
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37434 | Page 1

Evaluating Deep Reinforcement Learning Algorithms

Shreeja Pradhan
shreejapradhan2020@gmail.com

Abstract—Recent advancements in machine learning, partic-
ularly in reinforcement learning (RL), have enabled solutions
to previously intractable problems. This research paper delves
into the mathematical underpinnings of several prominent deep
RL algorithms, including REINFORCE, A2C, DDPG, and SAC.
By implementing and testing these algorithms in the MuJoCo
simulator, I evaluate their performance in training agents to
achieve complex tasks, such as walking in a 3D environment.
Our findings demonstrate the efficacy of these algorithms in
real-time learning and adaptation, underscored by the superior
performance of the SAC model. This study not only provides
insights into the practical applications of deep RL but also
lays the groundwork for future explorations in hyperparameter
optimization and multi-agent learning scenarios. The project
repository containing code, models, and experimental results is
available for further research and development.

I. INTRODUCTION

Recent developments in machine learning have made huge

strides in approaching problems that were previously un-

solvable with traditional programming methods. In general,

machine learning techniques are grouped into three categories:

supervised learning, unsupervised learning, and reinforcement

learning (RL). The first two categories train on a dataset

with constant values. RL is unique in the fact that the data

it trains on frequently changes due to the strong causal

interdependency between the agent and the environment. As

the training data is consistently changing, RL algorithms must

be able to learn in real-time, called online learning [1].

This paradigm of machine learning aligns well with several

real-life applications and, as a result, has led to new state-

of-the-art algorithms to solve them. Some examples may

include DeepMind’s AlphaZero, which became the best Go

player. Another example is RL algorithms that have achieved

superhuman performance in a variety of Atari games using

only visual inputs. However, RL algorithms can excel in more

than just games, RL agents have been created to control

robotics, design machine learning algorithms and much more

[2].

RL is capable of learning from data as it comes in. This

data is formulated as a set of interactions with the agent’s

environment where each interaction consists of the state of the

environment, the action the agent performed, and the resulting

state. Thus, agents that use RL learn with a circular process

that is a result of the agent’s previous actions, known as the

agent-environment interaction loop. This complex relationship

has given rise to multitudes of algorithms, from remembering

a mapping between states and actions to using multiple neural

networks to determine the next action.

In this paper, I aim to introduce the mathematics used

in deep reinforcement learning by examining several famous

deep RL algorithms. By learning mathematics, I aim to

understand the core principles that the field of RL uses,

along with special tricks and techniques that are used to

improve performance. Specifically, this paper looks to study

and implement the following algorithms:

• REINFORCE

• A2C

• DDPG

• SAC

II. TESTING ENVIRONMENT

All RL algorithms were written using Python 3.8 and

the PyTorch library. The algorithms were written using the

OpenAI gym interface. This interface was used as it is a

standardized way to interact with RL algorithms and the

 gym library has native support for MuJoCo. This interface

is described in the documentation [3]. An overview of this

interface is given below:

• reset() : Resets the environment to an initial state

• step() : Used to update the environment and returns the

following:

– An observation of the environment

– The reward from the most recent step

– A done flag, marking a state as a terminal state

– An info object that has a log of the internal details

of the environment step

III. BACKGROUND

The study of reinforcement learning is about training an

agent to interact with an environment. An action by an agent

can influence the environment, which may later affect the

actions of the agent. For this reason, reinforcement learning

algorithms must be able to handle a changing environment that

the agent itself causally influences.

Formalizing the interdependency between the environment

and the agent is done with the agent-environment interaction

loop. In which, at time t, the environment is fully described

by its state, st. Then, an agent makes an observation of the

environment, ot, where ot ⊆ st.1 The agent responds to this

observation with an action at and is given a reward, rt. After

1While the observation and the state are not necessarily equal, reinforce-

ment learning literature frequently refers to an observation as the state itself.

http://www.ijsrem.com/
mailto:shreejapradhan2020@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37434 | Page 2

the action is taken, the state of the environment changes with

the new state denoted as st+1.

