

Evaluation of Sustainable Materials for Structural Performance and Durability in Bridge Construction

¹Amit Khampariya, ²Mrs. Ragini Mishra

¹M. E. Scholar, Department of Civil Engineering, Babulal Tarabai Institute of Research & Technology, Sagar, Madhya Pradesh, India

²Professor, Department of Civil Engineering, Babulal Tarabai Institute of Research & Technology, Sagar, Madhya Pradesh, India

Abstract - Bridge construction plays a crucial role in transportation networks and economic development; however, traditional construction materials such as ordinary Portland cement, natural aggregates, and steel contribute significantly to carbon emissions, resource depletion, and long-term maintenance challenges. With growing environmental concerns and the need for sustainable infrastructure, the adoption of eco-friendly materials in bridge construction has gained considerable attention. This paper presents a comprehensive review of sustainable materials used in bridge engineering, including supplementary cementitious materials (fly ash, ground granulated blast furnace slag, and silica fume), recycled aggregates, geopolymers concrete, fibre-reinforced polymer composites, and bio-based materials. The performance of these materials is evaluated based on mechanical properties, durability, life-cycle cost, and environmental impact. Findings from previous studies and real-world bridge applications indicate that sustainable materials can achieve comparable or superior strength and durability compared to conventional materials while significantly reducing carbon emissions and conserving natural resources. The study highlights that concrete grades in the M40–M60 range, along with corrosion-resistant composite systems, are well-suited for sustainable bridge applications. Overall, the review concludes that integrating sustainable materials into bridge construction enhances structural performance, extends service life, and supports global sustainability goals, making it a viable and necessary approach for future bridge infrastructure development.

Key Words: Sustainable bridge construction; Supplementary cementitious materials; Geopolymer concrete; Recycled aggregates; Fibre-reinforced polymer (FRP); Durability; Environmental impact

1. INTRODUCTION

Bridge construction has always been super important for connecting people and driving forward societies. Building bridges has made travelling and trade so much easier, helping economies grow. However, let's be honest—the old-school methods and materials, such as Portland cement concrete, natural aggregates, and virgin steel, can be tough on our environment and also quite expensive. Worldwide, building activities account for approximately 39% of CO₂ emissions, with cement production alone contributing nearly 8% of all

human-caused emissions—it's a significant portion. Additionally, when we continue to use natural aggregates and extract steel, we're depleting resources that won't last forever, which is definitely unsustainable. As more people move into cities and populations swell, it's getting ever more urgent to change the way we build bridges so that they're much better for our planet. [1] Performance assessment is crucial if you're considering using these new materials in bridges. Bridges aren't like your average buildings—they deal with moving loads, crazy weather, and need to last for ages. So, when looking at different materials, you've got to check things like how well they handle compressive, tensile, and flexural stresses, how they resist fatigue, and how much weight they can take. Durability matters a ton, too—can the material stand up to bad stuff like chloride, sulfate, freezing/thawing, or corrosion? Plus, if you're watching your budget, life-cycle cost analysis (LCCA) is a must. Some greener materials do cost more upfront, but they often mean lower maintenance bills and longer lifespans, so you save cash in the long run. [2] Environmental impact is a big deal. These days, we've got life-cycle assessments (LCA) to really measure how much energy, carbon, and resources a bridge material uses. Swapping out regular cement for fly ash or GGBS slashes CO₂ emissions, and using recycled aggregates saves landfill space and keeps natural quarries from getting wiped out. Plus, adding FRP composites helps bridges avoid corrosion, letting them last longer and cutting their environmental footprint. These methods align with the circular economy concept and support the United Nations' Sustainable Development Goals. [3] Bridge building is vital to our communities, but it also raises pressing sustainability concerns. For starters, it's a massive source of carbon emissions, particularly thanks to all that cement and steel we use. Cement itself accounts for approximately 8% of human-generated CO₂ emissions globally, and steel is highly energy-intensive; therefore, bridges constitute a significant hotspot for emissions in our built world. Add to that the fact that extracting natural materials such as virgin aggregates, river sand, and limestone is depleting our limited resources. Taking these materials over and over disrupts the environment, bumps up costs, and makes good materials harder to find. Additionally, traditional bridge materials often fail—they crack, corrode, and are susceptible to freeze-thaw and sulfate attacks, resulting in substantial repair costs and reduced lifespans. Tackling these interlinked problems—high emissions, resource depletion, and durability headaches—means we need to get serious about finding and using sustainable alternatives in bridge construction right now. [4]

