
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Eternal blue esport using PERN stack

 1Sneha Tomar ,2 Shagun Sharma

1,2 Computer Science & Engineering (Data Science), Raj Kumar Goel Institute of Technology, Ghaziabad, UP, India

1tomarsneha249@gmail.com
2sshagun516@gmail.com

Abstract— The growing market for eSports is fueling demand

for robust, highly scalable, interactive ecosystems to support

competitive gaming, community interaction, and real-time data

processing. The authors will present an eSports platform named

Eternal Blue, a full-stack eSports web application that was built

using the PERN stack (PostgreSQL, Express.js, React, and

Node.js). The system contains several modules to support

organizing eSports tournaments, tracking, live scoring, user

authentication, matchmaking functions, and dynamic leaderboards

with real-time updates. These platform modules use advanced

web technologies to provide high throughput, modular design, and

scalability, supporting thousands of concurrent users the site can

provide performance activity based on user load. The back-end

was developed using Node.js and Express for handling RESTful

API requests and secure communication while the front-end

experience was designed using React, which enabled a high-

quality user experience for a scalable and highly-interactive

browser web application. PostgreSQL was the database also for

relational data storage and complex data queries. The software

also had socket-based functions for live communications with

other players. This paper examines the architecture of the

application, challenges in implementation, and performance

assessment of the PERN stack for the development of new

eSports applications.

Keywords—Sports platform, PERN stack, PostgreSQL, React.js,

Node.js, Express.js, Full-stack web development,Real-time

systems, Competitive gaming, Web application architecture,

Multiplayer platform, Live score tracking, RESTful API, Socket

communication, Scalable systems

.

I. INTRODUCTION

In recent years, the eSports industry has undergone rapid

growth, transitioning from small community-based

tournaments to high-stakes competitive events with

professional players, massive audiences, and big commercial

investment. As there is an increasing demand for seamless,

scalable and immersive online gaming platforms, advanced

web technologies to provide real-time interactivity and

engage multi-millions of users become critical. Current

platforms are limited scalability, responsiveness e.g., ping

qualities and integration of live features. Current eSports

platform enhancements or capabilities of officiating a given

capacity generally fail to engage those users and preserve

platform reliability in peak usage.

 The research presented in the following chapters discusses

Eternal Blue, a full-stack, real-time eSports platform

developed to use the PERN stack. [1] The PERN stack the

combination of PostgreSQL, Express.js, React.js, and

Node.js is a modern and very efficient one. The Eternal

Blue's system is specifically designed for competitive

gaming and was developed as a unified solution for hosting,

managing and competing in tournaments. Eternal Blue

supports many features such as real-time score counting,

matchmaking, authenticated users; chat, leaderboards, and

modular admin control.

As for the backend it is based on Node.js and Express.js and

is structured as a RESTful API service model which is built

to perform asynchronous, event-based operations that

provide low latency and high throughput, it also has a

WebSocket communication features for live interactions

among users. Including real-time.

On the frontend, React.js is used to create a responsive

interface, designed in a component-driven manner that

promotes usability and interactivity to attract and retain

users. One of the key features of React is its use of the

virtual DOM and state management, allowing real-time

rendering with fewer page reloads resulting in less hassle for

the user, and a more enjoyable experience regardless of the

device in use. The modular design of the platform enables

scalable component rollout and supports the potential future

extensibility of the platform for upgrades, such as AI-

generated matchmaking and predictive analytics.

The backend is constructed with Node.js, an efficient, event-

driven runtime environment, and Express.js, a minimalist

web application framework for building RESTful APIs as

well as middleware-driven routing. Node.js and Express.js

are robust and flexible allowing the API requests, real-time

socket events, and synced date across players to work

seamlessly together. The backend also allows for

WebSocket communication with libraries such as Socket.IO

to deliver updates to players in real-time for multiplayer

games, live scores, and administrative notifications.

PostgreSQL will be the chosen relational database system

for persistent and structured data storage. PostgreSQL is a

powerful RDBMS because it provides advanced features

including transaction management, indexing, pigeonholing,

and enforcing contraints. These features help keep the

backend as a reliable way to ensure and support true

competition. [2] PostgreSQL can also store and manage

complex relational data making it simple to model

tournaments, players, matches, and outcomes.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

 Eternal Blue will employ the use of React.js, a modern
JavaScript library for building dynamic, modern user
interfaces as the front end. With the ability to take advantage of
the virtual DOM, state management tools, such as Redux or the
Context API, and reusing components React provides a chance
for the platform to deliver real-time updates without needing to
refresh/render a page, which benefits performance and ongoing
engagement. Lastly, the front end has been designed as a
production-ready ensure cross compatibility and a responsive
support for desktop sites, and mobile devices.

