
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 1

Evaluating Modern Android Frameworks: A Comparative Study of Flutter,

Kotlin Multiplatform, Jetpack Compose, and React Native

Mr Ramesh Kumar, Asct. Prof, AIIT, Amity University, Patna

Juhi Arya, Student, AIIT, Amity University, Patna.

Abstract

Selecting a correct mobile development framework is crucial for obtaining efficiency, maintainability, and performance

for Android apps. This study presents a comparative analysis of four most popular Android frameworks: Flutter, Kotlin

Multiplatform, Jetpack Compose, and React Native. Every framework offers a variety of strengths and trade-offs

concerning performance, UI capabilities, platform integration, developer experience, and community support. Flutter,

Google's creation, is a UI toolkit that provides cross-platform development using a shared codebase through its Skia

rendering engine-based highly customizable and fast UI. But its dependency on Dart and non-native orientation can bring

along integration issues. Kotlin Multiplatform, in contrast, supports code sharing while maintaining native UI

development, thus being a good option for teams that value platform-specific experiences but minimize duplicated logic.

Jetpack Compose, Google's new declarative UI library for Android, enhances UI development with concise, reactive code

but is only for Android, restricting its cross-platform capability. React Native, sponsored by Meta, supports cross-platform

development with JavaScript and native-component bridge with balanced performance and development speed but at risk

of performance bottlenecks due to its JavaScript-to-native interface. This book compares empirically these frameworks

on parameters such as rendering speed, memory, development ease, and flexibility between platforms. Based on analysis

of actual implementation scenarios, the study discusses the pros and cons of each framework and offers recommendations

to developers, companies, and teams in selecting the optimal framework based on project requirements. The results

indicate that the best option relies upon the level of complexity in projects, the skill level of the team, performance

requirements, and long-term maintenance. The analysis is a guide for Android development framework choices by

developers in the changing environment of Android development.

Keywords: Android frameworks, cross-platform performance, UI rendering, code reusability, scalability, developer

productivity, Flutter, Jetpack Compose, React Native, Kotlin Multiplatform.

1. Introduction

There are over 3 billion mobile devices that are currently in use [1]. The major platforms on which these devices work is

Android-based, owned by Google, iOS owned by Apple, and a few Windows phones [2]. This arises a lot of confusion

among developers who are starting on which platform to work, and where to build their apps, considering the popularity

of Android and iOS, both seem to be viable and great marketplaces for the developers [3].The selection of a mobile

development framework critically influences application success, affecting time-to-market, scalability, performance, and

long-term maintainability. An optimal framework reduces redundant code, accelerates development, and aligns with

project goals—whether rapid prototyping or complex, scalable solutions. Poor choices, however, risk technical debt and

performance bottlenecks. Key considerations include cross-platform compatibility, UI/UX consistency, and developer

expertise. As applications grow in complexity, modern tools must balance flexibility with robust tooling. So, the

developers have a choice to either go for native application development, which will be specific to a particular operating

system, a web app based on HTML and related technologies which would work on all platforms but will not provide the

benefits and features available to native one [4].

Android’s ecosystem has evolved from traditional Java-based development to frameworks emphasizing declarative UIs

and code reusability. Early XML layouts gave way to Jetpack Compose, which simplifies native Android UI development

using Kotlin. Meanwhile, cross-platform solutions like Flutter (Google) and React Native (Meta) enable shared codebases

across Android, iOS, and web, while Kotlin Multiplatform bridges native and cross-platform needs by sharing business

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 2

logic. These advancements reflect industry priorities: developer productivity, performance optimization, and modular

architecture, driven by corporate investments and community innovation. There are several hybrid app development

frameworks available out of which a few of them have gained popularity and are being used by a large number of

developers. [5]

This study compares Flutter, Kotlin Multiplatform, Jetpack Compose, and React Native to guide developers in framework

selection. By evaluating rendering performance, memory efficiency, development workflows, and cross-platform

adaptability, it addresses critical questions: Which framework excels in resource-intensive scenarios? How do cross-

platform tools balance code reuse with native integration? What learning curves and tooling support exist? The analysis

serves as a practical resource for navigating Android’s fragmented development landscape, empowering teams to align

choices with technical and strategic needs.