2. SUSTAINABLE MATERIALS IN BRIDGE CONSTRUCTION

Sustainably building bridges has become a massive deal in modern civil engineering, mainly because everyone's worried about environmental damage, carbon emissions, and the depletion of our natural resources. While the usual materials, such as concrete, fresh aggregates, and steel, are strong and reliable, they come with a high environmental cost. Because of this, researchers and engineers are now seeking sustainable alternatives that strike a good balance among strength, durability, price, and environmental friendliness. These green materials include a range of materials, such as supplementary cementitious materials, recycled aggregates, geopolymers, fibre-reinforced composites, and even those from renewable or biological sources. [5]

2.1. Supplementary Cementitious Materials (SCMs)

SCMs, such as fly ash, slag (GGBS), silica fume, and rice husk ash, are often used to replace some of the regular Portland cement in concrete mixes. These materials enhance the concrete's internal structure, making it more durable against sulfate attack and reducing the heat it generates during hardening. From a green perspective, SCMs reduce embodied carbon because less energy-intensive "clinker" is needed to make cement. SCMs have proven effective for extending bridge lifespans and for repurposing industrial by-products in applications such as bridge decks and foundations. [6]

2.2. Recycled Aggregates

Using construction and demolition debris as recycled aggregates (RAs) is a smart way to conserve natural stone and reduce landfill waste. These recycled coarse aggregates can be used to replace natural ones in a bridge's substructure and other less critical parts. Long-term studies, such as those on bridges in Japan built with recycled aggregates, demonstrate that this type of concrete performs just as well as concrete made with natural aggregates, provided it is processed and sorted correctly. Using RAs helps tackle our global waste problem and pushes the construction industry toward a more circular, waste-free economy. [7]

2.3. Geopolymer Concrete

Geopolymer binders are a cement-free alternative made from materials such as fly ash and metakaolin, thereby drastically reducing CO₂ emissions. This type of concrete is known for developing strength quickly and being highly resistant to chemical damage, making it super durable. A great early example is the Geopolymer Concrete Bridge built in Brisbane, Australia, in 2013, which proved that these systems can work on large bridge projects. Now, geopolymer concrete is getting a lot of buzz for delivering both the strength and the environmental benefits needed for modern bridge building. [8]

2.4. Fibre-Reinforced Polymer (FRP) Composites

One of the biggest headaches in bridge construction is when the steel reinforcement inside the concrete starts to rust. FRP composites, made from glass, carbon, or basalt fibres, are a fantastic alternative because they're lightweight and corrosion-resistant. They're being used to reinforce bridge decks, strengthen old structures, and even build entire pedestrian bridges. The Tom's Creek FRP Bridge in Virginia, USA, for instance, was one of the first to use these composites for a small-to-medium-span bridge. The significant advantages of FRPs are that they require less maintenance, last longer, and can be manufactured into lightweight, prefabricated units that significantly accelerate construction. [9]

2.5. Bio-Based and Renewable Materials

Researchers are also exploring the use of materials such as bamboo, engineered wood, and natural fibres for building bridges. Laminated bamboo and cross-laminated timber (CLT) are being used for pedestrian and rural bridges because they have very low embodied carbon, are renewable, and are strong enough for smaller spans. While durability and fire resistance remain hurdles, ongoing research is working to improve these aspects through specialised treatments or by creating hybrid systems that combine them with concrete or steel to get the best of both worlds. [10]

2.6. Industrial And Waste-Derived Materials

New studies are also exploring the idea of using materials such as waste plastics, old rubber, red mud, and foundry sand as partial replacements for aggregates or cement in bridge concrete. While these materials still need to be thoroughly tested to ensure they're strong and durable enough, they show great promise for reusing waste and creating more affordable infrastructure. [11]

2.7. Performance Considerations

Even though sustainable materials have clear environmental advantages, they can't be used in bridges unless they meet stringent performance standards. Bridges have to deal with heavy traffic, constant stress, and harsh weather, so any material used has to be carefully checked for:

- Mechanical properties: Its strength in compression, bending, tension, and against fatigue.
- Durability: How well it resists damage from salt, freeze-thaw cycles, sulfates, and chemical reactions.
- Economic feasibility: The initial cost, savings on maintenance, and the overall cost over its entire life.
- Environmental footprint: The energy it took to make it, its CO₂ emissions, whether it can be recycled, and its overall life-cycle impact.