II. METHOLOGY

The creation of the Eternal Blue eSports platform followed an
agile and modular method of full-stack web development for
scalability, real-time interaction, and system resilience. The
development process was organized into iterative phases,
which include requirement elicitation, technology stack
evaluation, architecture design, modular implementation, real-
time communication, security provision, database modelling,
and system testing.

This section details the experiences, tools, frameworks, and
best-practices that went into implementing and validating the
system, with an emphasis on the function of each part of the
PERN stack in constructing a modern eSports platform that
involved dynamic multiplayer interaction, live data streaming,
and scalable user operation.

1 Requirements Analysis and Planning

A rigorous requirements analysis phase was executed to

establish both functional and non-functional requirements.

Functional requirements were developed based on industry-

standard eSports use cases, including the following:

(1) User registration, sign in, and profiles

(2) Tournament creation, administration, and participation

(3) Livestreaming to real-time monitoring multiplayer matches

and real-time score updates

(4) Admin control over the match schedule, banning of players,

and broadcasting the matches

(5) Player/team statistics and leaderboards & previous match

data

(6) In app communication including, chat and notification (in-

app notifications)

Non-functional requirements based on the following:

- High availability / high uptime

- Cross-device compatible

- Low latency in streaming content; real-time updates

- Data integrity and security

- Scalable to support thousands of concurrent users

During the requirements gathering process, casual gamers,

professional eSports players, event organizers, and spectators

were included to foster a user-centered design.

2. Selecting a Technology Stack: The PERN Stack

The PERN stack (PostgreSQL, Express.js, React.js, Node.js)

was purposely selected for its compatibility and ability to

create interactive, fast, and scalable web applications. [3] The

technologies in the stack were chosen for very important

reasons.

• PostgreSQL: A sophisticated open-source

relational database with significant querying,

indexing, transaction management, and extensibility

capability. PostgreSQL is an excellent choice for

structured, relational data - and in our case, the

tournament schedules, user profiles, team statistics,

and match results are the perfect use case for leverage

PostgreSQL's reliability.

• Express.js: A minimalistic and flexible

Node.js framework, allowing for middleware support

and good customizable routing. Using Express.js

allowed us to create a RESTful API quickly while

also allowing for sockets to incorporate real-time

data.

• React.js: A front-end component-based

library which allowed the creation of rich and

dynamic interfaces of data. React uses a virtual DOM

along with advanced state management (via Context

API or Redux) which were very important in creating

real-time updates to the UI in a multiplayer gaming

context.

• Node.js: an asynchronous and event-driven

JavaScript runtime environment that is perfect for

high concurrency applications like chat systems and

live scoreboards.

• Ultimately, this stack allowed us to develop

in JavaScript across the entire stack allowing for

smooth development and minimal context switching.

3 System Architecture Design

Fig 2.1 System Architecture Design

The system is structured around a multi-tiered architecture to

handle a separation of concerns for distinct function areas:

• The Presentation Layer: this layer is based

on React.js, and is responsible for the user interface

including animations and routing and rendering data

received through RESTful APIs and WebSockets.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

• The Application Logic Layer: is

implemented using Node.js and Express.js, this layer

is responsible for the business logic of the application

including tournament creation, match results, chat

commands, user permissions, and scoring systems

etc.

• The Data Layer: backed by PostgreSQL this

layer allows for data operations with relational data,

and uses developed schemas, keys, foreign key

constraints, and designed joins[4]

Table 2.1 LITERATURE TABLE

• The Real-Time Communication Layer:

implemented with Socket.IO to support two-way

communications (low-latency) between the server

and clients+++++

• Future proofing scalability through

microservice and containerization strategies (e.g.

Docker), is an option for when needing to scale out

smaller services, such as chat, matchmaking, or

analytics, independently.

S.NO. Author Title Year Key Contribution Relevance to Current

Work

1. J. Tilkov, S.

Vinoski
[5]

Node.js: Using

JavaScript to

build high-

performance

network programs

2010 Describes the non-

blocking I/O model

of Node.js for

building scalable

web applications.

Supports the choice of

Node.js for backend

real-time capabilities

in Eternal Blue.

