

Evaluating the Feasibility of Digital Twin in Architecture Industry

Shivam Thakre¹, Parampreet Kaur², Mayuri Rathi³

¹Student, Amity School of Architecture & Planning, Amity University Chhattisgarh ²Professor, Amity School of Architecture & Planning, Amity University Chhattisgarh ³Professor, Amity School of Architecture & Planning, Amity University Chhattisgarh

Abstract - This review paper examines the feasibility of adopting digital twin technology in the architecture industry. It examines the current state of digital twin technology, its potential applications, drivers, benefits, and challenges, and compares findings with existing guidelines and standards. The study is based on review literature, including industry reports, surveys, and online articles, due to its rapidly evolving nature. The findings are compared with existing guidelines and standards to identify any alignments, gaps, or contradictions between industry best practices and the literature. The overall assessment indicates that the adoption of digital twin technology in the architecture industry is feasible, but significant challenges and barriers need to be addressed. Key factors supporting the feasibility include growing industry awareness, advancements in enabling technologies, and alignment with existing guidelines and standards. However, challenges include the lack of clear industry-wide standards and protocols, data security and governance concerns, and the need for significant investments in digital infrastructure and organizational change. The study concludes that the feasibility of digital twin adoption in the architecture industry is promising, but successful implementation will require a concerted effort by industry stakeholders to address the identified challenges and align with emerging best practices and standards.

Key Words: Digital twin, Virtual asset, BIM integration, Digital infrastructure, Built Environments.

1.INTRODUCTION

Digital twins are virtual representations of physical assets, processes, or systems that can be used to simulate, analyze, and optimize their real-world counterparts (Grieves & Vickers, 2017). These digital replicas leverage data from various sources, including sensors, to provide real-time insights and enable predictive maintenance, improved decision-making, and enhanced product development (Boschert & Rosen, 2016). Digital twins are becoming increasingly important in industries such as manufacturing, transportation, and healthcare, as they allow for the optimization of complex systems and the prevention of costly failures (Tao, et al., 2018). As technology continues to advance, the capabilities and applications of digital twins are expected to grow, further transforming the way organizations operate and maintain their physical assets.

A positive transformation in the architecture, engineering, and construction industries is provided by the digital twin, a new phase of technology that acts as a real, well-constructed 3D replica that facilitates efficient decision-making and the visualization, stimulation, and analysis of a building's structure and current state in a much more systematic and wellorganized manner.

1.1 Historical content

• Early 2010s:

Emergence of digital twin concept in manufacturing sector. Early exploration of digital twins in construction for asset modelling and project monitoring

• Mid 2010s:

Integration of BIM data into construction digital twin platforms, Improved visualization, data integration, and real-time project monitoring

Late 2010s:

Incorporation of sensors, IoT, and data analytics into digital twins. Expanded capabilities for performance monitoring, predictive maintenance, and asset lifecycle management.

• Early 2020s:

Widespread adoption of digital twins across the construction industry, Establishment of dedicated digital twin teams and enterprise-wide strategies, Development of industry standards and guidelines

1.2 Digital Twin in Architecture

The concept of Digital Twin can be traced back to 2002 when Dr. Michael Grieves from the University of Michigan gave a presented on what he called Conceptual Ideal for Product Lifecycle Management (PLM) (Grieves & Vickers, 2017). The PLM concept, which has all the elements of the Digital Twin, considers that each system consists of two systems: the physical system or the real space that has always existed and a virtual system that contains all the information related to the physical system.

The Digital Model (DM) has the least data integration, the data flow between the physical object and the digital is done manually. (Grieves & Vickers, 2017)Changes in the state of the digital or physical object have no direct impact on the state of the counterpart.

When the data transfer between physical and digital objects takes place automatically, one speaks of the Digital Shadow (DS). (Grieves & Vickers, 2017) With full integration of the data flow in both directions between the physical and digital object, it is DT in full expression of the concept.

T

1.3 Review of literature paper

Analysing the main statements from the research papers, we can provide a short review about the possibility of using digital twins for architecture and construction: A thorough analysis of reviewed literature proves that digital twins technology has great potential and feasibility in architecture and construction projects. The given statement emphasizes the wide range of applications and benefits of digital twins that can be used in building environments.