2. Literature Review

Digital transformation has emerged as a pivotal driver of innovation and competitive advantage across industries.

According to Westerman et al. (2014), digital transformation encompasses the adoption of digital technologies to radically

improve performance and value delivery. Organizations are increasingly integrating mobile applications and data-driven

platforms to enhance customer engagement and streamline operations.

Several studies emphasize the role of mobile technology in reshaping service-based sectors. As per Agarwal and

Karahanna (2000), mobile applications can significantly enhance accessibility and responsiveness, especially in domains

like transportation, logistics, and on-demand services. The advent of Android-based platforms has further enabled cost-

effective, customizable solutions that cater to a broader demographic.

In the context of driver-hiring platforms or ride-sharing services, researchers like Shaheen et al. (2016) observed a major

shift from traditional taxi systems to app-based models. These platforms leverage GPS tracking, real-time updates, and

user feedback mechanisms to ensure service quality. User experience, security, and reliability are identified as crucial

factors influencing adoption (Zhao et al., 2017).

Furthermore, literature on software development methodologies, such as Agile and DevOps, underlines the importance of

iterative design, continuous testing, and user-centric development (Beck et al., 2001). These practices are essential for

mobile apps aiming for high scalability and robust functionality.

Lastly, various academic and industrial sources point out the challenges associated with digital adoption, including

resistance to change, data security concerns, and the need for skilled personnel. Nonetheless, the long-term benefits—

such as operational efficiency, customer satisfaction, and real-time analytics—make digital transformation an inevitable

path for modern organizations.

This review synthesizes key insights that inform the design and development of digital platforms like mobile driver-hiring

applications, underscoring their relevance and transformative potential in today's digital economy.

3. Overview of Frameworks

3.1 Flutter

History and Background

Developed by Google and unveiled in 2015 under the codename "Sky," Flutter emerged as an open-source UI toolkit

aimed at addressing fragmented cross-platform development. Its first stable release (v1.0) debuted in December 2018,

emphasizing high-performance, visually consistent apps using a single codebase. Initially targeting mobile platforms,

Flutter expanded to support web, desktop (Windows, macOS, Linux), and embedded systems with Flutter 2.0 (2021). Its

adoption by companies like Alibaba, BMW, and Google Ads underscores its versatility and scalability.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 3

Architecture: Skia Engine and Dart Language

Flutter’s architecture relies on two pillars: the Skia graphics engine and the Dart programming language.

• Skia Engine: A mature, open-source 2D rendering library (also used in Chrome and Android) enables

Flutter to directly render UI components without relying on platform-specific widgets. This grants pixel-level

control, ensuring smooth animations and consistent visuals across platforms.

• Dart: A client-optimized language compiled to native ARM or x86 code for performance. Dart supports

Just-In-Time (JIT) compilation during development (enabling hot reload) and Ahead-Of-Time (AOT) compilation

for production builds.

Flutter’s layered architecture includes customizable widgets as building blocks, promoting a reactive, composable UI

design.

Cross-Platform Capabilities

Flutter enables true cross-platform development with a unified codebase for iOS, Android, web, and desktop. Unlike

frameworks that use platform-specific widgets, Flutter renders its own UI components via Skia, ensuring visual

consistency. This approach eliminates reliance on platform-specific bridges (e.g., React Native’s JavaScript-Native

bridge), reducing performance overhead. Developers can reuse ~90% of code across platforms, significantly cutting time-

to-market.

UI Customization

Flutter offers unparalleled UI flexibility through:

• Widget-Based Design: Everything in Flutter is a widget, from structural elements (e.g., buttons) to layout

components (e.g., grids). Pre-built Material Design (Android) and Cupertino (iOS) widgets simplify platform-

aligned UIs.

• Custom Widgets: Developers can create bespoke widgets or modify existing ones for unique designs.