The choice of materials for a sustainable bridge largely depends on the specific section of the bridge, the environment in which it's located, and local building codes. For concrete that uses SCMs, such as fly ash or slag, high-performance grades ranging from M35 to M60 are typically used. These grades are strong and durable enough for critical parts, such as decks and piers, especially when exposed to marine or industrial environments. To fight off salt and sulfate damage, mixes with a low water-to-cement ratio (around 0.35 or less) are best. Recycled aggregate concrete (RAC), once used only for non-structural purposes, is now being used in main bridge components, particularly in Japan, where grades ranging from M25 to M40 have been safely employed. With proper processing, RAC can even reach higher grades, such as M50, demonstrating its considerable potential. [6]

Geopolymer concrete (GPC) is another excellent option, usually hitting compressive strengths between M40 and M60. The Brisbane Geopolymer Bridge, for example, used GPC with a strength of about 50 MPa (M50 grade), demonstrating its suitability for large structures while significantly reducing carbon emissions. For fibre-reinforced polymer (FRP) composites, their strength isn't measured in "grades" but by the tensile strength of the fibres, which can range from 200 MPa to over 1,000 MPa. This makes them a solid replacement for steel and suitable for entire bridge decks, as seen with the Tom's Creek Bridge. Finally, renewable materials like cross-laminated timber (CLT) and laminated bamboo are being looked at for smaller bridges, typically matching timber strength grades of C24–C30, which is plenty strong for their purpose [8].

In general, the most common grades for sustainable bridge construction are in the M40–M60 range for concrete-based systems. Composites and biomaterials are designed to be as good as, or even better than, standard concrete and steel, ensuring that sustainability doesn't mean sacrificing safety or durability. Table 1 represents the Grades of Sustainable Materials in Bridge Construction. [9]

Table 1: Grades of Sustainable Materials in Bridge Construction

Material Type	Typical Grade/Strength in Bridges	Example
Concrete + SCMs (Fly ash, GGBS, silica fume)	M35–M60 (C35/45 – C50/60)	HPC bridge decks with fly ash/slag
Recycled Aggregate Concrete (RAC)	M25–M40 (can reach M50+)	Recycled aggregate bridges in Japan
Geopolymer Concrete	~M50 (40–60 MPa range)	Brisbane Geopolymer Bridge (Australia)
FRP Composites (GFRP, CFRP, BFRP)	Tensile strength 200–1500 MPa (depending on fibre)	Tom's Creek FRP Bridge (USA)
Timber/Bio-composites (CLT, Bamboo)	Equivalent to C24–C30 timber strength classes	CLT pedestrian bridges in Europe

3. LITERATURE REVIEW:

With the growing need for long-lasting, eco-friendly infrastructure, significant research is underway to develop better, greener concrete. The traditional concrete we've always used for things like bridges has some significant downsides: it produces a lot of CO₂, consumes natural resources like crazy, and raises fundamental questions about its durability over the long haul, especially in harsh weather.

To address these issues, researchers are increasingly turning to supplementary cementitious materials (SCMs), such as fly ash, GGBS, and silica fume. These can replace a portion of the cement in the mix, and as a bonus, they often make the concrete easier to work with, stronger over time, and better at resisting damage from things like road salt. At the same time, adding tiny fibres to concrete has proven to be a great way to make it tougher, less likely to crack, and better at holding together even after cracks form, which helps our bridges last longer.

Mixing different kinds of fibres—especially combining synthetic fibres like polypropylene with mineral fibres like basalt—has shown that they work together to achieve even better results. This combination is excellent at controlling shrinkage cracks, making the concrete stronger and improving its resistance to the constant stress of traffic and weather. The latest lab tests and case studies are highlighting just how beneficial it is to use a high-performance mix like M50-grade concrete, which includes both fly ash and these hybrid fibres, specifically designed for today's bridges. This section will delve into current research on high-performance concrete, examining how fly ash serves as a cement substitute and how incorporating fibres enhances strength and durability, with a focus on building better bridges.