2. R. Nixon
[6] Learning PHP,

MySQL &

JavaScript with

React, Node, and

Git

2022 Provides

comprehensive

insight into modern

full-stack

development using

the PERN stack.

Informs the technical

framework and

integration used in the

platform

3. M. Shafique et

al.
[7]

Real-time

processing

platforms:

Requirements,

trends, and design

2016 Discusses the

architecture and

performance

challenges of real-

time systems.

Offers background on

handling real-time

data updates for live

scores and match

tracking.

4. Socket.IO

Docs
[8]

Reliable real-time

communication

for web

applications

Ongoing Documentation and

design principles

for WebSocket-

based

communication

using Socket.IO

Directly supports

implementation of live

score and chat

features.

5. C. Bizer, T.

Heath, T.

Berners-Lee
[9]

Linked data—the

story so far

2009 Explains data

integration and

semantic

structuring.

Highlights the

importance of

structured and

relational data design

used in PostgreSQL.

6. PostgreSQL

Global Dev.

Group
[10]

PostgreSQL

Official

Documentation

Ongoing Detailed usage and

optimization of

PostgreSQL for

scalable, secure

data handling.

ustifies selection of

PostgreSQL as the

system's RDBMS.

7. E. Freeman, E.

Robson
[11]

Head First Web

Development

2008 Covers full-stack

web development

from frontend to

backend.

Guides

implementation of

user interfaces and

backend logic in React

and Express.

8. T. E. Ng, H.

Zhang
[12]

Predicting

Internet network

distance with

coordinates-based

approaches

2002 Provides analysis of

latency and network

performance.

Useful for optimizing

communication

latency in multiplayer

and real-time

scenarios.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

4 Frontend Development (React.js)

The frontend aimed to provide a seamless and engaging user

experience. Components were developed as React functional

components, using hooks to manage state and lifecycle events.

Features include:

• Responsive Design: Mobile-first formats

were created using Flexbox and CSS Grid, allowing

usability to differ only in display between devices.

• Component-Based Architecture: Each

screen (e.g., Tournament Dashboard, Match View,

Admin Panel, etc.) was effectively built as a modular

component to allow for code reuse.

• Real-Time Data Rendering: Achieved

through integration with WebSocket technology,

allowing for live tracking of match events without

refreshing the page.

• State Management: State was managed

mainly with React Context API, and sometimes

Redux, for global states like logged in user

information and real-time scores.

III. DATA

Data management is a crucial aspect of every eSport platform;

being able to intelligently store and retrieve player data,

tournament data, match results, match scores, and user

interactions at the lowest possible latency is key. In this

section, we will cover the database architecture, schema

design, and data flow processes and optimizations that were

used in Eternal Blue where PostgreSQL is used as the data

store.

1 Database Architecture

The database architecture of Eternal Blue is designed to easily

manage relational data while allowing complex querying of

tournaments, matches, player statistics, and real-time events.

The use of PostgreSQL as our database engine was due to its

robustness, scalability, performance, and ACID (Atomicity,

Consistency, Isolation, Durability) compliant model as our

data layer.

This data architecture is based on a relational model and is

comprised of multiple tables that are linked to one another to

manage data consistency through defined relationships

between tables, which allow transactions to follow complex

rules while querying data.[13] The database architecture was

designed to optimize read and write performance, since real-

time score updates and player interactions require both speeds

to be optimal.

2 Database Schema Design

The Eternal Blue schema is comprised of a series of related

tables, with each table serving to store different parts of data

in the platform. A further description of the important tables is

provided as follows:

• Users Table: Contains records of users

(players and admins) with personal information,

authentication information (hashed passwords), and

roles (player, admin, spectator). This table contains a

user_status field that documents whether an account

is active (e.g., active, banned).

Fields: user_id, username, email, password_hash,

role, status, join_date

• Tournaments Table: Details the information

about each tournament including the tournament

name, rules, start and end dates, and the current status

(e.g., active, completed).

Fields: tournament_id, name, description, start_date,

end_date, status

• Matches Table: Consists of records for each

match within a tournament including a match ID,

tournament ID, teams associated with the match, the

match start time, and the status of the match (e.g.

pending, in progress, completed).

Fields: match_id, tournament_id, team_1_id,

team_2_id, start _time, end _ time, status.

• Teams Table: Holds details of teams that

participate in tournaments that include a team name,

members, and the team ranking.

Fields: team_id, team_name, leaderboard_rank,

members (JSON field containing a json array of users

ids)

• Scores Table: Holds score and performance

for each match, including score updates in real-time,

match results, and statistics (e.g. kills, deaths,

assists).