Firstly, the literature emphasizes the various benefits of adopting digital twins in construction, including improved project monitoring and control, enhanced asset management, optimized construction processes, and better collaboration among stakeholders. These benefits can alleviate some of the main challenges in the construction industry that contribute to project delays, cost overruns and poor communication, making digital twins a realistic solution to improve the overall performance of construction projects.

Furthermore, the research identifies several specific applications of digital twins in construction, such as design optimization, construction planning and scheduling, safety management, and facility management (Daniotti, Pavan, Lupica Spagnolo, Caffi, & Pasini, 2021)These applications highlight the potential of digital twins, which can be used at any stage of the lifecycle of a built asset - from the front-end (FE) or conceptual design phase to the back end (BE) or operational phase. Their potential is further strengthened by the fact that they can be customised to the specific requirements of any construction project and its actors. The literature also highlights the key enabling technologies for digital twins in construction, including the Internet of Things (IoT), Building Information Modelling (BIM), Augmented Reality (AR), and data analytics (Daniotti, Pavan, Lupica Spagnolo, Caffi, & Pasini, 2021)These enabling technologies provide the necessary infrastructure and capabilities to develop and integrate digital twins effectively, further increasing their feasibility in the architecture and construction industry. As these technologies continue to evolve and become more accessible, the integration of digital twins is likely to become more seamless and cost-effective.

Moreover, the reviewed papers discuss the future trends in digital twin technology for the construction industry, emphasizing the integration of advanced technologies like Artificial Intelligence (AI) and Machine Learning (ML) to enhance decision-making and predictive capabilities (Daniotti, Pavan, Lupica Spagnolo, Caffi, & Pasini, 2021)This indicates the ongoing development and refinement of digital twin technology, which can further improve its feasibility and expand its applications in the built environment.

The literature also highlights the potential of digital twins to drive sustainability goals and enable a paradigm shift towards a smart and sustainable built environment (Shahzad, Mbachu, & Separovic, 2021). As sustainability becomes an increasingly important consideration in the architecture and construction industry, the feasibility of digital twins is further enhanced, as they can be leveraged to optimize energy consumption, reduce waste, and improve the overall environmental performance of built assets.

Additionally, the research suggests the feasibility of integrating digital twins with emerging technologies, such as blockchain, to enable secure and accountable information sharing in construction projects (Li, Greenwood, & Kassem, 2021)This integrated approach can address the challenges of data management and transparency, which are critical for the effective implementation of digital twins in the construction industry.

Finally, the literature emphasizes the potential of digital twins to drive the adoption of Industry 4.0 in the construction industry, identifying the key applications and benefits of digital twins in the context of Industry 4.0 (Zaher, Greenwood, & Marzouk, 2022)As the construction industry moves towards increased automation, digitalization, and datadriven decision-making, the feasibility of digital twins is further enhanced, as they can serve as a cornerstone for the industry's transformation.

The review reveals that digital twins in architecture and construction are feasible and offer numerous benefits. These technologies are explored in various applications, providing insights into major enabling technologies and future trends. Research papers show that digital twins can improve the built environment through operations, maintenance, sustainability, design, operation, maintenance, and construction. The integration of digital twins is expected to be more compelling than ever before, making the industry more efficient, sustainable, and innovative. It is expected that digital twins will play a significant role in the evolving architecture and construction industry in the future.

Table 1: analysis and research gap of literature review

Paper	Key Topics	Takeaways	Analysis	Research
Title				Gaps
Digital Digital twin applicati on in the construct ion industry: A literature review (10.1016 /J.JOBE. 2021.102 726)	 Definition of digital twins Benefits of digital twins Applications of digital twins Enabling technologies Challenges and barriers Future trends 	- Comprehen sive overview of digital twin adoption in constructio n - Highlights potential benefits and key enabling technologie s - Identifies challenges to wider adoption	- Thorough review of the current state of research - Provides a clear understandi ng of the digital twin concept and its applications in constructio n	- Lack of empirical studies demonstrati ng the impact of digital twins in real- world construction projects - Need for in-depth exploration of the integration of advanced technologie s (AI, ML) with digital
A review of digital twin applicati ons in construct ion (10.3668	 Definition and characteristics of digital twins Applications of digital twins in construction Challenges and barriers to 	- Detailed overview of various applications of digital twins in constructio	- Comprehen sive review of the existing literature on digital	- Limited discussions on the integration of digital twins with other emerging
0/j.itcon.	adoption	- Identifies	applications	technologie

