
International Journal of Scientific Research in Engineering and Management (IJSREM) 
         Volume: 09 Issue: 01 | Jan - 2025                                            SJIF Rating: 8.448                                       ISSN: 2582-3930     

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM40952                    |        Page 1 
 

Evaluating the Performance of Compressive Sensing and  Deep Learning 

Techniques for Medical Imaging in Healthcare Applications 

Umme Saniya 1, Yashass G2, Soujanya 3, Chandini R 4. Dr. R. SEKAR M.E.,PH.D 

 

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 

PRESIDENCY UNIVERSITY 

 

 

ABSTRACT: 

In recent years, the use of deep learning- based 
medical image fusion (DLMIF) has become a 
common practice for the reliable detection of 
diseases, as it allows the combination of 
information from multiple medical imaging 
modalities [1], [2]. The performance of DLMIF 
heavily relies on the effective selection of features 
for calculating fusion weights [3]. This study 
investigates the efficacy of convolutional neural 
network (CNN) features in the context of DLMIF 
by utilizing two input medical images and 
generating a fused image using various 
conventional techniques [4]. Due to the absence 
of ground-truth images for training end-to-end 
CNNs, pre-trained networks from other tasks are 
employed to extract relevant features [5]. The 
choice of CNN network and the selection of 
convolutional layers (CL) are systematically 
examined to assess their impact on the fusion 
process [6]. Furthermore, consistency maps and 
local visibility are computed using the extracted 
CNN feature maps to determine the appropriate 
fusion weight map for DLMIF [7]. The results 
demonstrate that the proposed method 
outperforms conventional techniques in terms of 
several quantitative metrics and produces 
superior DLMIF outputs, offering enhanced 
medical images that are highly suitable for 
medical diagnosis [8]. 
Parallel to advancements in medical image fusion, 
the increasing use of images across various 
sectors, including online social networks, 
government agencies, law enforcement, 
educational institutions, and 

private companies, has driven the demand for 
efficient image storage solutions [9]. As these images 
are stored in vast databases, image compression 
techniques play a critical role in reducing storage 
requirements and optimizing data transfer [10]. 
Image compression aims to represent significant 
image information in a compact form while removing 
redundant or insignificant data [11]. The rapid growth 
of data has highlighted the importance of efficient 
image compression, especially in the face of the 
challenges posed by complex, unknown correlations 
between pixels in an image [12]. The task of finding 
and recovering well-compressed representations is 
intricate, and designing networks that can recover 
images successfully—either losslessly or lossy—
remains a challenging task [13]. Deep learning 
techniques, particularly autoencoders, have gained 
attention as effective tools for image compression 
[14]. 
This article provides an overview of the most 
common image compression techniques, focusing on 
the role of autoencoders in deep learning-based 
compression, and evaluates key performance metrics 
such as SSIM, MS- SSIM, and PSNR to assess the 
effectiveness of these methods in maintaining image 
quality during compression [15]. By integrating 
advancements in both DLMIF and image 
compression, this study emphasizes the potential of 
deep learning techniques to improve medical image 
analysis and data storage solutions across various 
fields [16]. 
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1. INTRODUCTION: 

1.1 History of Medical Imaging and Its 

Advancements. 

Medical imaging has a long and transformative 

history, evolving from rudimentary techniques to 

highly sophisticated methods used today for 

 

disease detection and diagnosis. The first major 

breakthrough in medical imaging came in 1895 

when Wilhelm Conrad Roentgen discovered X-

rays, marking the beginning of modern medical 

imaging [1]. X-ray imaging allowed doctors to 

visualize the internal structure of the body, 

particularly bones, and was soon adopted for 

diagnosing fractures, infections, and tumors. Over 

time, the scope of medical imaging expanded with 

the development of new technologies, including 

computed tomography (CT) [2], magnetic 

resonance imaging (MRI) [3], ultrasound, and 

nuclear medicine techniques like positron emission 

tomography (PET) [4] and single photon emission 

computed tomography (SPECT) [5]. 

CT, introduced in the 1970s by Godfrey 

Hounsfield and Allan Cormack, revolutionized 

imaging by providing cross-sectional images of the 

body, offering a clearer understanding of internal 

structures [6]. MRI, developed in the 1980s, 

provided superior soft tissue imaging and played a 

pivotal role in diagnosing neurological, 

musculoskeletal, and cardiovascular diseases [7]. 

