
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 1

Evaluation of Static Analysis tools for Finding Vulnerabilities in C

Programs

Helee Patel1, Prof. Rishikesh Yeolekar2

1Information Technology Department & MIT School of Engineering, Pune
2Information Technology Department & MIT School of Engineering, Pune

---***---
Abstract - Software security is a critical topic that has been

the focus of attention of many researchers and professionals

over the years. Software security has evolved into an essential

component of the software development process. An

organization must maintain software security to assure the

integrity, validity, and availability of the software product.

One of the most important tasks in ensuring software security

is identifying vulnerabilities in the source code before the
product is released. Detecting vulnerabilities early in the

software development cycle makes the process of resolving

those vulnerabilities considerably easier for software

engineers. Vulnerability detection can be done either during

the production phase, when the software is still being

produced, by statically auditing the source code, or

dynamically during run time. Static code analysis tools detect

vulnerabilities in code by identifying potential security

problems and providing examples of how to fix them, some

may even change the code to erase the vulnerability. This

paper describes the analysis of many static code analysis tools
and techniques available for vulnerability detection in C

source code, as well as the analysis of some C static code

analysis tools.

Key Words: cyber security, software security, vulnerability, C

language, static analysis tools

1. INTRODUCTION

The security of software systems has become highly

important in the global digitalized era. Confidentiality,
Integrity, and Availability, or CIA principles are the
fundamentals of computer security [8]. People's life is
becoming increasingly dependent on software-intensive
systems, and security bugs and vulnerabilities are becoming
more frequent. The poor quality of source code is one of the
sources of many security problems. A software security
problem can provide unauthorized user access to a system,
allowing it to behave improperly. Software security
vulnerability would be a coding error occurred in the source
code of software that may be exploited by an attacker to obtain
unauthorized access to the software and force it to behave or
operate improperly. As a result, the software development
team must focus on identifying and resolving these
vulnerabilities in the source code before deploying the
software. The following types of security vulnerabilities exist
in C programming languages [11, 12].

 SQL injection

 Format String Vulnerabilities

 Input Validation

 Command Execution

 Code Injection attacks

 Dynamic Memory Management

 Buffer overflow
Vulnerability detection is a technique for identifying

vulnerabilities in software. Static and dynamic techniques are
used in standard vulnerability detection. Static techniques, such
as data flow analysis, symbol execution, and formal
verification, analyze source code without allowing the software
to be run. Static techniques offer a wide range of applications
and may be used at any level of software development.
However, it has a higher number of false positives. By running
the program, dynamic techniques like fuzzy testing and
dynamic symbol execution test reveal the nature of the
software. Dynamic techniques have a low false-positive rate
and are easy to deploy [4]. When static code analysis reveals
vulnerabilities in the software development lifecycle, it
simplifies the process of correcting such vulnerabilities for the
software developer and lowers the cost and time spent by the
organization to address those issues. Static code analysis can
be performed manually or with the help of automated source
code scanning software. Though manual analysis of source
code by software developers was formerly widespread, the
approach was time-consuming and did not provide very
excellent results. Automated scanning tools were used to make
the vulnerability detection process more efficient in terms of
time and the number of vulnerabilities detected.

2. Static Code Analysis Tools
Different programming languages have their own set of

vulnerabilities that must be solved. Different static code
analysis tools are available to identify these vulnerabilities.
Different open-source static analysis tools for the C
programming language are discussed in this study. The static
analysis tool used in this study is described in this section.

 FLAWFINDER: Flawfinder is a code analysis tool that
evaluates C/C++ code and reports potential problems in a risk-
leveled manner [14]. Flawfinder has the benefit of being able
to handle internationalized programs (special methods like
gettext()), as well as reporting column and line numbers of
finds. Flawfinder is updated and enhanced regularly, and there
are several resources available to assist developers in using the
program. In comparison to RATS, Flawfinder lags in terms of
speed.

System Requirements: The Flawfinder command-line tool
is only ready for installation and usage on Unix-like systems
such as Linux, OpenBSD, or MacOS X.

Effectiveness: Many of SANS' Top 25 2011 list of most
commonly occurring source code flaws may be detected using

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 2

Flawfinder, which is officially compatible with CWE
(Common Weakness Enumeration) [13]. Flawfinder
successfully discovered CWE-078: OS Command Injection,
CWE-119: Failure to Constrain Operations within the Bounds
of an Allocated Memory Buffer, and CWE-120: Buffer Copy
without Checking Size of Input among the CWE error
instances employed in this study. Flawfinder also found stack-
based buffer overflows in addition to the flaws it promises to
uncover. Although Flawfinder was unable to discover all of the
source code flaws utilized in this investigation, it did deliver on
its promises and found the flaws. However, Flawfinder
produced a large number of false positives; even when a flaw
was not there, it occasionally presented non-existent faults.

