 
error (MAE) computes the average absolute difference 
between predicted and actual values, offering a robust measure 
of model error: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1   (5) 

Unlike RMSE and MSE, MAE does not disproportionately 
penalize larger errors, making it more robust to outliers. This 
characteristic renders MAE particularly advantageous in cases 
where a balanced evaluation of prediction accuracy is required. 
Furthermore, due to its direct interpretability, MAE is often 
preferred when the goal is to obtain an intuitive measure of 
model error without overemphasizing extreme deviations. 

These evaluation metrics provide complementary insights 
into model performance. While R² assesses the explanatory 
power of a model, RMSE and MSE emphasize error 
magnitude, with RMSE offering better interpretability. MAE, 
in contrast, provides a robust alternative by treating all 
deviations uniformly.  

3.7 RESULTS DISCUSSION 

3.7.1 Pearson Correlation Heatmap  

The Pearson correlation heatmap reveals intriguing 
relationships between various factors influencing property 
prices. As expected, Actual Price exhibits a strong positive 
correlation with property size, as indicated by the moderate to 
strong positive correlations with Bed (0.50), Bath (0.50), and 
Floor Area (0.56). This suggests that larger properties with 
more bedrooms and bathrooms command higher prices. 
Additionally, Actual Price shows a moderate positive 
correlation with Road (0.28), implying that proximity to roads 
might increase property values, potentially due to enhanced 
accessibility. 

 

Fig -10. Pearson’s Correlation Heatmap 

While the influence of amenities is less pronounced, Actual 
Price still shows weak positive correlations with Convenient 
(0.23), Healthcare (0.20), Public Park (0.22), and Education 
(0.21), indicating that proximity to these amenities has a small 
positive impact on property prices. Interestingly, there is a 
weak negative correlation between Actual Price and Sea (-
0.28), suggesting that properties closer to the sea might be 
valued slightly lower in this particular context. This 

unexpected relationship warrants further investigation to 
understand the underlying market dynamics. 

Beyond price, the heatmap highlights a strong tendency for 
amenities to cluster together, as evidenced by the high positive 
correlations among Convenient, Healthcare, Public Park, 
Education, and Travelist point. This pattern likely reflects 
urban planning practices. Additionally, a strong positive 
correlation exists between Bed and Bath (0.86), and moderate 
positive correlations are observed between Floor Area and both 
Bed (0.69) and Bath (0.70), reflecting the common trend of 
larger properties having more bedrooms and bathrooms. A 
notable correlation is the moderate positive association 
between Transportation and Sea (0.68), potentially indicating 
improved transportation infrastructure in coastal areas. These 
findings provide valuable insights into the interplay of various 
factors affecting property values and urban development 
patterns. 

3.7.2 Dataset’s Scatter-plot graph  

This comparative analysis of FBCR, RF, and XGB models 
underscores a crucial principle in machine learning: the 
paramount importance of evaluating model performance on 
unseen data.  While achieving a high degree of accuracy on the 
training data is desirable, it can be misleading if it comes at the 
expense of generalization capability. This is clearly 
demonstrated by the XGB model, which, despite exhibiting 
exceptional performance on the training data with an R-
squared of 0.9660, reveals a vulnerability to overfitting when 
confronted with the testing dataset. This overfitting tendency is 
evidenced by the substantial drop in R-squared to 0.5513 on 
the testing data and the increased dispersion of data points, 
indicating a significant reduction in predictive accuracy. 

Graph-1. Showing scatter-plot graph of training (blue), 
validate (red), testing (purple) dataset of FBCR model 

In contrast, the FBCR model presents a more balanced 
performance profile. Although its training performance (R-
squared of 0.9273) is slightly lower than XGB, it maintains a 
more consistent accuracy across the validation and testing 
datasets, achieving R-squared values of 0.8151 and 0.6412, 
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respectively. This relative stability suggests that FBCR has 
learned more generalizable patterns from the data, making it 
potentially more reliable for real-world applications where 
encountering unseen data is inevitable.  

 The RF model, with its consistently lower performance 
across all datasets (training R-squared of 0.6094, validation R-
squared of 0.5714, and testing R-squared of 0.6071), indicates 
a limited capacity to capture the complexities inherent in the 
data. This suggests that the RF model, with its current 
configuration, may not be the most suitable choice for this 
specific prediction task. 

Graph-2. Showing scatter-plot graph of training (blue), 
validate (red), testing (green) dataset of RF model 

The analysis underscores the importance of evaluating 
model performance on unseen data. While XGB excels in 
fitting the training data, its performance on the testing dataset 
indicates a susceptibility to overfitting. FBCR demonstrates a 
more balanced performance across all datasets, suggesting 
better generalization. RF, on the other hand, exhibits 
consistently lower performance, indicating limited ability to 
capture the data’s complexity. 

 

Graph-3. Showing scatter-plot graph of training (blue) and 
validate (red) dataset of XGB model 

Graph-4. Showing scatter-plot graph of testing (yellow) 
dataset of XGB model 

The testing dataset results are pivotal in determining the 
models’ practical applicability. The significant drop in XGB’s 
performance, coupled with the increased data point dispersion, 
highlights the challenges of deploying a model that overfits. 
FBCR’s relatively stable performance across all datasets 
suggests it might be a more reliable choice for real-world 
applications.  RF’s consistently lower performance indicates it 
may not be suitable for this particular prediction task. while 
XGB demonstrates superior performance on training and 
validation data, FBCR exhibits better generalization to unseen 
data. This evidence highlights the necessity of rigorous testing 
and validation to ensure model robustness and practical utility. 