Brzyski P and Widomski M (2017) noted that their review of the literature covered everything from recycled materials, such as recycled aggregates and reclaimed wood, to bio-based materials, such as bamboo and hempcrete. They also explored low-carbon options, including geopolymers and fly ash-based products. [12]

Rukhaiyar S and Samadhiya NKA (2017) emphasised that seeking eco-friendly alternatives for building materials has become increasingly crucial for the industry as it strives to reduce its environmental footprint and build a greener world. Numerous studies have highlighted the drawbacks of traditional building materials, including their high carbon emissions, resource consumption, and waste. [13]

Vennes I and Mitri H (2017) observed that researchers and industry professionals have turned their attention to sustainable building materials, which offer practical ways to mitigate these environmental problems. [14]

Pisello AL and Castaldo VL (2016) noted that recycled materials have received considerable attention in recent studies. Using recycled aggregates from old buildings and demolition waste is looking like a solid alternative to digging up new materials, which also cuts down on landfill waste. Also, using reclaimed wood has become a popular sustainable choice, offering a green alternative to new lumber and helping to save our forests. [15]

Abadie and Diamond (2010) mentioned that bio-based products have become popular because they can be recycled and have a lower environmental impact. Bamboo, for instance, has become a go-to for structural uses because it grows so fast and is incredibly strong for its weight. [16]

Imam S, Coley DA, and Walker I (2017) explained that numerous studies have been conducted to determine the total environmental impact of these materials, enabling direct comparison with traditional options. Ultimately, the research highlights the importance of advocating for sustainable building materials. This vast body of research aims to add to what we already know by taking a detailed look at eco-friendly alternatives and how they could totally change the way we design our buildings. [17]

Anjali Prajapati and her team (2017) examined how high-performance concrete (HPC) behaves when mineral admixtures, such as fly ash and GGBS, are added to an M60-grade mix. They replaced some of the Portland cement by weight with these materials, varying the amount from 10% to 30%. To improve workability, they used a superplasticiser called Conplast SP430. They kept the superplasticiser amount the same across all their mixes and also swapped some of the fine aggregate for foundry sand. They then tested the compressive, split tensile, and flexural strengths for all the different combinations. The M60 grade HPC mix was designed in accordance with Indian standards. [18]

In their 2017 study, **K. Nagaraj & P. Himabindu** tested concrete made with Ground Granulated Blast Furnace Slag (GGBS) and Fly Ash to achieve the desired strengths and properties. They ended up using a combination of fly ash and GGBS, varying the percentages of the cement. After preparing the concrete, they cast it into cubes and prisms and let them cure for 28 days. Finally, they ran tests to check the compressive and flexural strength. [19]

Praveen Kumar S. R. and his team (2016) created a high-strength, self-compacting concrete (SCC) of M60 grade. They did this by replacing some of the cement with untreated industrial by-products such as fly ash and GGBS, and by completely replacing natural sand with manufactured sand (M-Sand). Using these by-products is not only better for the environment but also helps solve the problem of what to do with them. Their work compared the mechanical properties—such as compressive, split tensile, and flexural strength—of SCC with varying amounts of these powders. They also added glass fibres at 0%, 0.1%, and 0.2% of the total mix volume. They made two types of SCC: a "Conventional" one, in which

30% of the cement was replaced with fly ash, and a "Triple Blended" one, in which the cement was reduced to 50% and the remaining 50% was replaced with 25% fly ash and 25% GGBS. They then cast specimens, cured them, and tested them over the required number of days. [20]

Muthukumar and his colleagues (2016) investigated high-performance concrete using an M50-grade mix. They achieved this by completely replacing the fine aggregate with crusher-wash sand and partially replacing the cement with micro silica (at 5%, 10%, 15%, 20%, & 25%). They added Glenium B233 to improve the workability of the concrete mix. They analysed the results and compared them to a standard control sample. The data, shown in graphs, clearly indicated increases in the 7- and 28-day compressive, tensile, and flexural strengths for the M50 grade concrete. The combination of microsilica, crusher-wash sand, and a superplasticiser resulted in significant improvements in both compressive and tensile properties. Even though they only replaced 20% of the cement with microsilica, the strength increased by 16.5%, showing that you can definitely achieve high-performance concrete with microsilica. [21]