An environment state can be represented by a tensor of

values describing individual aspects of the environment. The

domain of possible observations of the agent is referred to

as the observation space, which can be either continuous or

discrete. Similarly, the domain of all actions that an agent can

take is called the action space, which can also be continuous

or discrete. An action, at, is selected from the action space by

agent’s policy. The policy can select actions either determin-

istically or stochastically. Typically, deterministic policies are

denoted with at = µ(st) and stochastic policies are denoted

as at ∼ π(·|st) [4].

The reward given for the transition from st to st+1 by action

at is given by the reward function, where rt = R(st, at, st+1).
However, readers should be aware that some literature refers to

this value as rt+1. Typically, this reward function is specified

J (π). This is done with value functions. Formally, J (π) is

defined as:
J (π) = E [R(τ)]

τ ∼π

The state value function for policy π, denoted as V π, gives

the expected value for policy π given state s. Alternatively, the

state-action value function for policy π, denoted as Qπ, can

be used to estimate the expected value for policy π in state s
and immediately take action a. Formally, these are defined as:

V π(s) = E [R(τ) | s0 = s]
τ ∼π

Qπ(s, a) = E [R(τ) | s0 = s, a0 = a]
τ ∼π

However, these functions are still dependent on the return.

To avoid this, I can use the Bellman Equations, which defines

both V π and Qπ in terms of expected values of future states.

[2], [4], [6] These equations are given as:

by a programmer in a way that rewards a specific goal. With

this in mind, the process of training an agent can be formulated

as maximizing the cumulative reward, called the return. To

V π(s) = E
a∼π
s′∼P

[R(s, a, s′) + γV π(s′)]

calculate the return, the trajectory is used, which contains

the sequence of states and actions taken by the agent. The

Qπ(s, a) = E
s′∼P

R(s, a, s′) + γ E
a′∼π

[Qπ(s′, a′)]

trajectory is given by: = E
s′∼P

[R(s, a, s′) + γV π(s′)]

τ = (s0, a0, s1, a1, ...)

Therefore, as the return is defined in terms of cumulative

reward, the trajectory can be used to calculate the rewards as

the agent interacts with the environment. Then, in its most

simple form, the return is the summation of all rewards.

However, this introduces two problems: First, the return for

an action t is defined in terms of actions taken before it.

Intuitively, I would to only consider rewards that will happen

as a result of the current action. Second, The summation of

all rewards weights all rewards equally, however, this means

that very long term rewards may eventually dominate the

summation. To encourage shorter term rewards I can introduce

a discount factor, γ, that discounts the value of future rewards.

Commonly, the reward function R is co-opted to take a

trajectory and produce the rewards at each timestep t. With
these considerations in mind, the return can be defined as:

T

Where P is the environment state transition function and s′
is the resulting state.

For the agent to maximize J (πθ), the agent must learn to

improve the policy πθ, where θ are the parameters for the
policy and is normally updated by gradient ascent. Normally,

this involves using V π or Qπ to approximate the optimal

value functions better. Commonly, these approximations are

done via deep neural networks. The exact details of how

the policy and value function(s) are updated are dependent

on the reinforcement learning algorithm used. Following is a

brief discussion on different types of reinforcement learning

algorithms, followed by talks on details of specific algorithms

studied in this paper.

A simplified taxonomy of deep reinforcement learning al-

gorithms is given by [7]. At the highest level, reinforcement

learning algorithms can be split into two categories: model-

based or model-free. Model-based algorithms learn the state

Rt(τ) =
t

Σ

′=t

γt′ rt′ , γ ∈ (0, 1) transition function, allowing it to predict future states of the

environment. Learning the world model has many benefits

that can drastically increase the performance of an agent;
Where T is the length of the trajectory and t is the current

time for which the return is being calculated. If T is finite, then

the return is said to be a finite-horizon return. Similarly, if T
is infinite, then the return is said to an infinite-horizon return.