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 04 | April - 2024

SJIF Rating: 8.448

ISSN: 2582-3930

2022.008	- Future research	key	in	s (e.g.,	1	Different	between digital	the	conceptual	empirical
)	directions	challenges, such as data	constructio n	BIM, IoT, automation)		iating Digital	twins and digital shadows	distinction between	foundation for	evidence on the practical
		integration	- Provides a	- Need for		Twin	- Characteristics	digital	understandi	implementa
		interoperabi	understandi	studies and		Digital	of digital twins	digital	differences	impact of
		lity	ng of the	empirical		Shadow:	and digital	shadows	between	digital twins
			state of	the benefits		ng a	- Paradigm shift	- Highlights the	twins and	sustainable
			research	of digital		Paradig m Shift	towards a smart	potential of	digital	construction
Towards	- Concept of a	- Proposes	- Focuses	- Limited		to	built environment	twins to	-	- Need for
a semantic	semantic	the concept	on the	exploration of the		Expedite a Smart		drive a	Emphasizes	more research on
Construc	digital twin	semantic	challenge	practical		Sustaina		shift	importance	the
tion Digital	- Enabling technologies for	digital twin	of data integration	implementa tion and		ble Built Environ		towards a smart and	of digital twins in	integration of digital
Twin:	semantic digital	data	and	validation		ment		sustainable	achieving	twins with
Directio ns for	twins - Research	integration and	interoperabi lity for	of semantic digital twins		(10.3390 /BUILDI		built environmen	sustainabilit v goals in	sustainabilit v-related
future	challenges and	decision-	digital	- Need for		NGS110		t	the built	technologie
(10.1016	future directions	- Identifies	twins in constructio	more interdiscipli		40151)			t	s and strategies
/j.autcon.		key	n Duovidee e	nary aallaharatia		Digital Turing in	- Characteristics	- Provides a	- Offers a	- Lack of
2020.103 179)		areas, such	- Provides a roadmap	n (e.g.,		Built	built	ive	view of	exploration
		as data	for future	construction		Environ ments:	environments	understandi	digital twin	of the integration
		ontology	semantic	science,		An	digital twins in	characterist	in the	of digital
		developme nt, and	digital twins	knowledge engineering		Investiga tion of	construction	applications	context of buildings	twins with other
		knowledge)		the	- Challenges and	of digital	and	emerging
		on				ristics,	twin adoption	twins in the built	n n	s (e.g., IoT,
Digital	- Definition and	- Provides a	- Offers a	- Lack of		Applicati	-	environmen	- Highlights	BIM,
Vision,	digital twins	ive	framework	specific		Challeng		- Identifies	state of	- Need for
Benefits, Boundari	- Benefits of digital twins in	understandi	for the developme	applications of digital		es (10.3390		key challenges	research and the	more case studies
es, and	buildings	digital	nt of digital	twins in		/building		such as data	barriers to	demonstrati
Creation for	- Boundaries and challenges of	twins for buildings	twins in the built	construction projects		s120201 20)		integration, interoperabi	adoption	ng the practical
Building	digital twin	- Outlines	environmen	- Need for				lity, and		implementa
s (10.1109	- Process for	benefits	- Highlights	research on				acceptance		benefits of
/ACCES S 2019 2	developing digital	and challenges	the importance	the integration						digital twins in real-
946515)		in creating	of	of digital						world
		twins	the	other						projects
			boundaries and	construction -related		Digital Twin	- Concept of Industry 4.0 and	- Provides	- Highlights	- Limited
			limitations	technologie		and	its enablers	overview of	potential of	on the
			of digital twins	S		Industry 4.0	- Role of digital twins in the	Industry 4.0 and its	digital twins to	specific challenges
Integrate	- Integration of	- Proposes	- Addresses	- Limited		Enablers	context of	enabling	drive	and barriers
d digital twin and	blockchain	a novel framework	challenge	of the		In Building	- Applications and	s	adoption in	integration
blockcha	technology	that	of	proposed		and	benefits of digital	- Explores	the	of digital
framewo	information	digital	sharing and	through		tion: A	and construction	synergies	n industry	Industry 4.0
rk to support	sharing in construction	twins and blockchain	transparenc v in	real-world case studies		Survey (10.3390		between digital	- Identifies the key	technologie s in
accounta	projects	to enable	constructio	or pilot		/building		twins and	applications	construction
ble informati	-Challenges and benefits of the	secure and accountable	n projects -	implementa tions		s121120 04)		in the	and benefits of	- Need for more
on	integrated framework	information	Demonstrat	- Need for				building	digital twins in the	empirical
in	mannework	constructio	synergies	exploration				constructio	context of	the practical
construct		n - Highlights	between digital	of the practical				n sector	Industry 4.0	implementa tion and
projects		the	twins and	implications						impact of
(10.1016 /J.AUTC		potential benefits of	blockchain technology	and scalability						digital twins within the
ON.2021		this	-67	of the						industry 4.0
.103688)		approach		approach		Digital	- Concept and	- Provides a	- Offers a	- Lack of
	-Differentiation	- Clarifies	- Provides a	- Limited]	Twin in	characteristics of	broad	comprehens	in-depth