Surekha & Chandra Shekhar (2015) investigated the strength of concrete made with GGBS (Ground Granulated Blast Furnace Slag), Silica Fume, and Polyvinyl Chloride (PVC) dust at different replacement levels. Since producing large amounts of cement is harmful to the environment, researchers are seeking alternative materials for concrete. PVC dust, a byproduct of the pipe industry, was utilised as a filler material to reduce waste. They used M40-grade concrete and designed the mix in accordance with Indian guidelines. A steady 8% of Silica Fume was used to replace cement in all the mixes. They then studied the effect of GGBS by replacing 30% to 50% of the cement and adding 0% to 10% of PVC dust. They then tested the mechanical strengths, including compressive, split tensile, and flexural strength. [22]

Rajith M & Amritha E K (2015) looked into how M30 concrete behaves when you swap out some of the cement with Ground Granulated Blast Furnace Slag (GGBS) and some of the fine aggregate with Granulated Blast Furnace Slag (GBS). They tested cubes, cylinders, and beams for different types of strength after 28 days of curing. They tried swapping out 20%, 25%, and 30% of the cement with GGBS, and 25%, 50%, and 75% of the sand with GBS. Their findings showed that this partial replacement actually strengthened the concrete compared to a standard mix. [23]

Rafat Siddique (2014) conducted a deep dive into GGBS, covering its properties, its behaviour in the concrete mix, and its overall effect on the strength and durability of the final product. [24]

S. Arivalagan (2014) evaluated the strength and efficiency of hardened M35-grade concrete by replacing varying percentages of cement with GGBS. He found that the concrete hit its peak strength when 20% of the cement was replaced. [25]

Merin K. Abraham et al. (2014) conducted a study on concrete, comparing and analysing different results. Their main goal was to find the "sweet spot"—the optimal percentage of cement to replace with mineral admixtures to achieve the best possible strength. [26]

Reshma Rughooputh and Jaylina Rana (2013) studied what happens when regular cement is partially replaced with GGBS, examining a range of properties, from strength to shrinkage. They swapped out 30% and 50% of the cement and tested the concrete at 7 and 28 days. They discovered that while the GGBS concrete was slightly slower to gain strength initially, it ultimately became stronger. The flexural strength increased by

22% and 24%, and the tensile strength increased by 12% and 17% for the 30% and 50% replacements, respectively, with only a slight increase in drying shrinkage. [27]

S. Arivalagan (2012) investigated the strength of hardened concrete after replacing 20%, 30%, and 40% of the cement with GGBS. When tested at 7 and 28 days, the samples with a 20% replacement showed increased compressive, tensile, and flexural strength. He chalked this up to the "filler effect" of the GGBS. He also noted that adding GGBS made the concrete easier to work with. [28]

Yogendra O. Patil et al. (2012) investigated how substituting cement with varying amounts of GGBS (10%-40%) affected concrete strength over 90 days. They observed that replacing up to 20% of the cement resulted in only a slight reduction in the strength of 4–6%. However, going beyond that led to a drop of more than 15%. They concluded that a 20% replacement was a good trade-off, as it helped lower the overall cost of the concrete. [29]

T. Vijaya Gowri et. al. (2011) looked at the effects of replacing 50% of the cement with GGBS over a full year. They noticed that this high-slag concrete gained significant long-term strength (90 days and beyond), especially in mixes with less water. They concluded that a 50% replacement is an effective way to reduce cement use, thereby saving money and protecting the environment. [30]

M. Ramalekshmi et. al. (2011) discussed what happens when you replace 50% to 80% of the cement with GGBS. She found that while the slag concrete was weaker at first, it showed greater final strength in the long run, with the 50% replacement showing the best compressive strength at 28 days. When they tested a beam-column with a 50% replacement, it could carry 6.6% more load, suggesting it's a good option for reinforced concrete structures. [31]

Venu Malagavelli et al. (2010) focused on M30 concrete, replacing some of the cement with GGBS and some of the sand with ROBO sand (crusher dust). After testing, they found that making these swaps substantially improved the concrete's strength compared to a regular mix. [32]

4. CONCLUSION:

This study highlights that adopting sustainable materials in bridge construction is not only an environmental necessity but also a technically and economically viable solution for modern infrastructure development. Conventional bridge materials, while proven in performance, contribute significantly to carbon emissions, resource depletion, and long-term maintenance challenges. The review clearly demonstrates that alternatives such as supplementary cementitious materials (fly ash, GGBS, silica fume), recycled aggregates, geopolymers, fibre-reinforced polymer (FRP) composites, and bio-based materials can effectively address these concerns without compromising structural safety or durability.