Fields: score_id, match_id, team_1_score,

team_2_score, team_1_stats (JSON field),

team_2_stats (JSON field)

• Chat Logs Table: Holds messages that

players exchange before, during and after live

matches and tournament sessions categorized by user

id and timestamp.

Fields: chat_id, match_id, user_id, message,

timestamp

• Leaderboard Table: Holds overall ranking

for users or teams based on tournament results, match

wins, and other metrics.

Fields: leaderboard_id, tournament_id, team_id,

points, rank.[14]

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

Fig3.1 Database Architecture Diagram

3 Data Flow and Interaction

Data across Eternal Blue is dynamic and real-time when

players use the platform during tournaments and match play.

Below is the standard data flow:

• User Authentication and Profile Creation:

• When players sign up and sign in

through a secure authentication system

based on JWT (JavaScript Object Notation),

they will create user profiles and once on-

boarded, they can begin to participate in

tournaments.

• API Interaction: The front-end of

the platform sends a POST request to the

back-end API providing the user credentials,

the back-end server validates and issues a

token for management of user sessions.

• Tournament Creation and Match Processing:

• The back-end platform allows

administrators to create new tournaments

through the admin panel. Once created, a

tournament generates many matches, where

each match is tied to a tournament identifier.

• Database Interaction: Upon the

creation of the tournament, data is inserted

into the Tournaments table, and during

match scheduling, data is inserted into the

Matches table with a reference to the

tournament.

• Real Time Match Information:

• While the game is ongoing, the

Socket.IO system pushes real-time score

updates, player stats, notifications of events

(e.g., match start, match end) to users that

are signed in.

• Database Interaction: As scores and

player stats are updated, the backend API

updates the Scores table for the specific

game in real-time using WebSocket.[15]

IV.RESULTS AND DISCUSSION

The platform has been constructed and deployed successfully,

using the PERN (PostgreSQL, Express.js, React.js, Node.js)

stack. The functionality, performance, scalability, and

usability of the platform were tested without restriction using

multiple user loads and real-world scenarios. This section

contains the experimental findings, performance metrics and

user feedback, followed by a critical discussion of the

platform's effectiveness and limitations.

1 Functional Validation

In order to validate the functional elements of a system, full

end-to-end testing was performed on the critical modules, as

follows:

• User Management: Registration,

login/logout, session management, and role-based

access.

• Tournament Lifecycle: Creation, scheduling,

live tracking, and automatic closure of tournaments

and matches.

• Live Score Tracking: Real-time updates

with Socket.IO and canvas drawing with all clients

receiving updates in real time.

• Chat System: Message overwriting and

delays were resolved, enabling reliable information

exchange during the live match with no messages lost

or delayed significantly.

• Leaderboard Updates: There were dynamic

leaderboard updates every time a match completed

based on the tournament's specific rules and scoring

system.

2 Performance Evaluation

To evaluate the traffic throughput and number of concurrent

users the system could handle, performance testing was

performed with the help of various tools including Artillery

and JMeter. A few important performance metrics were

captured under controlled loads:

Metric Result

Average API

Response Time
110 ms (under 1000 concurrent users)

WebSocket Latency < 50 ms average (for live updates)

Database Read Time ~80 ms (indexed queries)

Message Throughput ~350 messages/sec (chat module)

System Uptime 99.94% (monitored over 30 days)

3 User Experience and Feedback

Eternal Blue was released as a beta version to a test group of

50 uses (gamers, tournament admin, and casual players).

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 6

Feedback was collected through surveys and interviews. Here

are some notable observations.

• Positive

• Responsive and fast UI

• Match tracking is smooth, real-time

update of events

• Manage tournaments and matches

intuitively

• In-game chat functionality allows

for easy communication

• Negative

• Need to add push notifications for

game events

• More consistent UI on smaller

mobile screens

• Need to add match replays or

summary highlights[16]

4 Discussion

These results prove that the PERN stack is suitable for

developing flexible, real-time platforms for eSports that can

effectively scale.[17] The combination of a React frontend with

API-based WebSocket live updates works well together to

provide a smooth experience for both players and spectators.

Finally, I successfully used PostgreSQL to manage complex

relational data structures such as tournament hierarchies and

player statistics.

However, there were some limitations and challenges:

• Scalability Limits: The testing process

reached ~1000 user engagements who were using the

system simultaneously. Stress testing for access and

latency indicated there were limitations beyond this

number. The implication is scaling the system

horizontally by using microservices and load

balancing.