PET and SPECT imaging further enhanced 

diagnostic capabilities by providing functional 

information, offering insight into the metabolic 

activity and blood flow within tissues [8][9]. These 

technologies, each with their strengths and 

limitations, formed the foundation of contemporary 

medical imaging. 

However, as advancements continued, medical 

professionals found that no single imaging 

modality could 

comprehensively capture all relevant information 

about a disease or condition. As a result, there arose a 

need to combine the strengths of different imaging 

modalities into one composite image—a process 

known as medical image fusion [10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Medical Image Fusion and Its Role in Disease 
Diagnosis 
Medical image fusion refers to the process of 
merging information from multiple imaging 
modalities into a single, more informative composite 
image, which aims to improve diagnostic accuracy 
[11]. Each medical imaging technique provides unique 
information, but no single modality can fully reflect 
all tissue characteristics or detect all disease traits. 
For example, MRI excels at providing high- resolution 
images of soft tissues, while CT is superior for 
visualizing hard structures like bones [12]. PET and 
SPECT offer functional insights into tissue activity, but 
their spatial resolution is often inferior to CT and MRI 
[13]. The challenge lies in combining these diverse 
information sources into a single image that retains 
the crucial details from each modality without 
introducing artifacts or distortion [14]. The objective 
of medical image fusion is to combine these 
complementary features while maintaining diagnostic 
integrity. Successful fusion enhances the visibility of 
critical 
 
 
 
anatomical  and  functional  information, 
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thereby aiding clinicians in more accurate disease 
detection, treatment planning, and monitoring 
[15]. For instance, fusion of MRI and CT images 
can offer a complete view of both anatomical 
structure and functional tissue behavior, 
improving diagnosis and therapeutic outcomes 
[16]. Moreover, multimodal image fusion has 
become essential in many clinical applications, 
such as 
cancer detection [17], neurological disorders [18], 
cardiovascular diseases [19], and orthopedics [20], 
where both the anatomical details and functional 
information of tissues are necessary for 
comprehensive evaluation. 
 
 
 
 
 
 
 
 
 
 
 
 

 
1.3 Challenges in Medical Image Fusion: 
Information Overload and Feature Extraction 
Despite the obvious advantages, the fusion 
process introduces several challenges. One of the 
main difficulties in medical image fusion is the 
phenomenon of information overload. Each 
imaging modality produces a substantial amount 
of data, and when combined, the resulting fused 
image can become overly complex or redundant 
[21]. The key challenge lies in retaining as much 
relevant diagnostic information as possible while 
avoiding the inclusion of extraneous data that may 
introduce noise or cause distortion [22]. 
To mitigate these challenges, advanced image 
fusion techniques, such as feature-based fusion 
and pixel-based fusion, have been developed [23]. 
Feature-based fusion involves extracting 
important features from the original images 
before combining them, which helps preserve the 
most relevant diagnostic information [24]. Pixel-
based fusion, on the other hand, directly merges 
the pixels of the images at the data level, 
potentially sacrificingsome feature-specific details 
[25]. The most 

sophisticated fusion techniques, such as region-based 
fusion or decision-level fusion, involve a higher level 
of processing, where the system assesses the 
diagnostic importance of different image 
components and selectively combines them based on 
predefined rules or algorithms [26]. 
 
At the heart of the medical image fusion process is 
the concept of fusion weights, which determine the 
relative importance of each image component in the 
final fused image. 
These weights are often derived from feature 
extraction processes, which identify and quantify the 
most informative elements in each input image [27]. 
In traditional methods, handcrafted features such as 
gradients, edges, or textures were used to calculate 
these fusion weights. However, in recent years, the 
potential of deep learning techniques, particularly 
Convolutional Neural Networks (CNNs), has 
revolutionized medical image fusion by providing 
automatic feature extraction that is more robust and 
accurate compared to traditional methods [28]. 
 