From the literature and case studies discussed, it is evident that concretes incorporating SCMs in the M40–M60 range exhibit enhanced mechanical strength, improved durability against chemical and environmental attacks, and substantially reduced embodied carbon. Recycled aggregate concrete, when properly processed, has shown comparable performance to conventional concrete and supports circular economy principles. Geopolymer concrete emerges as a promising cement-free alternative, capable of achieving high strength while significantly reducing CO₂ emissions. Similarly, FRP composites offer corrosion resistance, high tensile strength, and reduced maintenance requirements, making them particularly suitable for bridge decks and strengthening applications.

Overall, sustainable bridge construction requires a balanced approach that integrates material performance, durability, life-cycle cost, and environmental impact. The findings emphasise that sustainability does not compromise strength or service life; rather, it enhances long-term performance and resilience. With appropriate design practices, quality control, and supportive standards, sustainable materials can be confidently adopted in bridge engineering. Future research should focus on long-term field performance, standardisation of design codes, and large-scale implementation to further accelerate the transition toward greener, durable, and economically efficient bridge infrastructure.

REFERENCES:

[1] Firooz, A. A., Firooz, A. A., Oyejobi, D. O., Avudaiappan, S., & Flores, E. S. (2024). Emerging trends in sustainable building materials: Technological innovations, enhanced performance, and future directions. *Results in Engineering*, 24, 103521. <https://doi.org/10.1016/j.rineng.2024.103521>

[2] Rashedi, S. H., & Rahai, A. (2025). Experimental and numerical advances in seismic assessment of continuous RC rigid-frame bridges: A review. *Results in Engineering*, 105656.

[3] Akbulut, Z. F., Guler, S., Yavuz, D., & Avci, M. S. (2025). Toward sustainable construction: A critical review of recycled aggregate concrete properties and future opportunities. *Case Studies in Construction Materials*, 23, e05133. <https://doi.org/10.1016/j.cscm.2025.e05133>

[4] Khaiyum, M. Z., Sarker, S., & Kabir, G. (2023). Evaluation of Carbon Emission Factors in the Cement Industry: An Emerging Economy Context. *Sustainability*, 15(21), 15407. <https://doi.org/10.3390/su152115407>

[5] Emma, L. (2024, December). Sustainable Construction Practices: Incorporating Green Materials and Technologies in Civil Engineering Projects.

[6] Yahyaei, T., & Elize, H. S. (2024). A comprehensive study on the mechanical properties, durability, and environmental impact of fibre-reinforced concrete incorporating ground granulated blast furnace slag. *Case Studies in Construction Materials*, 20, e03190.

[7] Shahidan, S., Azmi, M. A. M., Kupusamy, K., Zuki, S. S. M., & Ali, N. (2017). Utilising construction and demolition (C&D) waste as recycled aggregates (RA) in concrete. *Procedia engineering*, 174, 1028-1035.

[8] Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. *Construction and Building Materials*, 237, 117455.

[9] Kossakowski, P. G., & Wcislik, W. (2022). Fibre-reinforced polymer composites in the construction of bridges: Opportunities, problems and challenges. *Fibres*, 10(4), 37.

[10] Barbhuiya, S., Das, B. B., Kapoor, K., Das, A., & Katre, V. (2025, May). Mechanical performance of bio-based materials in structural applications: A comprehensive review. In *Structures* (Vol. 75, p. 108726). Elsevier.

[11] García, G., Cabrera, R., Rolón, J., Pichardo, R., & Thomas, C. (2024). Systematic review on the use of waste foundry sand as a partial replacement of natural sand in concrete. *Construction and Building Materials*, 430, 136460.

[12] Brzyski P and Widomski M. The influence of partial replacement of hemp shives by expanded perlite on the physical properties of hemp-lime composite. *AIP Conf Proc* 2017; 1866(1). DOI: 10.1063/1.4994486.

[13] Rukhaiyar S and Samadhiya NK. Strength behaviour of sandstone under polyaxial stress. *Int J Min Sci Technol* 2017; 27(6): 889–897. DOI: 10.1016/j.ijmst.2017.06.022.

[14] Vennes I and Mitri H. Geomechanical effects of stress shadow created by large-scale destress blasting. *J Rock Mech Geotech Eng* 2017; 9(6): 1085. DOI: 10.1016/j.jrmge.2017.09.004.