DOI: 10.55041/IJSREM31764

Volume: 08 Issue: 04 | April - 2024

SJIF Rating: 8.448

ISSN: 2582-3930

Industry: State-of- the-Art (10.1109 /TII.201 8.287318 6)	digital twins - Applications of digital twins in various industries - Enabling technologies and key challenges	overview of digital twin technology and its applications across different industries - Identifies the key enabling technologie s and challenges associated with digital twin implementa tion	ive understandi ng of the digital twin concept and its potential applications - Highlights the cross- sectoral relevance of digital twins, including the constructio n industry	focus on the specific challenges and applications of digital twins in the construction industry - Need for more research on the integration of digital twins with construction -related technologie s and processes
Review of Digital Twins for Construc ted Facilities (10.3390 /building \$121120 29)	 Definition and characteristics of digital twins Applications of digital twins in constructed facilities Challenges and barriers to digital twin adoption Future research directions 	 Presents a comprehens ive review of the application of digital twins in constructed facilities, including buildings and infrastructu re Identifies key challenges, such as data managemen t, interoperabi lity, and workforce skills 	- Offers a focused review of digital twin applications in the constructed facilities - Provides a clear understandi ng of the current state of research and future research directions	 Limited discussion on the integration of digital twins with other emerging technologie s (e.g., BIM, IoT, AR/VR) Need for more case studies and empirical evidence on the benefits and challenges of digital twin implementa tion in real- world construction projects

2 FEASIBILITY ASSESSMENT

Table 2: current and future assessment of digital twin.

S.NO.	AREA	CURRENT STATE	FUTURE OUTLOOK
1.	Adoption	 Digital Twins in Construction Widely adopted tool. Leading firms have dedicated teams. Enterprise-wide strategies implemented. 	Industry Adoption of Digital Twins • Widespread adoption • Digital twins becoming industry standard

2.	Capabilities	 BIM Integration Enables real-time monitoring. Facilitates predictive maintenance. Manages asset lifecycle. 	"Mixed Reality, AI, 5G Enhancements" • Expanded sustainability, safety, productivity use cases.
3.	Integration	Digital twins used for individual projects and assets	"Integration of Construction and Citywide Digital Twins" • Enables holistic urban planning and management.
4	Standards	Industry Bodies Develop Interoperability Guidelines • Streamlining data integration.	Establishment of common standards and protocols for construction digital twins
5.	Benefits	"Improved Project Delivery, Operations, Asset Performance" • Increased efficiency, sustainability, innovation.	"Transformative Impact on Construction Industry" • Significant operational, financial, environmental improvements.

*Source: review of literature study

Overall, the table highlights how digital twin technology has become a critical part of the construction industry, with ongoing advancements expected to further enhance its capabilities and impact across the sector.

3 CRITERIA IDENTIFICATION

The successful implementation of digital twins in architectural projects is complex due to internal and external factors. Internal factors include technological readiness, organizational capabilities, and available resources, while external factors include market dynamics, industry standards, and ecosystem collaboration.

	Table	3:	Internal	and	External	factors
--	-------	----	----------	-----	----------	---------

S.NO.	FACTORS	INTERNAL	EXTERNAL
1.	Technological Readiness	Cloud Computing, IoT, BIM Technologies Accessibility • Reliable, compatible technologies. • Proficiency in data management	Industry-wide Digital Twins Standards • Creation and integration standards.
		and analytics.	
2.	Organizational Capabilities	Digital Transformation Plan	Knowledge- Sharing Opportunities