The inclusion of γ makes this return a discounted return. This

places more focus on near-term rewards and also helps with

convergence in infinite-horizon returns. Using t′ makes the

return only consider future rewards, which [5] calls the reward-

to-go return.

However, an agent cannot act directly to maximize its return

as it is dependent on future actions and states. Instead, an

approximation must be used to calculate the expected return,

however, doing so significantly increases the complexity of

the algorithms and is outside the scope of this paper. Model-

free algorithms do not learn to predict the environment and

instead learn other functions to increase the agent’s return.

Model-free algorithms can be further categorized as using

policy optimization or Q-learning.2

Policy optimization algorithms train by optimizing the pa-

rameters of the policy πθ. This is normally done by learning

a value approximator Vϕ and sampling actions taken by

the current policy to update parameters accordingly. Because

2Policy optimization and Q-learning are not mutually exclusive categories.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37434 | Page 3

this process requires actions from the current policy, these

techniques are considered to be on-policy.

Another approach, though not necessarily mutually exclu-

sive, is using Q learning. These algorithms learn an approx-

imator Qθ to determine the value of state action pairs. An

advantage of this technique is that it can be learned from past

experiences that were not from the current policy. Algorithms

that can learn from experiences of different policies are called

off-policy. Actions by these algorithms typically are chosen by

selecting the action that maximizes Qθ(s, a) for the current

state s.

A. The REINFORCE Algorithm

One of the simplest forms of policy optimization algorithms

is a class of algorithms presented by Williams as REINFORCE

[8]. The core idea of this algorithm is to update the policy

The second technique is the use of an actor-critic frame-

work. The idea of this framework it to separate the concerns

of learning different aspects of training. The actor is tasked

with learning the policy that will interact with the environment.

The critic is tasked with learning the value function that it will

use to criticize the actor’s actions [10].

C. Deep Deterministic Policy Gradient (DDPG)

DDPG is an off-policy learning algorithm for continuous

action spaces that proposed citeDDPG. It learns a Q

function and a deterministic policy to select actions

and uses a variety of techniques to improve the

performance and stability of the algorithm. provides

an overview of unique methods used by this algorithm

citespinningupddpg.Onetechniquethatiscommonlyusedbyoff −

policyalgorithmsistheuseofareplaybuffer.Becauseoff −
by sampling trajectories from the policy. Once a sample has policyalgorithmscanlearnfromactionsthatdidnotoriginatefromthec

been taken from the current policy, the policy πθ and value

approximator Vϕ can be updated. There is some flexibility

in how the parameters are updated, though [5] provides some

examples of frequently used techniques. The policy is updated

using gradient ascent where the gradient is given by:

To update the function Qϕ, gradient descent is used on ϕ to

minimize the mean squared error of Qϕ(s, a) and the target,

where the target is defined as:

y = r + γ(1 − d)Qϕ(s′, µθ(s′))
Where (s, a, r, s′, d) is a transition in the replay buffer D,

∇θJ (πθ) = E

"
ΣT

∇θ log πθ(at|st) Φt

#

 the resulting state from the action is s′, and d is the done ′
τ ∼πθ t=0 flag where d = 1 if s is a terminal state, d = 0 otherwise.

Where Φt is any function that is independent of θ.

To update the value approximator parameters ϕ, it is com-

mon to use gradient descent on a loss such as a mean squared

error on the value approximator and the reward-to-go return.

Additionally, µθ is the deterministic policy used to select the

next action.