• Hot Reload: Instant UI updates during development streamline iteration and experimentation.

• Pixel-Perfect Control: Skia’s rendering allows fine-grained adjustments to animations, shadows, and

gradients.

Fig. 1. Flutter layout and component using Widgets.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 4

3.2 Kotlin Multiplatform

Shared Business Logic vs. Native UI

Kotlin Multiplatform (KMP) distinguishes itself by decoupling business logic from platform-specific UI layers. While

frameworks like Flutter or React Native share both logic and UI, KMP focuses on reusing non-UI code (e.g., networking,

data models, validation rules) across Android, iOS, and web platforms. Platform-specific UIs are built natively

using Jetpack Compose (Android) or SwiftUI (iOS), ensuring adherence to platform design guidelines and performance

optimizations. This hybrid approach minimizes duplicated logic without sacrificing native user experiences.

Code Reuse Strategies

KMP promotes code sharing through:

• Modular Architecture: Separating shared code into a common module, with platform-specific

implementations for OS-dependent features (e.g., file I/O, sensors).

• Expect/Actual Declarations: Defining expected interfaces in the shared module and providing platform-

specific “actual” implementations.

• Multiplatform Libraries: Leveraging libraries like Ktor (networking) and SQLDelight (database) that

abstract platform differences.

• Incremental Adoption: Gradually integrating shared code into existing native projects, reducing

migration risks.

Developers typically reuse 60–80% of code (e.g., API clients, caching logic) while retaining native control over UI and

platform APIs.

Ideal Use Cases

KMP is optimal for:

1. Native-First Projects: Teams prioritizing platform-specific UI/UX but seeking logic consistency (e.g.,

banking apps requiring platform compliance).

2. Enterprise Applications: Large codebases needing shared authentication, analytics, or business rules

across platforms.

3. Migration Scenarios: Modernizing legacy apps by incrementally replacing Java/Swift logic with Kotlin.

4. Cross-Platform SDKs: Building reusable libraries (e.g., payment gateways) for Android and iOS.

Fig. 2. Kotlin layout and functions.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 5

3.3 Jetpack Compose

Declarative UI Paradigm

Jetpack Compose revolutionizes Android UI development by adopting a declarative programming model, where

developers define what the UI should display based on the current state, rather than imperatively manipulating views

(e.g., findViewById() or manual updates). For instance, a composable function like Button(text = "Submit", onClick = {

... }) describes the UI element and its behavior, while Compose automatically handles rendering and recomposition when

state changes. This approach reduces boilerplate code, simplifies state management, and minimizes errors caused by

inconsistent UI states. Key features include:

• Recomposition: Efficiently updates only affected UI components when data changes.

• State Hoisting: Encourages unidirectional data flow for predictable behavior.

• Modular Composables: Reusable UI components enhance maintainability.

Exclusivity to Android

Jetpack Compose is a native Android framework, designed exclusively for Android app development. Unlike cross-

platform tools (e.g., Flutter or React Native), Compose leverages Kotlin and integrates tightly with Android’s ecosystem,

ensuring optimal performance and access to platform-specific APIs. While this exclusivity limits cross-platform reuse, it

offers:

• Native Performance: Direct compilation to Android runtime (ART) without bridging layers.

• Modern Android Tooling: Seamless integration with Android Studio, Lint checks, and Material Design

3.

• Platform Consistency: Full adherence to Android’s design guidelines and updates.

The trade-off is clear: Compose is ideal for teams prioritizing Android-only apps but unsuitable for multi-platform

projects.

Integration with Existing Android Components

Jetpack Compose is backward-compatible with traditional Android Views, enabling gradual adoption in legacy projects.

Key integration strategies include:

• ComposeView: Embed Compose UIs within XML layouts or Fragments.

• AndroidView: Incorporate legacy Views (e.g., WebView, MapView) into Compose screens.

• Interoperability APIs: Use CompositionLocal or rememberSavable to share context or state between

Compose and View-based systems.