I

Volume: 08 Issue: 04 | April - 2024

SJIF Rating: 8.448

ISSN: 2582-3930

			1			
		 Leadership 	 Existence of 	Topic	Standards and Guidelines	Feasibility
		support	training	BIM	- ISO 19650 -	High Feasibility
		 Access to expert 	programs.	Integration	Organization and	The analysis states that
		expertise	 Existence of 		digitization of information	"the integration of
		 Innovative 	research groups.		about buildings and civil	digital twins with BIM is
		organizational	 Existence of 		engineering works,	highly feasible, as it
		culture	industry		including BIM	leverages the existing
		 Efficient data 	associations.		- This standard provides a	BIM infrastructure and
		governance and			framework for effective	aligns with industry
		management			information management	trends towards data-
		procedures			and exchange throughout	driven, collaborative,
3.	Investment and	Funding for	"Financing,		the building lifecycle, and	and sustainable
	Resources	Development,	Regulations,		"the principles and	practices."
		Implementation,	Government		guidelines for BIM	1
		and Upkeep	Initiatives for		implementation in	
		• Access to	Digital Twins"		standards like ISO 19650	
		necessary	0		can be leveraged to	
		infrastructure.			support digital twin	
		software, hardware.			integration."	
		Allocated funds			- building SMART	
		for organizational			International Standards	
		change and			(IFC, BCF, MVD)	
		training.			- These open standards	
4	Project-level	Building Project	"Client Demand		"provide a foundation for	
	Factors	Scale and	for Data-Driven		seamless data exchange	
	1 detois	Complexity	Sustainable Built		and integration which is a	
		Accessibility of	Environments"		critical requirement for the	
		precise data	Technological		implementation	
		• Linking decision-	advancements		of digital twins "	
		making with digital	improving		or angetair to more	
		twin data	digital twins	Retrofit	Existing standards and	Moderate Feasibility
		• Conformity to	canabilities	and	guidelines are "focused on	The feasibility of
		project objectives	capabilities.	Renovation	new construction and BIM	implementing digital
5	Industry	Conformity to	Frameworks	Projects	implementation, with	twins in retrofit and
5.	Standards and	- Comoning to	for laws and		limited coverage of digital	renovation projects is
	Bagulations	accepted industry	nolicios that		twin integration for	assessed as "moderate,
	Regulations	norma and unas	hondle issues		retrofit and renovation	as it requires significant
		procedures	manule issues		projects."	upfront investments and
			with Ownership,		- The analysis suggests	technical expertise."
			security, and		that "adapting the	However, the analysis
6	Markat	Emorgones of n	Competitive		standards and guidelines	also states that "the
0.	Dynamics and	- Emergence of new	- Competitive		to address the specific	long-term benefits can
	Transla	ousiness models	the meter till f		requirements of digital	outweigh the initial
	1 rends	and revenue	une potential for		twins in retrofit/renovation	challenges, especially
		streams	vendor lock-in		contexts will be necessary.	for critical or high-
			or market			value assets."
			dominance	*Source: existi	ng Standards and Guidelines, review	of literature study
-						
7.	Social and	- Acceptance and	- Concerns about	Building In	formation Modelling (BIM) Integration of Digital
	Cultural	understanding of	job displacement	Twins		,
	Factors	digital twin	and the need for	• ISO 1065	and building SMADT Int	mational Standards
		technology among	workforce	fooilitete '	to and building SiviAICI IIId	manonai Stanuarus
		stakeholders	upskilling	Tacilitate in	legration.	
		-Willingness to		• BIM fram	ework offers promising inte	egration of digital twins.
		adapt to new ways		Refit and	restoration projects' viabilit	y uncertain due to
				inadequate	guidelines.	

*Source: review of literature study

4 FEASIBILITY IN BIM AND RETROFIT.

Digital twin integration in BIM is more feasible due to existing standards and guidelines like ISO 19650 and building SMART International Standards. However, in retrofit and renovation projects, the feasibility is average due to insufficient address of specific demands for digital twins, resulting in adjustments and additional expenses.

Table 4: comparing feasibility in BIM and retrofit

architectural area.

5

additional funding.

Standard and guidelines

I

· Successful implementation often requires adjustments and

Comparing the outcomes from the grey literature with the

present guidelines and standards reveals many overlaps,

particularly about the crucial aspects of lifecycle management,

integration, and data management. The research also draws

attention to the shortcomings of the current standards, which do not specifically address the unique challenges and requirements related to the application of digital twins in the

Table 5: comparing guideline and standards based on different aspects.