Ease of use: Flawfinder requires a decent understanding of
CLI on Unix-like systems, but it also offers the required
command-line inputs. Setup was not as difficult as with the
RATS tool, and installation was swift thanks to the Flawfinder
instructions, which can be obtained on the utility's official web
page. Because loads of extra information on these mistake
kinds are readily available online through other sources,
Flawfinder's interoperability with CWE makes it particularly
easy to grasp the fault types discovered.

Support: The Flawfinder website, instruction manual, and
development are all updated regularly. Furthermore, as
previously indicated, further information on the CWE error
types that it identifies is available online, allowing a developer
to quickly determine why an issue occurred and what can be
done to prevent future mistakes.

RATS: Rough Auditing Tool for Security (RATS) is a tool
that scans source code in C, C++, Perl, PHP, and Python. It
also warns the user about common problems like buffer
overflows and TOCTOU (Time of Check to Time of Use) race
situations.

RATS is a highly valuable tool, although it only does a
cursory study of the source code, as the name implies. This
program will not identify all mistakes in the source code, and it
may find "bugs" in the code that aren't truly faults. RATS is a
scanning tool that produces a list of possible trouble places to
target as well as a definition of the problems [6].

System Requirements: Only UNIX-based platforms are
supported by the RATS command-line program, which is
developed and ready to use.

Effectiveness: RATS found certain security vulnerabilities;
however, it was unable to detect all known problems. All
buffer overflow problems, insufficient control of resource
identifiers, OS command injection, and inability to confine
operations inside the bounds of an allocated memory buffer
were successfully identified by RATS. RATS was unable to
find any other flaws.

Ease of use: To use this software, you'll need to know how
to utilize the Command Line Interface (CLI). A graphical user
interface (GUI) would make this more user-friendly and
accessible to non-technical people. After reading the
README, the installation went rather well, although there
were a few permission concerns when RATS sought to add
files to usr/lib/bin, which is set to non-executable by most
systems, including OSX. To complete the installation, you
must be logged in as root. This is not mentioned in the
README.

Support: The installation page should focus on the
installation procedure since visitors must crawl through the
README file to find out how to do so. Although instructions

are given, setting up the system using only the README file's
instructions proved difficult.

3. RELATED WORK

The online version of the volume will be available in

LNCS Online. Members of institutes subscribing to the

Lecture Notes in Computer Science series have access to all

the pdfs of all the online publications. Non-subscribers can

only read as far as the abstracts. If they try to go beyond this

point, they are automatically asked, whether they would like

to order the pdf, and are given instructions as to how to do so.

Many researchers already had reviewed and compared various

static analysis tools for vulnerability detection and found

which static analysis tool is best placed for detecting

vulnerabilities in a program written in a specific programming

language. To examine each software for vulnerabilities
discovered by them, the authors developed their C

applications and introduced various vulnerabilities into them.

Moreover, researchers presented a study comparing

commercial static code analysis tools for discovering

vulnerabilities in software source code.

To find potentially insecure code patterns, early static

analyzers focused on basic syntactic principles (e.g., Flaw

Finder, Linux utility grip with special regular expression).

These simple tools have a significant false-positive rate and

are unable to discover complicated vulnerabilities including

code logic. Polyspace, Frama-C, and Astrée are examples of

more complex static analyzers that utilize abstract
interpretation to show the absence of runtime errors (RTEs).

These tools are more suited to detecting safety flaws than

security issues. Modern static analyzers, such as Fortify SCA

and Coverity, make use of various methodologies that mostly

depend on a knowledge base of previously identified security

vulnerability patterns. To stay up with newly identified

patterns, this knowledge base is updated regularly. These tools

are useful, but they need a lot of time and effort to design and

maintain, and they might overlook critical vulnerabilities that

aren't yet included in their bases. Many new tools are being

invented at the time, making it difficult to choose the best one
[8].

For taint-style vulnerabilities, Fabian [13] proposed an

unusual technique to detect them. It organizes the

initialization of variables that can be passed on to security

sensitive functions into groups. The detection system then

reports the violation as a potential vulnerability. This method

is appropriate for taint-style vulnerabilities, but not for other

vulnerabilities. Kim [10] proposed a similarity based

vulnerability detection method. This method is restricted to

code cloning-related vulnerabilities. Bian [7] proposed a static

analysis-based anomaly detection technique. He encodes the
AST (Abstract Syntax Tree) with a hash algorithm after

converting the program slice to an AST. Buffer overflow and

IP fragmentation are two typical sources of system

vulnerabilities that Krsul et al. investigated and discussed.