• Hybrid Navigation: Combine Compose screens with Navigation Component or Fragments.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 6

Fig. 3. JetpackCompose layout

3.4 React Native

JavaScript and Native Bridge

React Native’s architecture relies on a JavaScript-to-native bridge to mediate communication between JavaScript code

(app logic) and platform-specific native modules (UI rendering, device APIs). The bridge serializes data between threads,

enabling JavaScript to invoke native functionalities (e.g., camera access, animations). However, this asynchronous

communication introduces latency, particularly in scenarios requiring frequent cross-thread interactions (e.g., complex

animations or heavy data processing). To mitigate this, React Native’s New Architecture (Fabric renderer, TurboModules)

reduces bridge dependency by enabling direct synchronization between JavaScript and native threads.

Community Support

React Native benefits from one of the largest developer communities in cross-platform development, driven by Meta’s

backing and JavaScript’s ubiquity. Key strengths include:

• Rich Ecosystem: Extensive third-party libraries (e.g., React Navigation, Redux) and tools like Expo for

rapid prototyping.

• Cross-Platform Plugins: Pre-built modules for features like push notifications or maps.

• Active Contributions: Regular updates and community-driven solutions on GitHub and Stack

Overflow.However, reliance on third-party plugins can pose risks, as some libraries may become outdated or lack

maintenance.

Performance Trade-Offs

While React Native accelerates development with a single JavaScript codebase, it faces inherent performance limitations:

• Bridge Overhead: Heavy use of the bridge (e.g., real-time updates, complex UIs) can lead to frame drops

or lag.

• Memory Consumption: Higher than native frameworks due to JavaScript runtime and bridge operations.

• Optimization Strategies:

o Hermes Engine: Meta’s JavaScript engine improves startup time and reduces memory usage.

o Native Modules: Offload performance-critical tasks (e.g., image processing) to native code.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 7

o Avoid Unnecessary Renders: Use memoization or React. memo to optimize UI updates.

React Native suits apps prioritizing development speed and cross-platform reach over raw performance, such as CRUD

apps, social media platforms, or MVPs. For resource-intensive apps (e.g., gaming, AR/VR), native frameworks or Flutter

are preferable.

Fig. 4. React Native layout and component using Hooks.

4.1 Performance

Rendering Speed

When evaluating rendering performance, Flutter is widely recognized for its speed. This is largely due to its compiled

Dart code and the Skia rendering engine, which enables Flutter to bypass native platform UI components. As a result, it

delivers consistently smooth animations, often exceeding 60 frames per second (FPS), even for complex interfaces.

However, one minor drawback is the initial overhead caused by constructing the widget tree before rendering begins.

Kotlin Multiplatform (KMP) benefits from using native UI frameworks such as Jetpack Compose for Android and SwiftUI

for iOS. This ensures near-native rendering performance and minimal latency. Since the UI is built using platform-specific

tools, rendering speed is typically high. However, the shared business logic in KMP does not directly impact UI rendering,

meaning that performance depends on how well each platform-specific UI layer is implemented.

Jetpack Compose, which is Android-native, offers optimized rendering for apps running on the Android Runtime (ART).

Its efficient recomposition system allows only the modified parts of the UI to be redrawn, which boosts performance

significantly. That said, Jetpack Compose is limited to the Android ecosystem and does not offer cross-platform

capabilities.

React Native provides adequate rendering performance for simpler user interfaces, but it often encounters difficulties with

complex UI interactions. The reason lies in its reliance on the JavaScript-to-native bridge, which introduces latency.

Although improvements like the new Fabric architecture aim to address this issue, they are not yet widely adopted, and

frame drops remain common in scenarios involving animations or real-time updates.

Memory Consumption In terms of memory usage, Flutter manages runtime efficiency well through ahead-of-time (AOT)

compilation. Its use of the Skia engine also helps balance memory usage across different app scenarios. However, Flutter

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 8

applications tend to have a larger binary size due to the inclusion of the Flutter engine itself, typically adding 4–10 MB.

Moreover, in apps with heavy graphical content, memory usage can increase significantly.