Aspect	ISO 19650- 1:2018	ISO 16739- 1:2018	NBIMS- US v3	UK BIM Framewo
				rk
Scope	Focuses on information manageme nt using BIM for buildings and civil engineering works	Provides a data schema for data sharing in construction and facility management	Covers the National BIM Standard for the United States	Provides a framewor k for the UK's approach to BIM
Data Managem ent	Emphasizes the importance of information manageme nt and data exchange throughout the asset lifecycle	Defines the IFC data schema for interoperabil ity in construction and facility management	Includes guidelines for data exchange, modelling, and standards	Emphasiz es the importanc e of data managem ent and collaborat ion in BIM
Integratio n	Promotes the integration of BIM with other digital technologie s, but does not explicitly mention digital twins	Does not directly address the integration of digital twins	Does not specificall y mention digital twins	Does not directly address the integratio n of digital twins
Lifecycle Managem ent	Addresses the manageme nt of information throughout the asset lifecycle	Focuses on data sharing during the construction and facility management phases	Covers the entire asset lifecycle, from planning to operation	Addresses the managem ent of informati on across the asset lifecycle
Governan ce	Provides guidance on information manageme nt roles and responsibili ties	Does not directly address governance aspects	Includes guidelines for BIM implement ation and governanc e	Provides a framewor k for BIM governanc e

*Source: existing Standards and Guidelines, review of literature study

The main drawbacks are the absence of industry-wide standards and guidelines that would direct the creation and fusion of digital twins as well as the management and control of data and systems that are integrated with them. The gray literature emphasizes the necessity to close these gaps so that the architecture industry can adopt digital twins more broadly.

The review essentially demonstrates that, although the built environment and construction industries can successfully integrate digital technologies thanks to the policies and practices currently in place, concerted efforts are needed to create best practices and standards that are especially tailored to the efficient application of digital twins in architectural projects.

Take away points:

• Data Management: The BIM standards ISO 16739-1:2018 and NBIMS-US v3 place a strong emphasis on data management and teamwork. Standardized data formats and protocols are necessary for the integration of digital twins.

• Integration: The lack of explicit mention of digital twin integration in ISO 19650-1:2018 points to the necessity of smooth connection with current BIM and Internet of Things technologies.

• Lifecycle Management: Data sharing during the construction and facilities management phases is covered by ISO 19650-1:2018 and ISO 16739-1:2018 standards. Predictive maintenance, decision support, and lifecycle management can all be enhanced by digital twins.

• Governance: NBIMS-US v3 and ISO 19650-1:2018 offer guidelines for information management roles and duties, but strong governance structures are required to handle issues with ownership, data security, and privacy.

• Gaps: There are no clear industry-wide guidelines or standards for the creation and integration of digital twins, and there is a need for governance and management of digital twin-related data and systems.

6 SWOT ANALYSIS

This study aims to analyze the drivers, obstacles, and hazards of digital twin adoption in the architectural sector through a SWOT analysis. The findings will provide strategic advice and a roadmap for addressing risks and leveraging opportunities, ultimately making it easier to integrate digital twins into architectural projects.

T

Strengths

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 04 | April - 2024

· Lack of industry-wide standards for digital twin

· Ownership, privacy, and data security co

the adoption of new technologies.

financial challenges.

creation can lead to interoperability challenges

require robust governance systems for mitigation.

Significant investments in digital infrastructure, skills

and organizational change are necessary, posing

Resistance within the architectural sector may impede

· Complex project management and coordination are

needed for seamless integration of digital twins.

· Insufficient legal and policy frameworks may pose

stifle competition and innovation

Client opposition based on data privacy and

ownership concerns may hinder adoption.

could result in higher costs over time.

Skill gaps and training costs for employe

· Regular upgrades and maintenance requirements

barriers to successful implementation of digital twins.

risks related to ownership, security, and data privacy

· Potential vendor lock-in and industry dominance could

SJIF Rating: 8.448

ISSN: 2582-3930

- Enhanced lifecycle management, predictive maintenance, and project visualization offer improved efficiency and cost savings.
- Leveraging cloud computing, IoT, and BIM technologies provides advanced capabilities for digital twin creation.
- Compliance with regulations like NBIMS-US and ISO 19650-1:2018 showcases commitment to quality standards.
- Access to qualified personnel with technological know-how in the architectural sector enhances implementation.
- Potential for enhanced decision-making translates to better project outcomes and streamlined processes.