[15] Pisello AL, Castaldo VL, Pignatta G, et al. Experimental in-lab and in-field analysis of waterproof membranes for cool roof application and urban heat island mitigation. *Energy Build* 2016; 114: 180–190. DOI: 10.1016/j.enbuild.2015.05.026.

[16] Abadie A, Diamond A, and Hainmueller AJ. Synthetic control methods for comparative case studies: estimating the effect of California's Tobacco control program. *J Am Stat Assoc* 2010; 105(490).

[17] Imam S, Coley DA and Walker I. The building performance gap: Are modellers literate? *Build Serv Eng Res Tecnol* 2017; 38(3): 351–375.

[18] Anjali Prajapati, Piyush Prajapati, Mohammed Qureshi (2017), “An experimental study on high-performance concrete using mineral admixtures”, *International Journal of Engineering Development and Research*, Volume 5, Issue 2, PP 2080-2086.

[19] K Nagaraj, P Himabindu (2017), “Experimental Investigations of High Strength Concrete Using GGBS & Fly ash”, *International Journal of Research Sciences and Advanced*, Volume 2, Issue 18, PP: 170 – 181.

[20] Praveen Kumar S R, Manjunath K A, G. Narayana (2016), “A Comparative Study on Mechanical Properties of SCC By Partial Replacement of Cement with Fly Ash & Ggbns with the use of Glass Fibres”, *International Journal of Research in Engineering and Technology*, Volume: 05 Issue: 08, PP: 161-165.

[21] Muthu Kumar. T, Sirajudeen. K (2016), “Experimental Investigation on High Performance Concrete Using Alternate Materials”, *International Journal of Research in Engineering and Technology*, Volume: 6 Issue: 14, PP: 175-181.

[22] Surekha T, Chandrashekhar (2015), “Experimental Investigations on Properties of Concrete with Silica Fume, GGBS and PVC Dust”, *International Journal for Research in Applied Science & Engineering Technology*, Volume 3, Special Issue-1, PP: 144- 153.

[23] Rajith M, Amritha E K (2015), “Performance of Concrete with Partial Replacement of Cement and Fine Aggregate by GGBS and GBS”, *International Journal of Research in Advent Technology*, Volume 2, Issue 5, PP 68-72.

[24] Rafat Siddique (2014), “Utilisation (recycling) of iron and steel industry By-product (GGBS), in concrete: strength and durability Properties, *J Mater Cycles Waste Management*, 2014, 16, PP 460-467.

[25] S. Arivalagan (2014), “Sustainable studies on concrete with GGBS as a Replacement material in cement”, *Jordan Journal of Civil Engineering*, Vol. 8, PP 263-270.

[26] Merin K Abraham, Elson John, Bybin Paul (2014), “A Study on the Influence of Mineral Admixtures in Cementitious System Containing Chemical Admixtures”, International Journal of Engineering Research and Development, Volume 10, Issue 3, PP 76-82.

[27] Reshma Rughooputh, Jaylina Rana (2013), “Partial Replacement of Cement by Ground Granulated Blast Furnace Slag in Concrete”, Journal of Emerging Trends in Engineering and Applied Sciences, Vol. 5, Issue 5, PP 340-343.

[28] S. Arivalagan (2012), “Sustainable Studies on Concrete with GGBS as a Replacement Material in Cement”, Jordan Journal of Civil Engineering, Vol. 8, Issue 3, PP 263-270.

[29] Yogendra O. Patil, P.N. Patil, Arun Kumar Dwivedi, “GGBS as Partial Replacement of OPC in Cement Concrete – An Experimental Study”, International Journal of Scientific Research, Vol. 2, Issue 11, PP 189-191.

[30] 21. T. Vijaya Gowri, P. Sravana, P. Srinivasa Rao (2011), “Studies on Strength Behaviour of High Volumes of Slag Concrete”, International Journal of Research in Engineering and Technology, Vol. 3, Issue 4, PP 227-238.

[31] M. Ramalekshmi R. Sheeba, R. Gopinath (2014), “Experimental Behaviour of Reinforced Concrete with Partial Replacement of Cement with Ground Granulated Blast furnace Slag”, International Journal of Engineering Research & Technology, Vol. 3, Issue 3, PP 525-534.

[32] Venu Malagavelli, P N Rao (2010), “High Performance Concrete with GGBS and Robo Sand”, International Journal of Engineering Science and Technology, Vol. 2, Issue 10, PP 5107-5113