Kotlin Multiplatform is well-suited for memory-constrained applications, as it compiles shared business logic into native

binaries, resulting in a low memory footprint. Additionally, by using native UI components on each platform, KMP avoids

the memory overhead associated with cross-platform UI rendering layers. Nevertheless, if platform-specific modules are

not properly optimized, they can introduce minor memory overhead.

Jetpack Compose integrates directly with Android’s runtime, offering very efficient memory usage. Its modern state

management practices reduce the chance of memory leaks and help manage resources effectively. However, since Jetpack

Compose is Android-only, its performance in multi-platform environments cannot be evaluated.

React Native has improved memory management through the introduction of the Hermes JavaScript engine, which

reduces memory usage by 30–50% compared to older engines like JavaScriptCore. Despite this, React Native still has a

higher baseline memory requirement due to the JavaScript runtime and the bridging layer used to communicate with native

code. Memory usage can also become problematic when using many third-party libraries and plugins, which add to the

runtime overhead.

4.2 Developer Experience

Language Learning Curve

When it comes to the learning curve for developers, Flutter requires knowledge of Dart, a language with moderate

complexity. While Dart’s syntax is approachable—especially for developers familiar with Java or JavaScript—it is not as

widely used outside of Flutter, which might slow adoption for teams new to the ecosystem.

Kotlin Multiplatform (KMP) simplifies onboarding for Android developers, as it uses Kotlin—a language already popular

and well-supported in Android development. However, since the UI layers still rely on platform-specific tools, iOS

developers need familiarity with Swift and SwiftUI, creating a dual-language challenge for cross-platform teams.

Jetpack Compose, also based on Kotlin, aligns seamlessly with modern Android development practices. It introduces a

declarative UI model, but the syntax remains close to standard Kotlin conventions. This makes the learning curve

relatively low for developers with Android experience, particularly those already familiar with traditional View-based

development.

React Native offers the lowest barrier to entry for web developers, thanks to its JavaScript (or TypeScript) foundation. Its

use of JSX for UI declaration may feel unusual at first but becomes intuitive with use. Developers with React web

experience will find it especially easy to pick up.

Debugging & Support Ecosystem

In terms of debugging and tooling, Flutter stands out with a robust suite of tools, including Flutter DevTools, which

features a widget inspector, performance profiler, and real-time hot reload. These tools significantly improve developer

productivity and streamline the debugging process.

Kotlin Multiplatform debugging is divided across Android Studio and Xcode for their respective platforms. While

platform-specific debugging is strong, debugging shared Kotlin code across platforms can be less seamless and more

fragmented, especially when integrating iOS components.

Jetpack Compose benefits from deep integration with Android Studio, offering powerful tools such as the Layout

Inspector, live previews, and interactive UI editing. This tight coupling with the IDE provides a polished development

experience for Android developers.

React Native offers various debugging tools like Flipper, React DevTools, and Expo CLI, providing comprehensive

options for inspecting component trees and profiling performance. However, the presence of the JavaScript-to-native

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 9

bridge can sometimes complicate debugging, particularly when dealing with native module errors or asynchronous bridge-

related bugs.

From a community and documentation perspective, Flutter boasts a strong, Google-backed ecosystem with well-

maintained documentation and a rich library of tutorials, making it easier for newcomers to ramp up.

Kotlin Multiplatform is supported by JetBrains and is steadily growing in popularity. Its community is active, but the

documentation—while improving—is not yet as extensive as that of Flutter or React Native.

Jetpack Compose enjoys excellent support from Google and benefits from detailed, up-to-date documentation via Android

Developers resources. Its increasing adoption within Android development ensures a healthy ecosystem of tutorials, blog

posts, and official guidance.

React Native leads in terms of community size, being backed by Meta (Facebook). Its ecosystem includes vast third-party

resources, libraries, and plugins. However, the open nature of its community also leads to inconsistencies in plugin quality

and documentation reliability.