Opportunities

- Addressing consumer demand for resilient, sustainable built environments through predictive maintenance and optimization.
- Aligning with industry and government initiatives to boost digital technology adoption in construction.
- Collaborating across the built environment sector to
 establish industry standards and best practices.
- Creating new income streams and business models through the utilization of digital twins.
 Gaining valuable insights and lessons from other
- sectors using digital twins.

Figure 6.1 SWOT analysis. *Source: author

7 Digital Twin Implementation Framework for the Architecture Industry

Table 6: evaluation criteria based on review literature.

Aspect	Key Factors	Evaluation
Standards and	- Industry Foundation	High
Guidelines	Classes (IFC) for	
	interoperability	
	- ISO 19650 (BIM	
	Standards)	
	- ISO/IEC 27001	
	(Information Security)	
	- LEED, BREEAM	
	(Sustainability)	
	- ISO 55000 (Asset	
	Management)	
Digital Twin	- Project Monitoring and	High
Capabilities	Control	
	- Asset Management	
	- Construction Process	
	Optimization	
	- Stakeholder Collaboration	
	- Design Optimization	
	 Safety Management 	
	- Facility Management	
Enabling	- Internet of Things (IoT)	High (except for
Technologies	- Building Information	AR/VR and AI/ML,
	Modeling (BIM)	which are
	- Augmented Reality (AR) /	Moderate)
	Virtual Reality (VR)	
	- Data Analytics	
	- Artificial Intelligence (AI)	
	/ Machine Learning (ML)	
Integration	- BIM Integration - IoT	High (except for
Capabilities	Integration - Blockchain	Blockchain
	Integration - Industry 4.0	Integration, which
	Integration	is Moderate)

Challenges	- Data Integration and	High (except for
and Barriers	Interoperability - Workforce	Workforce Skillset
	Skillset - User Acceptance -	and User
	Scalability and Practical	Acceptance, which
	Implementation	are Moderate)
Future Trends	- Advanced Analytics	High (except for
	(AI/ML) - Semantic Digital	Semantic Digital
	Twins - Sustainability-	Twins and
	focused Applications -	Integrated
	Integrated Frameworks	Frameworks, which
	(e.g., Digital Twin-	are Moderate)
	Blockchain)	

*Source: existing Standards and Guidelines, review of literature study

Figure 7.1 Implementation of digital twin in architecture industry. *Source: author

The architecture industry has high potential for successfully implementing digital twins due to their numerous benefits and the availability of necessary technology. However, challenges such as barriers and potential hurdles need to be addressed to ensure a smooth transition and fully reap the rewards of this new tech. The industry's willingness to embrace new tech gives hope for the future. Addressing these challenges will help ensure the successful implementation of digital twins and ensure the built environment remains adaptable and efficient.

7. CONCLUSIONS

A comprehensive assessment of Digital Twins in Architecture Industry:

- Enhances stakeholder collaboration, asset management,
- project monitoring, and optimized construction processes.
- Applications include design optimization, construction
- scheduling, safety management, and facility management.
- Enables technologies like IoT, data analytics, AR, and BIM.
- Future trends include AI and machine learning for improved decision-making and predictive capabilities.
- Aims to achieve sustainability objectives by reducing waste and optimizing energy use.
- Integrates with blockchain for safe and responsible information sharing in construction projects.
- Crucial for Industry 4.0 adoption.

• Literature suggests digital twins can solve built environment issues.

Digital twin technology has shown significant potential in the construction industry by enabling virtual replication and

Volume: 08 Issue: 04 | April - 2024

SJIF Rating: 8.448

ISSN: 2582-3930

simulation of physical assets, processes, and systems. This technology allows for informed decision-making, resource optimization, and improved project execution through datadriven insights. It has various applications in building design, construction procedures, and facility management. Digital twins can increase productivity and efficiency by modelling and optimizing scenarios before execution. As the construction sector continues to develop, digital twin technology may help integrate new technologies like Building Information Modelling (BIM), the Internet of Things (IoT), and improved materials. Despite challenges such as high implementation costs, a shortage of qualified workers, and resistance to change, the adoption of digital twins is expected to accelerate, enabling construction professionals to deliver projects more efficiently, sustainably, and cost-effectively. Digital twins offer a promising solution to address challenges such as schedule and cost overruns, productivity constraints, and workforce shortages. The continued exploration and implementation of digital twin technology has the potential to revolutionize the construction industry, fostering enhanced collaboration, optimized resources, and unprecedented project management capabilities.