1.4 Deep Learning in Medical Image Fusion (DLMIF) 
Deep learning-based medical image fusion (DLMIF) 
techniques leverage CNNs to extract relevant 
features from medical images automatically, offering 
several advantages over conventional methods. CNNs 
are particularly effective in capturing complex 
patterns and relationships within images, making 
them ideal for tasks like medical image fusion, where 
intricate details must be preserved. The main 
advantage of using CNNs is that they can learn 
hierarchical features directly from the data, removing 
the need for manual feature extraction and 
potentially improving fusion performance. 
In DLMIF, CNNs are often used in conjunction with 
pre-trained networks, which are fine- tuned for the 
specific task of image fusion. 
Since ground-truth data for medical image fusion 
tasks is often unavailable, pre-trained models from 
other tasks can be leveraged for feature extraction, 
allowing CNNs to perform effectively even in the 
absence of domain- specific training. The fusion 
process in DLMIF involves calculating fusion weights 
based on the extracted features, followed by 
combining 
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the images in a way that maximizes diagnostic 
accuracy while minimizing the effects of noise, 
contrast loss, and distortion. 
The integration of CNNs into medical image fusion 
workflows has led to improved performance in 
disease diagnosis. For example, combining MRI 
and CT images using DLMIF can provide a more 
accurate representation of both anatomical and 
functional information, which is critical for 
conditions like cancer or neurological disorders. 
Moreover, DLMIF has proven to be beneficial for 
enhancing the visibility of important image 
features, which helps doctors interpret medical 
images with greater confidence. 
 
1.5 Image Compression and Its Role in Medical 
Imaging 
Another critical aspect of medical imaging is the 
need for efficient image storage and transfer, 
especially given the increasing volume of high-
quality medical data. Image compression plays an 
essential role in reducing the size of medical 
images without sacrificing diagnostic quality [37]. 
Medical images, particularly those produced by 
high- resolution imaging techniques like MRI and 
CT, often occupy large amounts of storage space 
[38]. The ability to compress these images 
effectively is crucial for managing large-scale 
medical databases and ensuring the efficient 
transfer of data across healthcare networks [39]. 
Compression techniques aim to reduce the file size 
of medical images while preserving as much of the 
relevant information as possible [40]. Lossy 
compression methods, such as JPEG, sacrifice 
some image quality to achieve smaller file sizes, 
while lossless methods retain every detail of the 
original image but do not compress the data as 
much [41]. Deep learning-based image 
compression, especially through autoencoders, 
has emerged as a promising approach, as it can 
learn to compress images in a way that preserves 
important features while reducing redundancy 
[42]. 
In the context of medical image fusion, 
compression techniques are often used to 
optimize the storage and transmission of fused 
images. Compression must be 
 

 
performed carefully to avoid degrading the 

quality of the fused image, as even small losses in 
quality can affect the diagnostic utility of the image 
[43]. Advances in deep learning for compression, 
such as the use of autoencoders, provide an efficient 
solution to this problem by learning compression 
strategies tailored to the specific characteristics of 
medical images [44]. 
 
1.6 Datasets Used in Medical Image Fusion and 
Compression 
The effectiveness of deep learning-based medical 
image fusion (DLMIF) and compression techniques 
depends significantly on the quality and diversity of 
the datasets used for training and evaluation [45]. 
High- quality datasets provide the foundation for 
training deep learning models, enabling them to learn 
complex patterns and relationships in medical 
images. However, obtaining comprehensive and well-
labeled datasets for medical image fusion is a 
challenge due to privacy concerns, the high cost of 
medical imaging procedures, and the limited 
availability of ground-truth data [46]. 
 
1.6.1 Availability of Medical Imaging Datasets 
 
Several publicly available datasets have been 
instrumental in advancing research in medical image 
fusion and compression. These datasets often contain 
images from various modalities, such as CT, MRI, PET, 
and SPECT, and provide the necessary data for 
developing and evaluating fusion algorithms. 
Commonly used datasets for medical image fusion 
include: 
 
• BRATS (Brain Tumor Segmentation 

Challenge): A dataset specifically focused on brain 

tumor segmentation in MRI scans, with multimodal 

images including T1-weighted, T2-weighted, and 

post-contrast T1 images. It serves as a valuable 

resource for testing image fusion and segmentation 

techniques in the context of brain- related diseases 

[1]. 

• LIDC-IDRI (Lung Image Database 

Consortium and Image Database Resource 

Initiative): A collection of CT 

 

 
images of the lung, accompanied by annotated 

lesions and tumor 
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markings. This dataset is widely used in the 

development of lung cancer detection and 

segmentation algorithms and can be used in 

fusion- based approaches that combine CT with 

other modalities like PET [2]. 