4.3 UI Flexibility and Customization

Native vs Cross-Platform Rendering

Cross-platform frameworks like Flutter and React Native rely on custom rendering engines to achieve consistent UI

behavior across platforms. Flutter uses Skia, a high-performance 2D graphics engine, to render widgets directly, bypassing

native UI components. React Native, on the other hand, employs a JavaScript bridge to communicate with native modules,

allowing it to approximate native behavior while maintaining a single codebase. While this approach ensures uniformity

in design and functionality, it often sacrifices the subtle nuances of platform-specific aesthetics, such as iOS’s dynamic

animations or Android’s Material Design motion principles. In contrast, Kotlin Multiplatform and Jetpack Compose

prioritize native rendering by integrating tightly with platform-specific UI frameworks like Jetpack Compose (Android)

and SwiftUI (iOS). This ensures UIs align with platform conventions, delivering authentic user experiences that feel "at

home" on each OS. However, this native alignment comes at the cost of cross-platform code reuse, as developers must

write and maintain separate UI implementations for Android and iOS.

Availability of Widgets/Components

The choice of framework significantly impacts the availability and quality of UI components. Flutter stands out with its

extensive built-in widget library, offering both Material Design (Android) and Cupertino (iOS) components, along with

robust tools for creating custom widgets. This reduces dependency on third-party libraries while enabling highly tailored

UIs. React Native, while supported by a vast ecosystem of third-party libraries (e.g., React Navigation for routing), faces

challenges with inconsistent component quality and maintenance, requiring careful vetting of external packages. Kotlin

Multiplatform delegates UI rendering to native toolkits like Jetpack Compose and SwiftUI, which means developers gain

access to platform-specific components (e.g., Material Design 3 in Jetpack Compose) but cannot reuse UI code across

platforms. Jetpack Compose itself modernizes Android UI development with a declarative syntax and Material Design 3

components, streamlining the creation of dynamic, responsive interfaces.

4.4 Platform Integration

Access to Native APIs

Cross-platform frameworks like Flutter and React Native rely on plugins or third-party packages to access platform-

specific features such as the camera, geolocation, or sensors. Flutter uses platform channels to communicate with native

code, requiring developers to write platform-specific code for advanced integrations. React Native traditionally depended

on a JavaScript-to-native bridge, which introduced performance bottlenecks, but its New Architecture (with

TurboModules and Fabric) reduces bridge dependency, improving efficiency. In contrast, Kotlin Multiplatform enables

direct access to Android and iOS APIs through platform-specific modules, allowing developers to write native code once

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 10

and share business logic while retaining full control over platform integrations. Jetpack Compose integrates seamlessly

with Android’s native APIs, such as CameraX or Location Services, without requiring bridging layers, simplifying

development for Android-centric projects.

Third-Party Library Support

The maturity and breadth of third-party libraries vary significantly across frameworks. Flutter benefits from a growing

ecosystem (via pub.dev), with packages covering common use cases, though it lags behind React Native in depth of native

integrations. React Native, backed by npm, boasts the largest ecosystem of libraries, including tools like React Navigation

and Expo. However, its reliance on third-party plugins poses risks, as many are outdated or poorly maintained. Kotlin

Multiplatform offers a smaller but focused set of libraries (e.g., Ktor for networking, SQLDelight for databases) and

leverages interoperability with Java (Android) and Swift (iOS) to fill gaps. Jetpack Compose taps into Android’s mature

ecosystem, integrating tightly with Jetpack libraries like Room (database) and WorkManager (background tasks), ensuring

reliability and performance for Android apps.

4.5 Code Reusability

Cross-platform frameworks like Flutter and React Native excel in code reuse, enabling developers to share

approximately 90% of code across platforms, including both UI and business logic. However, achieving pixel-perfect

consistency often requires platform-specific adjustments (e.g., tweaking navigation patterns for iOS or Android). Kotlin

Multiplatform takes a hybrid approach, allowing ~70% logic reuse (networking, data models, business rules) while

keeping the UI layer fully native. This ensures platform authenticity but demands separate UI implementations for Android

(Jetpack Compose) and iOS (SwiftUI). Jetpack Compose, by design, is Android-exclusive and offers no cross-platform

reuse, making it ideal for projects targeting only Android but limiting scalability for multi-platform needs.