3.7.3 Comparison 3-model’s results 

This study rigorously evaluated the predictive capabilities 
of three machine learning models – Forest-based Classification 
and Regression (FBCR), Random Forest (RF), and Extreme 
Gradient Boosting (XGBoost) on a testing dataset comprising 
398 rows of unseen data. The analysis focused on assessing the 
model’s ability to generalize and accurately predict property 
prices in real-world scenarios.  A scatter plot visually 
illustrates the performance of each model, with FBCR 
demonstrating superior predictive accuracy, achieving a higher 
R-squared value of 0.6412 and surpassing both RF (0.6071) 
and XGBoost (0.5513). This indicates that FBCR more 
effectively captures the underlying patterns in unseen data. The 
distribution of data points further reinforces this observation, 
with FBCR’s predictions showing a tighter clustering around 
the implied trend line, suggesting a more consistent and 
reliable fit. 

 

Graph-5. Showing scatter-plot graph to compared difference 
machine learning algorithm on all testing dataset (unseen data) 

398 rows, For color as FBCR (purple), RF (green), and 
XGBoost (yellow) 
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A 2D line graph, comparing the predicted prices from each 
model against the actual prices for a sample of 100 data points, 
provides a more granular perspective.  The FBCR model’s 
predictions closely track the actual prices, highlighting its 
ability to accurately reflect real-world price fluctuations. In 
contrast, the XGBoost model exhibits significant volatility, 
with substantial deviations from the actual price line, 
indicating fewer stable predictions. These findings underscore 
the FBCR model’s exceptional ability to generalize to unseen 
data, positioning it as a robust and reliable tool for property 
price prediction. 

Graph-6. Showing 2D-line graph to compared difference 
machine learning algorithm on testing dataset (unseen data) 
sample 100 rows from 398 rows dataset. For color as FBCR 

(purple), RF (green), XGBoost (yellow), and actual price 
(blue) 

3.7.4 Table statistics 

Table-2 provides a detailed comparative analysis of the 
performance of the FBCR, RF, and XGBoost models, 
revealing critical insights into their predictive capabilities and 
generalization potential. Notably, the R-squared values 
underscore the FBCR model’s superior performance on the 
testing dataset, which represents unseen data. Achieving an R-
squared of 0.641, FBCR outperforms both RF (0.607) and 
XGBoost (0.551), demonstrating its enhanced ability to 
accurately predict property prices in real-world scenarios. 

Table-2. Summary model statistics  

Model 

 
Training Validation Testing 

Mean 

accuracy 

FBCR 

RF 

XGBoost 

0.927 0.815 0.641 59.95% 

0.609 0.571 0.607 52.51% 

0.966 0.807 0.551 59.49% 

Model 

 
MAE MSE RMSE 

R-

squared 

FBCR 

RF 

XGBoost 

1.131 2.339 1.529 0.641 

1.237 2.559 1.599 0.607 

1.187 2.925 1.710 0.551 

This finding is further corroborated by the RMSE and 
MAE metrics. FBCR exhibits the lowest RMSE (1.529) and 
MAE (1.131) on the testing data, indicating that its predictions 
are not only more accurate but also exhibit lower average 
errors compared to the other models. In contrast, XGBoost, 
despite its exceptional performance on the training data, suffers 
from significant overfitting, as evidenced by the substantial 
decline in R-squared on the testing data and the highest RMSE 
and MAE values. The RF model consistently underperforms 
across all metrics. The mean accuracy values also reinforce the 
FBCR model’s effectiveness, with FBCR achieving a mean 
accuracy of 59.95%, very close to XGBoost 59.49% but FBCR 
is better in unseen data. This consistent performance across 

various metrics highlights FBCR’s robustness and reliability, 
making it a valuable tool for property price prediction. 

These results emphasize the importance of evaluating 
model performance on unseen data to assess real-world 
applicability. The FBCR model’s ability to maintain a high 
level of accuracy on the testing dataset, coupled with its lower 
error rates, positions it as a more dependable and effective 
model for property price prediction compared to RF and 
XGBoost. This study demonstrates the potential of FBCR to 
significantly enhance the accuracy and reliability of predictive 
models in the real estate domain, contributing to the 
advancement of machine learning applications in practical 
settings. 

 

4. CONCLUSIONS 
This study investigated the efficacy of three machine 

learning models—Forest-based Classification and Regression 
(FBCR), Random Forest (RF), and Extreme Gradient Boosting 
(XGBoost)—in predicting property prices.  A comprehensive 
framework was employed, encompassing data preprocessing, 
outlier removal, feature selection, model training, and rigorous 
evaluation using training, validation, and testing datasets.  
While XGBoost demonstrated exceptional performance on the 
training data, its susceptibility to overfitting led to a significant 
decline in accuracy on the unseen testing data. RF consistently 
underperformed across all datasets, indicating limitations in 
capturing the data’s complexity.  In contrast, FBCR exhibited a 
balanced performance profile, achieving high accuracy on the 
training data while maintaining robust generalization 
capabilities on the testing dataset. This was evidenced by its 
superior performance across various metrics, including R-
squared, RMSE, MAE, and mean accuracy. 

The findings highlight the crucial role of FBCR as a 
reliable and accurate model for property price prediction. Its 
ability to generalize effectively to unseen data underscores its 
practical applicability in real-world scenarios. This research 
contributes to the growing body of evidence supporting 
FBCR’s efficacy in complex prediction tasks, paving the way 
for its wider adoption in diverse domains. Future research may 
explore further optimization techniques, feature engineering 
strategies, and the application of FBCR to other regression 
problems. 
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