However, using gradient descent on the mean squared error

of Qϕ and y is problematic as y is also dependent on ϕ. As a

result, both Qϕ and y change when ϕ is updated, leading to

instability. To resolve this, DDPG uses target networks, which
L(ϕ) = E

τ ∼πθ
h

(Vϕ(st) − Rt(τ))2
i

uses Polyak averaging to remove this direct dependency. The

target networks, Qϕ′ and µθ′ have the same structure as their

B. Advantage Actor Critic (A2C)

The advantage actor-critic is an on-policy algorithm based

on the REINFORCE algorithm. A2C was first proposed by

[9] along with an asynchronous variant called A3C. The

details about the asynchronous version of the algorithm are

not pertinent to this paper and will not be discussed. As a

whole, there are two main techniques used to improve the

original networks but are updated as follows:

ϕ′ ← τ ϕ′ + (1 − τ)ϕ

θ′ ← τ θ′ + (1 − τ)θ

For τ ∈ (0, 1). This provides stability to the loss function

therefore Qϕ is updated using gradient descent on

performance of this algorithm.

The first technique is the use of the advantage function,
Aπθ (st, at) as Φt. The advantage function is defined as:

L(ϕ, D) = E
(s,a,r,s′,d)∼D

h
(Qϕ

(s, a) − y)2
i

Aπθ (st, at) = Qπθ (st, at) − V πθ (st, at)
This loss function is called the Mean Square Bellmen Error

(MSBE), where y is the target, which is calculated as:
′ ′

It should be noted that Φt must be independent of θ
and, by consequence, at. However, [5] provides a proof that

Aπθ (st, at) can be written it terms of st only. The advantage

can be thought of as quantifying how much better an action

y = r + γ(1 − d)Qϕ′ (s , µθ′ (s))

To update the policy, I want to maximize the value function

Qϕ using µθ. To do this, the following loss function is used:

in a given state is than average. Negative values signify that

the action was less than the expected value for the given

L(θ, D) = E
s∼D

[−Qϕ(s, µθ(s))]

state, and positive signifies that it was better. Mathematically,

the advantage function is useful as subtracting by V πθ (st)
reduces the variance in the policy gradient leading to more

stable learning.

Finally, to gain additional benefit from the algorithm off-

policy, DDPG uses another technique to encourage exploration

during train time. This is done by adding random noise

to actions to stray away from the deterministic policy. The

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37434 | Page 4

k

min Qϕ′ (s , a) − α log πθ(a | s)

2 2

original authors uses OU noise, however [11] recommends

a zero centered Gaussian distribution which is simpler to

implement and still effective.

The policy πθ is updated in a way similar to DDPG. The

policy is updated by using gradient ascent to maximize the

value function. Therefore the loss function for πθ becomes:

D. Soft Actor Critic (SAC)

The Soft Actor-Critic Algorithm is a stochastic off-policy

L(θ, D) = E
s∼D

a∼πθ

— min Qϕ′ (s, a) − α log πθ(a | s)
k=1,2 k

algorithm that uses an actor-critic framework and entropy

regularization. This algorithm was originally proposed by [12],

[13]; additionally, a guided explanation is given by [14]. SAC

can be implemented for either discrete or continuous action

spaces. However, the details that follow will be tailored for

the continuous version.

SAC works by learning a stochastic policy πθ and two

Q functions, Qϕ1 and Qϕ2 . When evaluating the value, the

minimum value is taken between Qϕ1 (s, a) and Qϕ2 (s, a).
This is called the clipped double-Q method. Using this method
helps prevent overestimating the value of state action pairs,
which improves training results.

Similar to DDPG, SAC uses target networks to stabilize

the updates using the loss function. Unlike DDPG, SAC only

uses target networks for value functions, not for policy. The

parameters for the target networks are updated using Polyak

averaging as shown below:

ϕ′ ← τ ϕ′ + (1 − τ)ϕ1

There are two important details regarding sampling action a
from πθ in the SAC algorithm. First, sampling is done from a

normal distribution using the reparameterization method. This

makes the randomly sampled number differentiable, allowing

for actions to backpropagate through the policy’s parameters.

The second detail is that the SAC policy squashes the action

into a finite action space with tanh. This is done as most

action spaces have finite bounds while normal distributions

have infinite support. By limiting the domain of the action to

the action space, the policy is learned more efficiently.