• The Alzheimer’s Disease Neuroimaging 

Initiative (ADNI): This dataset includes MRI and 

PET scans from patients with Alzheimer’s disease 

and controls. It is particularly useful for research 

on the fusion of functional and structural imaging 

modalities in diagnosing and monitoring 

neurodegenerative diseases [3]. 

• AAPM (American Association of 

Physicists in Medicine): The AAPM provides 

datasets for medical imaging, including CT and MRI 

images, which are valuable for developing and 

testing fusion techniques aimed at improving 

cancer diagnosis, especially for organs like the 

liver, prostate, and brain [4]. 

• The OASIS (Open Access Series of 

Imaging Studies): A longitudinal dataset that 

includes MRI scans of the brain from healthy 

adults and individuals with Alzheimer's disease. It 

provides multimodal imaging data useful for 

investigating fusion methods that combine 

structural and functional imaging modalities for 

neuroimaging applications [5]. 

1.6.2 Dataset Challenges and Considerations 
While these publicly available datasets provide 
valuable resources for training and evaluation, 
they come with their own set of challenges: 
1. Limited Ground-Truth Data: For many 

medical imaging tasks, including image fusion, 

ground-truth data is scarce. In medical image 

fusion, the absence of a single reference fused 

image makes it difficult to evaluate fusion 

 

 
performance objectively. Researchers often rely 

on expert opinions or alternative methods to 

create 

synthetic ground-truth datasets, but these are 

not always perfectly representative of real-world 

clinical data [6]. 

2. Data Diversity and Generalization: Datasets 

often consist of a limited set of images from 

specific patient groups, diseases, or imaging 

modalities. The models trained on these datasets 

may not generalize well to other conditions, 

populations, or imaging protocols. For instance, a 

CNN trained on a dataset of brain MRI images 

from a particular hospital may not perform as 

well when applied to images from a different 

hospital or with different imaging equipment. To 

address this, researchers are increasingly turning 

to more diverse datasets or adopting techniques 

such as domain adaptation to improve model 

generalization [7]. 

3. Data Privacy and Ethics: Medical datasets 

are often protected by strict privacy regulations, 

such as HIPAA (Health Insurance Portability and 

Accountability Act) in the United States or GDPR 

(General Data Protection Regulation) in Europe. 

These regulations ensure that patient data is 

anonymized and protected from misuse, but they 

can also limit the accessibility and availability of 

large-scale datasets. To mitigate privacy 

concerns, synthetic datasets or federated 

learning approaches are being explored as 

alternatives [8]. 

4. Data Imbalance: Many medical imaging 

datasets are imbalanced, with certain conditions 

being underrepresented. For example, datasets 

may have fewer images of rare diseases or 

abnormal cases compared to healthy individuals 

or common conditions. This imbalance 

 

 
can lead to biased models that perform poorly on 

less-represented conditions. Techniques like data 

augmentation, oversampling, and 
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transfer learning are commonly used to address 

this issue [9]. 

5. Multimodal Data Alignment: In medical 

image fusion, the datasets must consist of images 

captured from different modalities, such as MRI, 

CT, and PET. These images are often obtained at 

different times and may have varying resolutions, 

orientations, and field-of-view parameters. Proper 

alignment of multimodal images is crucial for 

effective fusion. Researchers use image 

registration techniques to align the images before 

fusion, but the alignment process can be 

computationally expensive and prone to errors if 

not handled correctly [10]. 

1.6.3 Role of Datasets in Deep Learning for 
Image Fusion and Compression 
Deep learning models used for medical image 
fusion and compression require large and diverse 
datasets for training, validation, and testing. By 
training on varied datasets, these models can 
learn to extract meaningful features from different 
imaging modalities and apply the correct fusion 
strategy for each case. The performance of deep 
learning-based medical image fusion systems is 
directly tied to the dataset used, as high-quality 
datasets with diverse imaging conditions, well- 
annotated labels, and sufficient representation of 
different diseases allow the models to perform 
better in real-world applications [11]. For 
compression tasks, deep learning models, 
especially autoencoders, are trained on large 
datasets to learn efficient ways of reducing the 
image size while retaining critical diagnostic 
information. These compression models need to 
handle various image types and compression 
levels, including lossy and lossless compression, to 
ensure that compressed medical images still 
provide reliable data for disease diagnosis [12]. To 
sum up, the availability and quality of medical 
image datasets play a crucial role in the 
 
 
 
development and evaluation of image fusion and 
compression techniques. As datasets become 
larger, more diverse, and better annotated, deep 
learning-based methods will 

continue to improve, leading to more accurate and 
efficient medical image fusion and compression 
systems. The ongoing development of robust 
datasets will enable these systems to provide better 
support for healthcare professionals in clinical 
settings, leading to more informed decisions and 
better patient outcomes [13]. 
 