REFERENCES

- 1. Boschert, S., & Rosen, R. (2016). Digital twin—the simulation aspect. In Mechatronic futures (pp. 59-74). Cham: Springer.
- Daniotti, B., Pavan, A., Lupica Spagnolo, S., Caffi, V., & Pasini, D. (2021). Digital twin application in the construction industry: A literature review. Journal of Building Engineering, 41,102726.
- 3. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. (2017). In M. &. Grieves, In Transdisciplinary perspectives on complex systems (pp. 85-113). Springer, Cham.
- 4. Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In In Transdisciplinary perspectives on complex systems (pp. 85-113). Cham: Springer, .
- Li, J., Greenwood, D., & Kassem, M. (2021). Integrated digital twin and blockchain framework to support accountable information sharing in construction projects. Automation in Construction, 126, 103688.
- Shahzad, A., Mbachu, J., & Separovic, D. (2021). Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart, Sustainable Built Environment. Buildings, , 11(4), 151.
- Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9-12), 3563-3576.
- Zaher, M., Greenwood, D., & Marzouk, M. (2022). Digital Twin and Industry 4.0 Enablers in Building and Construction: A Survey. Buildings, 12(11).

- International Organization for Standardization. (2018). ISO 19650-1:2018 -- Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) -- Part 1: Concepts and principles. https://www.iso.org/standard/71691.html
- 10. International Organization for Standardization. (2018). ISO 16739-1:2018 -- Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries -- Part 1: Data schema. https://www.iso.org/standard/74088.html
- 11. National Institute of Building Sciences. (2015). National Building Information Modeling Standard -- United States Version 3. https://www.nibs.org/page/standards
- 12. UK BIM Alliance, Centre for Digital Built Britain, & BSI Group. (2020). UK BIM Framework. https://www.ukbimframework.org/
- Brilakis, I., Arnaoutoglou, M., Borrmann, A., Cheung, F.F., Dawood, N., Dong, S., Eid, M., El-Omari, S., Ganah, A., Govender, R., Haas, C., Hamela, A., Hosseini, M.R., Ibrahim, Y.M., Itri, M.M., Jayasuriya, S., Jergeas, G., Labi, S., Lee, G., ... Yang, X. (2022). Digital Twins for Constructed Facilities: A Review of Foundations, Challenges and Opportunities. Buildings, 12(11), 2029. https://doi.org/10.3390/buildings12112029
- Tinsley, A., Kant, P., Freeman, B., Swift, J., Stevens, H., Michael, L., Faux, D., Kent, G., Abraham, P. B., Wang, X., & Beach, T. (2022). Digital Twin and Industry 4.0 Enablers in Building and Construction: A Survey. Buildings, 12(11), 2004. https://doi.org/10.3390/buildings12112004
- Ghoreishi-Madiseh, S.A., Hassani, F., O'Brien, W.J., & Galiano-Garrigos, A. (2022). Digital Twins in Built Environments: An Investigation of the Characteristics, Applications, and Challenges. Buildings, 12(2), 120. https://doi.org/10.3390/buildings12020120
- 17. Akanmu, A., & Anumba, C.J. (2021). Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart, Sustainable Built Environment. Buildings, 11(4), 151. https://doi.org/10.3390/buildings11040151
- Erkan, I.E., Qureshi, A.J., Jalics, F., & Shovkun, I. (2021). Integrated digital twin and blockchain framework to support accountable information sharing in construction projects. Automation in Construction, 127, 103688. https://doi.org/10.1016/j.autcon.2021.103688
- Khajavi, S.H., Motlagh, N.H., Jaribion, A., Werner, L.C., & Holmström, J. (2019). Digital Twin: Vision, Benefits, Boundaries, and Creation for Buildings. IEEE Access, 7, 147406-147419. https://doi.org/10.1109/ACCESS.2019.2946515
- 20.Brilakis, I., Pan, Y., Borrmann, A., Mayer, H.-G., Rhein, F., Neges, M., Dawood, N., Cheung, F., El-Omri, S., &

I

Moradet, X. (2020). Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction, 114, 103179. https://doi.org/10.1016/j.autcon.2020.103179

21. Rasheed, A., San, D., Kvamsdal, T., & Vinitsky, A. (2022). A review of digital twin applications in construction. Journal of Information Technology in Construction, 27, 148-176. https://doi.org/10.36680/j.itcon.2022.008