IV. METHODOLOGY

Testing of the effectiveness of RL algorithms was done

sequentially and in multiple stages, increasing in difficulty.

The first tests were algorithms that used discrete action spaces,

REINFORCE, and A2C. The tests were performed in the

 CartPole-v0 environment. These tests were qualitative, with
the goal of seeing that the simplest algorithms were properly

1 1

ϕ′ ← τ ϕ′ + (1 − τ)ϕ2

For τ ∈ (0, 1).

To control the exploration of the policy, SAC uses entropy

regularization, where entropy is defined as:

learning.

The second group of tests focused on testing the implemen-

tation of algorithms with continuous action spaces, DDPG,

and SAC. The tests were performed in the Pendulum-v1

environment. These tests were quantitative and recorded the

improvement of the agent over time.

H(P) = E
x∼P

[−log P (x)] The third group of tests focused on testing the performance

of algorithms with continuous action spaces. The algorithms

For any distribution P . Roughly speaking, entropy measures

how random a distribution is. An entropy of zero is given by

a policy where an action has probability 1. Larger values of

entropy indicate a more evenly spread probability

distribution. The choice of entropy regularization is

controlled with the entropy hyperparameter, α, where

α ∈ (0, 1). The greater the value of α, the more the policy
will explore.

Entropy is introduced in several aspects of the SAC algo-

rithm. The first is in the entropy regularized double-Q clipped

target, which is calculated as:

′ ′ ′ ′

tested were A2C, DDPG, and SAC. The tests were performed

in the MuJoCo Ant-v3 environment. These tests were quan-

titative and recorded the improvement of the agent over time.

The fourth test took the best-performing algorithm from the

third group of tests and subjected it to a more challenging

environment, MuJoCo’s Humanoid-v3 environment. This en-

vironment has a larger observation and action space than the

 Ant-v3 environment. This test was quantitative and recorded

the improvement of the agent over time.

The hyperparameters for each algorithm were as follows:

• REINFORCE: Train for a maximum of 5000 episodes.

Update at the end of each episode. Learning rate of 3e-4.

• A2C: Learning rate of 3e-4 and γ = 0.99.

Where a′ ∼ πθ.

k=1,2 k
steps, batch size of 128, the learning rate of 1e-3, γ =
0.99, τ = 0.995, and the noise distribution was Gaussian

This is used to calculate the entropy regularized MSBE,

which is used as the loss function for Qϕ1 and Qϕ2 , given by:

with a standard deviation of 0.1.3

• SAC: Update freq. of 64 steps, 64 updates per update

step, an update threshold of 4096 steps, batch size of 128,

L(ϕk, D) = E
(s,a,r,s′,d)∼D

h
(Qϕ (s, a) − y)2

i
, k = 1, 2

α = 0.5, learning rate of 5e-4, γ = 0.99, τ = 0.995.

3[15] uses OU noise, but [11] recommends using Gaussian noise as it is

Where D is the experience replay buffer. easier to implement and gives similar results

y = r + γ(1 − d) • DDPG: Update freq. of 64 steps, update threshold of 4096

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37434 | Page 5

Σ

f is defined as 5e-7 ∗
Σ

contact forces2.

Σ

Each of those hyperparameters was chosen based roughly on

existing literature. Values were tweaked until they resulted in

a model that was capable of learning the environment.

All deep neural networks used in these algorithms were

multilayer perceptrons with two hidden layers of size 256

each, using the ReLU activation function. From our testing,

using 128 neurons per layer frequently caused problems when

learning the environment. At 256 neurons, all models seemed

to be able to learn the climate sufficiently, and adding more

neurons would have greatly increased the computational cost

of training.

More detailed information about the tests in each environ-

ment is described in its subsection below. The source code for

each environment is given by [16].