• Security Challenges: In developing Core

Security Best Practices, there are possibilities for

improving security (e.g. utilizing two-factor

authentication for user accounts, rate limiting for

sensitive routes, etc.).

• Mobile Optimization: While the platform is

responsive, mobile optimization will require

additional work, and potentially native development

for a mobile app for competitive characteristics of the

eSports activity creating a fully user-centred mobile

experience.[18]

V.CONCLUSION

The creation and launch of the Eternal Blue eSport platform

using the PERN stack (PostgreSQL, Express.js, React.js, and

Node.js) has been successful in proving that a strong, real-

time, and scalable web application can be created specifically

to suit the growing demands of competitive gaming

environments.[19] The use of contemporary web technologies

combined with real-time communication protocols such as

Web Sockets (Socket.IO) and RESTful APIs allows the

platform to deliver an engaging and responsive user

experience for players, tournament organizers, and

spectators.

It was shown that the system can accommodate multiple

concurrent users efficiently as well as dynamic score updates

and data integrity using a well-defined PostgreSQL backend.

The flexibility of transitioning between the frontend and the

backend has provided extendable interactivity and real-time

responsiveness which is s crucial aspect in any eSports

environment.

User testing indicated a high level of satisfaction with

Eternal Blue, especially notable in benefits like live score

tracking, team management, and ease of use. Feedback also

identified ways to improve, such as mobile-first

optimization, improved notifications, and more robust

analytical capabilities.

Overall, Eternal Blue is a pragmatic and scalable method for

organizing and managing eSports tournaments, and it

demonstrates the advantages of full-stack JavaScript for

delivering high-performance web applications.[20]

REFERENCES

[1] [1] M. Fowler, Patterns of Enterprise Application
Architecture. Addison-Wesley, 2002.

[2] [2] R. Nixon, Learning PHP, MySQL & JavaScript with
React, Node, and Git. O’Reilly Media, 2022.

[3] [3] E. Freeman and E. Robson, Head First Web
Development. O’Reilly Media, 2008.

[4] [4] J. Tilkov and S. Vinoski, “Node.js: Using JavaScript to
build high-performance network programs,” IEEE Internet
Computing, vol. 14, no. 6, pp. 80–83, Nov.–Dec. 2010.

[5] [5] J. Tilkov, S. Vinoski, Node.js: Using JavaScript to build
high-performance network programs 2010

[6] [6] R. Nixon Learning PHP, MySQL & JavaScript with
React, Node, and Git 2022

[7] [7] M. Shafique et al. Real-time processing platforms:
Requirements, trends, and design 2016

[8] [8] Socket.IO Docs Reliable real-time communication for
web applications ongoing

[9] [9] C. Bizer, T. Heath, T. Berners-Lee Linked data—the
story so far 2009

[10] [10] PostgreSQL Global Dev. Group PostgreSQL Official
Documentation ongoing

[11] [11] E. Freeman, E. Robson Head First Web Development
2008

[12] [12] T. E. Ng, H. Zhang Predicting Internet network
distance with coordinates-based approaches 2002

[13] [13] C. Bizer, T. Heath, and T. Berners-Lee, “Linked
data—the story so far,” International Journal on Semantic Web
and Information Systems, vol. 5, no. 3, pp. 1–22, 2009.

[14] [14] M. Shafique et al., “Real-time processing platforms:
Requirements, trends, and design challenges,” IEEE Design & Test,
vol. 33, no. 5, pp. 45–54, Oct. 2016.

[15] [15] T. E. Ng and H. Zhang, “Predicting Internet network
distance with coordinates-based approaches,” in Proceedings IEEE
INFOCOM 2002, pp. 170–179.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 7

[16] [16] Socket.IO Documentation, “Reliable real-time
communication for web applications.” [Online]. Available:
https://socket.io/docs/

[17] [17] PostgreSQL Global Development Group, “PostgreSQL 16
Documentation.” [Online]. Available:
https://www.postgresql.org/docs/

[18] [18] React.js Documentation, Meta Platforms, Inc. [Online].
Available: https://react.dev/

[19] [19] Express.js Documentation. [Online]. Available:
https://expressjs.com/

[20] [20] Node.js Foundation, “Node.js v20.x Documentation.”
[Online]. Available: https://nodejs.org/

http://www.ijsrem.com/
https://www.postgresql.org/docs/
https://react.dev/
https://expressjs.com/
https://nodejs.org/