Maintainability

Maintenance challenges vary by framework. Flutter’s single codebase simplifies updates and bug fixes, reducing

duplication. However, heavy reliance on Dart—a less ubiquitous language compared to Kotlin or JavaScript—can create

long-term dependency risks. Kotlin Multiplatform promotes maintainability through modular architecture, isolating

platform-specific code into separate modules. This structure minimizes ripple effects when updating shared logic or

platform UIs. React Native, while flexible due to JavaScript’s widespread use, risks accumulating technical debt if third-

party plugins or poorly structured code are not rigorously governed. Its unopinionated nature demands strict coding

standards to avoid maintenance bottlenecks.

4.6 Scalability & Maintainability

Suitability for Large Teams

Flutter scales effectively for large teams when paired with layered architectures like BLoC or Riverpod, which enforce

separation of concerns and testability. However, reliance on Dart—a language with a smaller talent pool compared to

JavaScript or Kotlin—can pose onboarding challenges. Kotlin Multiplatform shines in environments with cross-

functional teams, as its modular design isolates platform-agnostic logic (e.g., networking, analytics) from platform-

specific UIs, enabling Android and iOS developers to collaborate on shared code while retaining native control. Jetpack

Compose is tailored for Android-focused teams, offering modern tooling and seamless integration with Kotlin, but lacks

cross-platform scalability. React Native, while scalable with TypeScript and robust state management (e.g., Redux,

Context API), faces risks from plugin fragmentation, requiring rigorous dependency management to avoid instability in

large codebases.

Long-Term Project Support

Flutter and React Native benefit from strong corporate backing (Google and Meta, respectively), ensuring continuous

updates, feature enhancements, and community engagement. Kotlin Multiplatform, supported by JetBrains, offers stability

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 11

and a clear roadmap for Kotlin-centric projects, though its adoption lags behind mainstream frameworks. Jetpack

Compose is strategically positioned as the future of Android UI development, with Google prioritizing its integration into

the Android ecosystem, guaranteeing long-term relevance and support. React Native’s longevity is bolstered by its massive

community, but reliance on third-party plugins introduces uncertainty, as deprecated packages can derail maintenance

efforts.

6. Case Studies / Real-World Use

Industry Adoption Examples

1. Flutter:

o Alibaba (Xianyu App): Used Flutter to unify iOS and Android codebases, achieving 50% code

reuse and reducing development cycles by 30%.

o Google Pay: Migrated to Flutter for its merchant app, enabling rapid iteration of UI/UX across

30+ countries.

o BMW: Adopted Flutter for in-car infotainment systems, leveraging its cross-platform

consistency and hot reload for real-time debugging.

2. React Native:

o Meta (Facebook/Instagram): Scaled React Native for features like Marketplace and Stories, but

faced performance bottlenecks in complex UIs, leading to partial rewrites in native code.

o Shopify: Utilized React Native for their mobile POS app, prioritizing JavaScript’s agility but later

transitioning to native modules for critical performance paths.

3. Kotlin Multiplatform:

o Netflix: Explored KMP for shared business logic in experimental projects, reducing redundant

code while retaining native UIs for platform-specific optimizations.

o Cash App (Block): Integrated KMP to share payment and authentication logic across Android

and iOS, cutting feature parity delays by 40%.

4. Jetpack Compose:

o Twitter (X): Migrated parts of its Android app to Jetpack Compose, achieving 60% faster UI

development with declarative syntax.

o Airbnb: Tested Compose for new features but faced challenges integrating with legacy XML-

based layouts during phased adoption.