1.6 Conclusion 
In summary, medical image fusion is a rapidly 
evolving field that enhances the diagnostic 
capabilities of medical imaging by combining 
complementary information from multiple imaging 
modalities. The integration of deep learning 
techniques, particularly CNNs, into medical image 
fusion workflows has significantly advanced the field, 
providing more accurate, efficient, and reliable fusion 
results. Additionally, the challenge of image storage 
and transfer has been addressed through image 
compression techniques, ensuring that large volumes 
of high-quality medical data can be stored and 
transmitted effectively. Together, these innovations 
in image fusion and compression are poised to play a 
key role in improving medical diagnosis and 
treatment, offering clinicians better tools to 
understand and manage complex diseases. 
 

2. Evolution of Image Transmission and Storage 
The evolution of image transmission and storage has 
undergone significant advancements due to 
technological progress in both imaging and 
computational capabilities. Early on, images were 
captured and transmitted as analog signals. However, 
with the rise of digital technologies in the 20th 
century, digital image processing and storage became 
more common. As image resolution increased and 
the demand for high-quality images grew, the size of 
image files became problematic for storage and 
transmission, especially in remote areas or medical 
applications where large datasets were involved. The 
ability to store, transmit, and retrieve images 
efficiently became crucial in fields such as medical 
diagnostics, satellite 
 
 
 
imaging, and digital photography. Compression 
techniques emerged as an effective solution to 
reduce image file sizes without losing critical 
information. These 

http://www.ijsrem.com/


International Journal of Scientific Research in Engineering and Management (IJSREM) 
         Volume: 09 Issue: 01 | Jan - 2025                                            SJIF Rating: 8.448                                       ISSN: 2582-3930     

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM40952                    |        Page 7 
 

techniques, which fall under lossy and lossless 
categories, allowed images to be compressed and 
stored or transmitted over networks more 
efficiently. 

2.1. Challenges in Medical Imaging Using 
Traditional Sampling Methods 
In medical imaging, traditional sampling methods, 
where each pixel of the image is captured and 
processed, present several critical challenges: 
1. High Data Volume: Medical images, 

particularly in fields such as MRI, CT scans, and 

digital radiography, often have very high 

resolution. These images require substantial 

storage space, making archiving and data 

management costly and complex. Storing large 

datasets on a single system or transmitting them 

across networks can become impractical, 

especially in remote healthcare settings [14]. 

2. Bandwidth Limitations: Transmitting 

medical images across networks, particularly for 

telemedicine applications, is often hindered by the 

large file sizes. Even in high-speed internet 

environments, large image files can lead to 

significant delays in transmission, slowing down 

the process of diagnosis and consultation [15]. 

3. Loss of Fine Details: Traditional methods 

of sampling, especially at lower resolutions, may 

not capture all the fine-grained details of medical 

images. For example, subtle changes in tissue 

structure or small anomalies in scans may not be 

accurately captured, leading to missed diagnoses 

or inaccurate interpretations [16]. 

4. Limited Scalability: As the number of 

medical images continues to grow 

 

 
with the increasing adoption of advanced imaging 

techniques, traditional methods of handling and 

processing these images may struggle to scale 

effectively. The increase in 

data volume requires more storage, faster 

transmission protocols, and more powerful 

computational resources [17]. 

5. Inefficient Data Utilization: In traditional 

image sampling, a large proportion of the data can be 

redundant or non-essential. Without leveraging 

sparsity or compressive sensing, a lot of unnecessary 

data might be captured, leading to inefficient use of 

storage and transmission resources [18]. 