A. CartPole-v0

The objective of the CartPole environment is to teach an

agent to balance a pole on a cart by moving the cart left and

right. The environment has a continuous observation space

consisting of the cart’s position, the cart’s velocity, the pole’s

angle, and the pole’s angular velocity. The action space is

discrete, with the option of moving the cart to the left or to

the right. The environment rewards the agent with a value of

one simply for staying healthy.

When the environment is initialized, the values of both
the cart and pole are randomly sampled from a uniform

distribution of [−0.5, 0.5]. The environment is terminated if the

angle of the pole is ±12° off center, the cart position hits the
edge of the display, or when the length of the episode surpasses

200 steps. The environment is considered solved when the

reward is greater than 195 for 100 consecutive episodes.

This environment was used as a qualitative test for the

implementation of algorithms with a discrete action space.

B. Pendulum-v1

The pendulum environment’s objective is to balance a

frictionless pendulum straight up. The observation space is

continuous and describes the angle of the pendulum as well

as the angular velocity. The action space is also constant

and details the amount of left or right force to apply to the

pendulum. The reward incentivizes keeping the pole at an

angle of 0° with as little velocity and force as possible. The

reward is formulated as

R = −(angle2 + 0.1 ∗ angular velocity2 + 0.001 ∗ action2)

Since the angle is normalized between [−π, π] before calcu-

lating the reward, the reward has a range of[−16.3, 0].
The environment’s initial state has the pole at a random

angle between [−π, π] radians with a random velocity between

[−1, 1]. The environment does not specify a termination state,

so a limit of 150 steps was imposed. Similarly, the environment

does not specify when it is solved, so it was allowed to run

until it hit the step limit.

Similar to the CartPole environment, this environment was

used to test the implementation of algorithms with continuous

action spaces.

C. Ant-v3

The MuJoCo Ant-v3 environment has the goal of teaching

an ant to move as quickly as possible to the right. The ant is

a sphere with four legs, each with two joints. The continuous

observation space is significantly more complex than the

previous environments: it consists of the model’s position,

rotations, velocity, and the forces between the legs and the

ground (contact force). The action space is also continuous

and describes where and how quickly to move each joint. The

reward encourages the model to move as soon as possible

while moving as few joints as little and softly as possible. It

is formulated as

R = (v + h) − (a + f)

where v is the velocity in the x-axis, h is the healthy reward
configured to be 1, a is the control cost calculated by 0.5 ∗

actions2, and f is the contact cost calculated by 5e-4 ∗

contact forces2.

The environment starts with each joint in a random position

with a random velocity. The episode is terminated when the

model exits the safe height range of [0.3, 2.0]. The environ-

ment did not define a solve condition, so the episode was

continued until the model made a mistake that triggered the

termination condition.

The ant was chosen because it is the simplest provided

model that meets the ”three-dimensional walker” condition.

Each algorithm was trained using this model for 500,000

episodes. After training was stopped, the most recently saved

model was used for analysis. A training length of 500,000

episodes was used because it consistently produced an agent

that could walk a non-trivial distance.

D. Humanoid-v3

The MuJoCo Humanoid-v3 environment has the goal of

teaching a humanoid to move as quickly as possible to the

right. The humanoid model is a humanoid with two legs, two

arms, a head, and a torso. The legs, arms, and torso are made

up of multiple joints, each individually controlled. Like the

ant, the observation space is continuous and describes the

model’s position, the model’s velocity, the forces for each of

the joints, and the contact forces. The environment also defines

a continuous action space that describes the new position

and velocity of each joint. The intuition for the reward is

the same as for the Ant environment. Still, it is calculated

slightly differently where v is equal to 1.25 ∗ x velocity, h is

configured to be 5, a is calculated as 0.1 ∗ actions2, and

Like the Ant environment, the model starts with each joint

in a random position and random velocity. The episode is

terminated when the model exits the safe height range of

[1.0, 2.0]. The environment did not define a solve condition

so the episode was continued until the model made a mistake

to trigger the termination condition.