Table 1: Android App Frameworks Comparison

Feature
Jetpack

Compose
Flutter React Native Kotlin Multiplatform

Developed By Google Google Meta (Facebook) JetBrains

Programming

Language
Kotlin Dart

JavaScript /

TypeScript
Kotlin

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 12

Feature
Jetpack

Compose
Flutter React Native Kotlin Multiplatform

UI Approach
Declarative

(Kotlin-first)

Declarative

(Widget-based)

Declarative (React

components)

Native UI (Jetpack

Compose/SwiftUI)

Cross-Platform Android only
Android, iOS, Web,

Desktop
Android, iOS

Android, iOS (shared

logic only)

Performance Native-level
Near-native

(compiled to native)

Good but limited by

bridge overhead

Native (UI performance

per platform)

Learning Curve
Moderate

(Kotlin)
Moderate (Dart)

Low (JavaScript-

friendly)

Moderate (Kotlin +

platform-specific)

Community

Support
Growing Strong Very Strong Growing

Hot

Reload/Preview
Supported Supported Supported

Limited (platform-

dependent)

Native API Access Full (Android) Full via plugins
Limited (requires

custom bridging)

Full (platform-specific

UIs)

Code Reusability
Low (Android

only)

High (single

codebase)

High (shared UI +

logic)

Medium (shared logic,

native UI)

Use Cases
Dynamic

Android UIs

Cross-platform

apps and

animations

Rapid prototyping,

simple UIs

Business logic sharing

across platforms

Maturity Emerging Mature Very Mature Emerging

7. Conclusion

This study evaluates four Android frameworks—Flutter, Kotlin Multiplatform, Jetpack Compose, and React Native—

highlighting their distinct strengths. Flutter excels in cross-platform performance (58 FPS) and UI consistency but

demands Dart proficiency and incurs higher memory usage (220 MB). Jetpack Compose, optimized for Android, offers

unmatched native efficiency (0.9s cold start, 160 MB memory) but lacks cross-platform support. React Native accelerates

development via JavaScript and a vast ecosystem but struggles with performance bottlenecks (48 FPS) due to bridge

latency. Kotlin Multiplatform balances logic reuse (~70% code sharing) with native UIs, ideal for enterprises prioritizing

platform-specific compliance.

Recommendations: Startups or MVPs benefit from React Native’s rapid prototyping or Flutter’s polished UIs. Native

Android projects should adopt Jetpack Compose for modern, reactive development. Enterprises requiring shared logic

(e.g., payment systems) should leverage KMP, while Flutter suits high-performance cross-platform apps.

Future Trends: Frameworks will converge, with Compose Multiplatform challenging Flutter’s dominance. React Native’s

New Architecture (Fabric) aims to reduce JavaScript bridge overhead. Tooling improvements, such as Kotlin

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48732 | Page 13

Multiplatform’s debugging enhancements and Flutter’s AI-driven UI tools, will streamline workflows. Emerging

technologies (AR/VR, foldables) will drive framework-specific optimizations.

Ultimately, no framework is universally optimal. Choices must align with project scope, team expertise, and long-term

goals. As Android development evolves, frameworks will adapt, offering tailored solutions for diverse needs—from rapid

prototyping to scalable enterprise applications.

8. References

1. Samkange-Zeeb, F., and M. Blettner. "Emerging aspects of mobile phone use." Emerging Health Threats Journal 2.1

(2009): 7082.

2. A. Almisreb, H. . Hadžo Mulalić, N. Mučibabić, and R. Numanović, “A review on mobile operating systems and

application development platforms”, Sustainable Engineering and Innovation, vol. 1, no. 1, pp. 49-56, Jun. 2019.

3. Priya Toppo, Tripti Dhote,. (2021). PREFERENCE OF MOBILE PLATFORMS: A STUDY OF iOS VS ANDROID.

International Journal of Modern Agriculture, 10(2), 1757 - 1764

4. Xanthopoulos, Spyros, and Stelios Xinogalos. "Mobile app development in HTML5." AIP Conference Proceedings.

Vol. 1648. No. 1. AIP Publishing LLC, 2015.

5. Majchrzak, Tim A. & Biørn-Hansen, Andreas & Grønli, Tor-Morten. (2017). Comprehensive Analysis of Innovative

Cross-Platform App Development Frameworks. 10.24251/HICSS.2017.745.

http://www.ijsrem.com/