 
2.2. Traditional Compressive Sensing (Block 
Diagram) for Image 
Compressive Sensing (CS) is an innovative signal 
processing technique that offers a more efficient way 
of capturing and reconstructing sparse or 
compressible signals. The technique is particularly 
beneficial for image compression and transmission. 
 
Block Diagram of Traditional Compressive Sensing 
for Image 
 
 
 
 
 
 
 
 
 
 
 
 
https://www.researchgate.net/publication/3 
57572540_A_hybrid_adaptive_block_based_c 
ompressive_sensing_in_video_for_IoMT_appl 
ications 

1. Compression Block 

o Sparse Dictionary Learning (CNN): This 

stage utilizes a Convolutional 

 

 
Neural Network (CNN) to learn a sparse dictionary of 

image patches. The dictionary represents the most 

frequent image patterns. 

http://www.ijsrem.com/
http://www.researchgate.net/publication/3


International Journal of Scientific Research in Engineering and Management (IJSREM) 
         Volume: 09 Issue: 01 | Jan - 2025                                            SJIF Rating: 8.448                                       ISSN: 2582-3930     

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM40952                    |        Page 8 
 

o Measurement: A measurement 

process is applied to the input image. This could 

involve techniques like compressive sensing or 

dimensionality reduction. 

o Vibrational Autoencoder: This 

component further compresses the image by 

leveraging a variational autoencoder. It learns a 

latent representation of the image, reducing its 

dimensionality. 

2. Reconstruction Block 

o Deep Unrolling: This block uses a 

deep neural network to unroll the optimization 

process. It iteratively refines the reconstructed 

image, starting from an initial guess. 

o CNN & Optimization: A CNN is 

employed to learn the appropriate image features, 

while optimization techniques like FISTA (Fast 

Iterative Shrinkage-Thresholding Algorithm) are 

used to minimize the reconstruction error. 

o GAN: A Generative Adversarial 

Network (GAN) is incorporated to further improve 

the quality of the reconstructed image. It trains a 

generator network to produce realistic images and 

a discriminator network to distinguish between 

real and generated images. 

3. Evaluation 

o MSE (Mean Squared Error): This 

metric measures the average squared difference 

between the original and reconstructed images. 

 
 

 
o PSNR (Peak Signal-to-Noise Ratio): 

This metric evaluates the quality of the 

reconstructed image by comparing it to the 

original image in terms of signal-to-noise ratio. 

o SSIM (Structural Similarity Index): This 

metric assesses the similarity between the structural 

information of the original and reconstructed images. 

 

 
Additional Insights 
• The use of sparse dictionary learning and 

deep unrolling enables efficient image compression 

and reconstruction [1]. 

• Incorporating a CNN allows the model to 

capture complex image features [2]. 

• The GAN component helps in generating 

more realistic and detailed reconstructed images [3]. 

• The evaluation metrics provide a 

quantitative assessment of the reconstruction quality 

[4]. 

Potential Applications 
This framework is particularly relevant for medical 
image compression and reconstruction, where 
efficient storage and transmission of images are 
crucial [5]. It can be applied to various medical 
imaging modalities like MRI, CT scans, and X-rays [6]. 
Further Considerations 
• The choice of dictionary learning technique 

and CNN architecture can significantly impact the 

performance of the compression and reconstruction 

process [7]. 

• The hyperparameters of the optimization 

algorithms and GAN training need to be carefully 

tuned [8]. 

• The evaluation metrics should be chosen 

based on the specific requirements of the application 

[9]. 

 
 
 

 
2.3. Stages of Traditional Compressive Sensing 
The traditional compressive sensing process involves 
several critical stages to ensure efficient data 
compression and accurate reconstruction: 
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1. Image Acquisition 

The image is first sampled at a lower rate than 

traditional methods, often using random 

projections. These projections capture the 

essential information from the image in a reduced 

number of measurements, which are sufficient for 

accurate reconstruction if the image is sparse or 

compressible in some domain [10]. 

2. Compression (Encoding) 

The acquired measurements are then compressed 

or encoded using a mathematical technique (e.g., 

quantization or entropy coding) to minimize 

storage or transmission requirements. The 

compression step aims to discard redundant or 

non- essential information while retaining the 

most important features of the image [11]. 

3. Storage/Transmission 
The compressed measurements are stored in 

memory or transmitted through a network. This 

significantly reduces the amount of bandwidth or 

storage required, especially in bandwidth-limited 

applications like telemedicine or satellite 

communication [12]. 