The humanoid was chosen because it is the most complex

3D walker and showcased the learning power of the tested

algorithms. Since this model is significantly more complicated

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37434 | Page 6

Fig. 1: SAC in the Pendulum-v1 Environment

than the Ant, 1,250,000 environment interactions were used for

training. However, due to the cost of training, only SAC was

trained with this model.

Fig. 2: DDPG in the Pendulum-v1 Environment

V. RESULTS

The following sections discuss each algorithm’s results for

each of the environments, including graphs of the reward

history and various loss values. As [4] notes, unlike other

machine learning techniques, supervised learning, for example,

the loss function is defined on the most recent policy, so it

is only relevant for calculating the descent gradient for that

specific version of the policy. This means that minimizing the

loss function is not guaranteed to improve the expected return

and may, in fact, do the opposite. Essentially, for RL, the loss

values mean nothing, but their graphs were included here for

posterity’s sake.

To see videos of the agents’ performance in some of the

following environments, see [17].

A. CartPole-v0

The CartPole test was qualitative in nature and provided

feedback that our earliest implementations of the algorithms

were working. Both the REINFORCE and A2C algorithms

solved the environment in a matter of a few minutes. Quali-

tatively, the A2C appeared to have better performance in this

environment.

B. Pendulum-v1

The tests on the pendulum environment proved that our

implementations of A2C, DDPG, and SAC were able to solve

problems with continuous action spaces. Looking at the reward

history in Figures 1 and 2, it appears that DDPG was able to

solve the algorithm faster than SAC. This isn’t unexpected,

considering that SAC uses significantly more neural networks

than DDPG and may take longer to train.

C. Ant-v3

While each of the models was able to move the Ant model,

they differed in the degree of ”intelligence” they showed. Both

A2C and DDPG learned to move the ant to the right, but

Fig. 3: SAC in the Ant-v3 environment

their techniques were inconsistent and sporadic. Both methods

frequently caused the ant to jump and flip around in the

generally correct direction, but also often would get stuck

upside down shortly after beginning.

DDPG was able to use the left and right legs to walk and

used the front and rear legs for steering. Using this method,

it was able to achieve quite a distance. But SAC managed to

top even that; using the same locomotion scheme as DDPG,

the model learned to leap through the air and even reach the

Fig. 4: DDPG in the Ant-v3 environment

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37434 | Page 7

Fig. 5: DDPG in the Ant-v3 environment

Fig. 6: SAC in the Humanoid-v3 environment

edge of the floor in the environment. This is reflected in the

performance graphs: the reward history for SAC increases at

a steeper rate than it does for DDPG.

The main result from this test is that while all algorithms

made progress in the environment, SAC significantly outper-

formed the other algorithms. It learned to control the ant in a

way that kept it physically stable and moved efficiently.

D. Humanoid-v3

Since SAC’s performance on the Ant model was so impres-

sive, it was the first to train with the Humanoid model. As

shown in the performance graph, it quickly learned how to

walk using the arms for balance. After that initial hurdle, it

refined its balance technique and opted for a slow and steady

strategy by shuffling the feet along the floor. The SAC Shuffle

allowed the model to walk far into the distance, effectively

solving the environment.

Unfortunately, the Humanoid-v3 environment was the most

complex environment tested. The SAC model trained for

1,250,000 environment interactions, which took over 12 hours

using an NVIDIA RTX 3060 Ti. For this reason, testing

algorithms I believed to be worse than SAC could not be

justified due to time constraints.

VI. CONCLUSIONS AND FUTURE WORK

Learning to walk is challenging. Multiple limbs have to

move in a coordinated fashion to keep balance, and adding

movement on top of that is potentially unsolvable with conven-

tional programming methods. Using Reinforcement learning

algorithms, I was able to teach an agent to move a complex

model in a 3D environment. Further, I found that some models,

such as SAC, were able to learn complex behaviors, such as

leaping, to improve their performance.