4. FUTURE SCOPE & CONCLUSION

Based on the results of the study, it can be stated that each

static code analysis tool has its unique set of advantages and

disadvantages. The kinds of vulnerabilities that Flawfinder

and RATS discover are similar. When comparing the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 3

installation processes of the two programs, FlawFinder, and
RATS, it was more difficult to install, but it detected more

vulnerabilities than FlawFinder.

We analyzed and assessed generally used open-source

static code analysis tools for the C programming languages in

this study. According to the data, there are certain

vulnerabilities in the source that are not discovered by any of

the tools we used. In the future, we'd like to focus on making

a tool that can detect vulnerabilities that our current tools

ignore. A tool like this might be useful in finding

vulnerabilities that aren't covered by the open source static

analysis tools we described in our study.

REFERENCES

1. Sonnekalb, T., Heinze, T.S. & Mäder, P. Deep security analysis of

program code. Empirical Software Engineering 27, 2 (2021)
2. Midya Alqaradaghi, Gregory Morse and Tamas Kozsik. Detecting

security vulnerabilities with static analysis – A case study, An
International Journal for Engineering and Information Sciences,

September 30, 2021.
3. Code, Kaur A., Nayyar R., A Comparative Study of Static Code

Analysis tools for Vulnerability Detection in C/C++ and JAVA
Source Code, Procedia Computer Science, 171, pp. 2023-2029

4. X. Li, L. Wang, Y. Xin, Y. Yang, and Y. Chen, "Automated
Vulnerability Detection in Source Code Using Minimum
Intermediate Representation Learning," Applied Sciences, vol. 10,
no. 5, p. 1692, Mar. 2020.

5. Gadelha, M., Monteiro, F. R., Morse, J., Cordeiro, L., Fischer, B.,

Nicole, D., ESBMC 5.0: An Industrial Strength C Model Checker
[In 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 888-891] 2018.

6. RATS - Rough Auditing Tool for Security.
https://github.com/andrew-d/rough-auditing-toolforsecurity.
Accessed May 23, 2018.

7. Bian, P.; Liang, B.; Zhang, Y.; Yang, C.; Shi, W.; Cai, Y.
Detecting bugs by discovering expectations and their violations.

IEEE Trans. Softw. Eng. 2018, 45, 984–1001.
8. Boudjema EH, Faure CL, Sassolas M, Mokdad L. Detection of

security vulnerabilities in C language applications, Security and
Privacy, December 2017;1:e8

9. Richard Amankwah, Patrick Kwaku Kudjo, Samuel Yeboah
Antwi., Evaluation of Software Vulnerability Detection Methods
and Tools: A Review. [In International Journal of Computer
Applications, Vol.169- No.8], July 2017

10. Kim, S.; Woo, S.; Lee, H.; Oh, H. Vuddy: A scalable approach
for vulnerable code clone discovery. In Proceedings of the 2017
IEEE Symposium on Security and Privacy (SP), San Jose, CA,
USA, 22–24 May 2017

11. Subburaj Ramasamy, Anuj Singh and Deepak Singal. Enhancing
the Security of C/C++ Programs using Static Analysis. [In Indian
Journals of Science and Technology, Vol 9(44)], November 2016.

12. R. Subburaj, Pooja U. Raikar and S. P. Shruthi. Static Analysis of

Security Vulnerabilities in C/C++ Applications. [In Indian
Journals of Science and Technology, Vol 9(20)], May 2016.

13. Yamaguchi, F.; Maier, A.; Gascon, H.; Rieck, K. Automatic
inference of search patterns for taint-style vulnerabilities. In
Proceedings of the 2015 IEEE Symposium on Security and
Privacy, San Jose, CA, USA, 17–21 May 2015.

14. D. A. Wheeler, Flawfinder. August 2014. Accessed August 7,
2014. http://www.dwheeler.com/flawfinder/.

15. Cordeiro, L. C., Fischer, B., Marques-Silva, J. P. SMT Based

Bounded Model Checking for Embedded ANSI-C Software. In
IEEE Transactions on Software Engineering, v. 38, pp. 957-974,
2012.

http://www.ijsrem.com/
http://www.dwheeler.com/flawfinder/