4. Reconstruction (Decoding) 

At the receiving end, the compressed 

measurements are decoded using algorithms like 

sparse reconstruction, typically based on convex 

optimization methods such as L1-norm 

minimization. These algorithms exploit the sparsity 

or compressibility of the image to reconstruct it 

accurately [13]. 

5. Decompression (Final Image) 
 
 
 

 
After reconstruction, the image is decompressed 

and displayed. The quality of the reconstructed 

image depends on the sparsity of the original 

image and the accuracy of the reconstruction 

algorithm [14]. 

 
2.4. Performance Evaluation Metrics of 
Compressive Image Sensing 
To assess the effectiveness of compressive sensing 
techniques in image compression, several performance 
evaluation metrics are used: 
1. Peak Signal-to-Noise Ratio (PSNR) PSNR 

measures the quality of the reconstructed image 

compared to the original image. It calculates the ratio 

between the maximum possible power of a signal 

(image) and the power of the noise that corrupts the 

signal. Higher PSNR values indicate better reconstruction 

quality [15]. 

2. Structural Similarity Index (SSIM) SSIM 

compares structural information between the original 

and reconstructed image, accounting for luminance, 

contrast, and texture. It provides a more reliable 

measure of image quality than PSNR, especially in terms 

of perceived visual quality [16]. 

3. Compression Ratio 

This ratio represents the amount of reduction in data 

size achieved by compressive sensing. It is the ratio of 

the size of the original image to the size of the 

compressed image. Higher compression ratios indicate 

more efficient compression but may sacrifice image 

quality [17]. 

4. Computational Time 

The time required to compress and decompress an 

image is another important metric. For real-time 

applications like telemedicine, it is crucial that the 

computational time is minimized [18]. 

 
 

 
5. Reconstruction Error 

This metric quantifies the difference between the 

original image and the reconstructed image. Lower 

reconstruction errors indicate better performance of the 

compressive sensing technique [19]. 
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2.5. Challenges of Traditional Compressive 
Sensing Image Compression 
While compressive sensing offers significant 
advantages, it also presents several challenges: 
1. Noise Sensitivity 

Compressive sensing methods are highly sensitive 

to noise, especially in real-world environments. 

Small amounts of noise in the acquired 

measurements can result in significant errors in 

the reconstructed image, particularly in fields like 

medical imaging where image accuracy is critical 

[20]. 

2. Computational Complexity 

The reconstruction process typically involves 

solving complex optimization problems, which can 

be computationally expensive. For large images or 

real-time applications, this may lead to significant 

delays, making traditional compressive sensing 

less suitable for time-sensitive use cases [21]. 

3. Loss of Fine Details 

Although compressive sensing captures the main 

features of an image, some fine details may be lost 

in the compression process. This can be 

problematic in applications requiring high 

precision, such as medical imaging or satellite 

imaging [22]. 

4. Quality Control 

Achieving consistently high-quality 

reconstructions from compressed data depends 

heavily on the choice of sensing matrix and 

reconstruction 

 

 
algorithms. Variability in these parameters can 

lead to inconsistent performance [23]. 

 
2.6. Compressive Sensing for Image Using Deep 
Learning 
Deep learning has been integrated into 
compressive sensing to overcome some of the 
traditional challenges: 

1. Improved Reconstruction Quality Deep 

learning models, particularly Convolutional Neural 

Networks (CNNs), can learn more efficient 

representations of image data, allowing them to 

reconstruct higher- quality images from fewer 

measurements. This approach can better recover fine 

details that might be lost with traditional methods 

[24]. 

2. Noise Resilience 

Deep learning techniques are more robust to noise 

and distortion in the compressed data. Through 

training on noisy datasets, deep learning models can 

learn to recover clean images, making them more 

reliable in real- world applications [25]. 

3. Reduced Computational Complexity With 

the use of deep learning, the reconstruction process 

can be significantly simplified. Deep learning models 

can be trained to reconstruct images directly from 

compressed measurements without needing complex 

optimization steps, thus reducing computational 

complexity [26]. 

4. End-to-End Learning 

Deep learning allows for an end-to- end approach, 

where the entire process of compressive sensing 

(from sampling to reconstruction) can be optimized 

simultaneously. This end-to- end optimization leads 

to more efficient and effective compression 

techniques [27]. 