By implementing and training these algorithms, I am also

leaping into success: I now have a solid foundation to begin

building new experiences in Reinforcement Learning. I was

introduced to the foundations of RL, like the value functions

and policies, policy gradients, and a dictionary’s worth of RL

vocabulary. This knowledge of RL theory and application and

is undoubtedly valuable for future projects in research and

industry.

This project involving RL with MuJoCo could be continued

in several different ways. One continuation I can explore

would be implementing more algorithms or training with

different kinds of environments that impose other interesting

challenges. For example, could a SAC learn to ride a bicycle?

Another way to continue this project would be to explore

the effects of hyperparameters in RL algorithms. Do certain

hyperparameters affect training similarly between algorithms?

How might they differ between algorithms? What are the

optimal hyperparameters for different types of environments?

However, reinforcement learning has a much broader scope

than just MuJoCo. The algorithms that I implemented could

move on to Multiagent Learning for games like Chess [18],

learning how to play complex single-player video games like

Dark Souls, or even controlling self-driving vehicles [19]. Our

new foundational knowledge of RL leaves us well-equipped to

keep up with research and contribute to the body of knowledge

that is continuing to grow daily.

REFERENCES

[1] W. Qiang and Z. Zhongli, “Reinforcement learning model, algorithms
and its application,” in 2011 International Conference on Mechatronic
Science, Electric Engineering and Computer (MEC), 2011, pp. 1143–
1146.

[2] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[3] OpenAI. Gym documentation. [Online]. Available: https://gym.openai.c
om/docs/

[4] (2018) Spinning up: Key concepts in rl. [Online]. Available:
https://spinningup.openai.com/en/latest/spinningup/rl intro.html

[5] (2018) Spinning up: Intro to policy optimization. [Online]. Available:
https://spinningup.openai.com/en/latest/spinningup/rl intro3.html

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[7] (2018) Spinning up: Kinds of rl algorithms. [Online]. Available:
https://spinningup.openai.com/en/latest/spinningup/rl intro2.html

[8] R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Mach. Learn., vol. 8,
no. 3–4, p. 229–256, may 1992. [Online]. Available: https:
//doi.org/10.1007/BF00992696

[9] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” CoRR, vol. abs/1602.01783, 2016. [Online].
Available: http://arxiv.org/abs/1602.01783

[10] H. van Hasselt. (2021) Reinforcement learning lecture 9: Policy
gradients and actor critics. [Online]. Available: https://storage.googleap
is.com/deepmind-media/UCL%20x%20DeepMind%202021/Lecture%2
09-%20Policy%20gradients%20and%20actor%20critics.pdf

http://www.ijsrem.com/
http://arxiv.org/abs/1602.01783

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 09 | Sept - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37434 | Page 8

[11] (2018) Spinning up: Deep deterministic policy gradient. [Online].
Available: https://spinningup.openai.com/en/latest/algorithms/ddpg.html

[12] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” CoRR, vol. abs/1801.01290, 2018. [Online]. Available:
http://arxiv.org/abs/1801.01290

[13] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft
actor-critic algorithms and applications,” CoRR, vol. abs/1812.05905,
2018. [Online]. Available: http://arxiv.org/abs/1812.05905

[14] (2018) Spinning up: Soft actor-critic. [Online]. Available: https:
//spinningup.openai.com/en/latest/algorithms/sac.html

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[16] OpenAI. Gym library. v0.21.0. [Online]. Available: https://github.com
/openai/gym

[17] C. Brinker and T. May. mujoco-2.1-rl-project. [Online]. Available:
https://github.com/cubrink/mujoco-2.1-rl-project/tree/main/experiments

[18] S. Albrecht and P. Stone. (2017) Multiagent learning: Foundations and

recent trends. [Online]. Available: https://www.cs.utexas.edu/∼larg/ijca
i17 tutorial/multiagent learning.pdf

[19] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. Yo-
gamani, and P. Perez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 99, pp. 1–18, 2021.

http://www.ijsrem.com/
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1812.05905
http://www.cs.utexas.edu/