 
 
 

 
2.7. Merits of Compressive Sensing with Deep 
Learning 
Integrating deep learning with compressive sensing 
provides several benefits: 
1. Improved Image Quality 

Deep learning methods, especially CNNs, excel in 

capturing complex patterns and structures in images, 

resulting in better reconstruction 
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quality compared to traditional compressive 

sensing approaches [28]. 

2. Enhanced Noise Resistance 

Deep learning models are more resilient to noise, 

which is particularly beneficial in medical imaging 

or remote sensing, where data may be corrupted 

or incomplete [29]. 

3. Faster Reconstruction 

Once trained, deep learning models can 

reconstruct images almost instantaneously, 

enabling real-time image processing, which is 

particularly useful in fields such as telemedicine 

and surveillance [30]. 

4. Higher Compression Ratios 

Deep learning can achieve higher compression 

ratios while maintaining or improving image 

quality. This leads to more efficient data 

transmission and storage [31]. 

5. Real-Time Applications 

The reduced computational load and faster 

processing times make deep learning-based 

compressive sensing ideal for real-time 

applications such as streaming video or remote 

medical consultations [32]. 

 
Compression Block in Compressive Sensing A 
compression block is the initial phase in the 
compressive sensing process where an image or 
signal is compressed to a smaller size using a 
sensing matrix. This matrix is typically random, 
which allows us to store or transmit the image in a 
compressed form. This block helps in minimizing 
the data that needs to behandled while still 
retaining the essential information of the original 
image [33]. 
 

Sparse Representation 
Sparse representation refers to representing an 
image or signal with a small number of non-zero 
elements, despite being in a larger space. This is 
particularly useful for compression, as most 
natural images or signals have many elements 
that do not contribute significantly to the overall 
image. By identifying and keeping only the most 
important parts (non-zero elements), we can 
efficiently represent an image [34]. 

Dictionary Learning 
Dictionary learning is a technique used to improve 
the sparse representation of images. Instead of 

relying on predefined dictionaries like Fourier or 
wavelets, dictionary learning creates a custom set of 
atoms (basis functions) tailored to the specific 
dataset. These atoms are the building blocks that 
allow efficient representation of the image [35]. 
 
Reconstruction Algorithm for Compressed Sensing 
Once an image has been compressed using 
compressive sensing, the next step is to reconstruct 
the original image from the compressed data. This 
process involves solving a problem where the goal is 
to recover the image by minimizing the number of 
non-zero coefficients in its sparse representation. 
Various algorithms are used for this purpose [36]. 
 
Key Algorithms in Compressive Sensing Here are 
some of the key algorithms commonly used in 
compressive sensing: 
1. Orthogonal Matching Pursuit (OMP) This is 

a greedy algorithm used to find the sparsest 

approximation of a signal. At each step, it selects the 

dictionary atom that best represents the signal's 

residual (the difference between the current 

approximation and the actual signal) [37]. 

2. K-SVD (K-means Singular Value 

Decomposition) 

 
This algorithm is used for learning a dictionary from 

data. It iteratively improves the dictionary by 

updating it based on the residuals of the signal, 

ensuring that the dictionary becomes more suited for 

sparse signal representation [38]. 

3. Basis Pursuit 

This algorithm aims to find the sparsest signal 

representation by minimizing the number of non-zero 

coefficients. It uses optimization techniques to 

recover the signal from compressed measurements 

[39]. 

 
Conclusion 
The integration of deep learning techniques, 
particularly convolutional neural networks (CNNs), 
has significantly advanced medical image fusion and 
compression. These innovations enable the 
combination of complementary imaging modalities to 
create diagnostically superior images, improving 
disease detection and treatment planning [1]. 
Additionally, deep learning-based image compression 
techniques optimize storage and transmission of 
medical data while maintaining diagnostic integrity 
[2]. By addressing challenges such as noise, data 
redundancy, and computational complexity, these 
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methods demonstrate immense potential in 
medical imaging and broader applications across 
fields like telemedicine and data management [3]. 
Future advancements in dataset diversity, 
algorithm efficiency, and real-time processing 
capabilities will further enhance the impact of 
these technologies on healthcare and beyond [4]. 
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