
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 1

Event Driven Autoscaling Strategies For Kubernetes Applications

M.B. Yelpale1, Purva Mahajan2, Priyanka Kulkarni3, Amruta Nikam4, Vaishnavi Taware5

1Assistant Professor , Department of Computer Engineering , NBNSTIC , Pune , India
2,3,4,5 Student , Department of Computer Engineering , NBNSTIC , Pune , India

---***---

Abstract - This study emphasizes the critical role that

Kubernetes autoscaling plays in improving the

performance of containerized environments. It

overcomes the drawbacks of conventional scaling

techniques, particularly when it comes to adjusting to the

real-time message queue traffic patterns of contemporary

cloud-native apps. The research suggests a customized

metric scaler that improves on Kubernetes' Horizontal

Pod Autoscaler in order to address these issues. Through

the use of customized metrics from message queue traffic,

this innovation optimizes application performance and

enables dynamic workload scaling. In order to facilitate

smooth integration and agile workload management, the

research offers a microservices architecture that

incorporates essential elements such as Producer,

RabbitMQ, Consumer, Decision, and Kubernetes

Services. Additionally, it displays the system's

applications in e-commerce platforms, real-time

analytics, IoT data processing, and microservices

orchestration. With its integration expansion of supported

metrics, and outline of upcoming scalability and

adaptability advancements, this research represents a

major step towards efficient Kubernetes clusters..

Key Words : Kubernetes autoscaling, Cloud-native

applications, Real-time event-driven scaling, Custom

metric scale, Message queue traffic patterns, Microservices

architecture, Dynamic workload optimization, Resource-

efficient Kubernetes.

1.INTRODUCTION

When it comes to optimizing application performance

in containerized settings, Kubernetes autoscaling is

revolutionary. It ensures maximum efficiency during

intervals of high traffic and resource conservation

during low traffic times by dynamically adjusting the

number of running instances based on variations in

workload. Through the use of tools like Horizontal

Pod Autoscaler (HPA), Kubernetes autonomously

scales applications in real-time by keeping track on

metrics like CPU and memory. In addition to

increasing responsiveness and dependability, this

optimizes resource utilization and reduces costs. In

the dynamic world of cloud-native computing,

adopting Kubernetes autoscaling is essential to

building robust and effective systems.

2. Body of Paper

2.1 Problem Statement:

Considering real-time events frequently result in dynamic

and unpredictable workloads for modern cloud-native

apps, standard autoscaling solutions are unsuitable for

effective resource management. Creating a unique auto-

scaling solution for Kubernetes workloads that can adjust

dynamically in response to patterns of real-time message

queue traffic is a problem.

2.2 Proposed Solution :

In order to address the shortcomings of the conventional

Kubernetes Horizontal Pod Autoscaler (HPA), a custom

metric scaler is introduced in the suggested solution. This

custom scaler allows developers to define and use custom

metrics that are pulled from message queue traffic, in

contrast to HPA's dependence on CPU and memory

metrics.

Based on particular queue patterns, it dynamically

modifies workload replicas to optimize application

performance. The system's smooth integration with

Kubernetes ensures that it can react instantly to changes

in workload. Its flexibility improves responsiveness and

resource usage by concentrating on the specific

requirements of each application.

Its efficacy and dependability across a range of cloud-

native environments will be ensured by rigorous testing

and community feedback driving ongoing improvements.

2.3 System Design :

System Architecture:

Microservice Architecture: Implementing a

microservices architecture to improve scalability and

maintainability. Components include:

 - Producer Service: Produce events according to

application metrics.

 - RabbitMQ Service: Holds events until used by the

Consumer Service.

 - Consumer Service: Handles events and intiates

autoscaling decisions.

 - Decision Service: Informs Kubernetes about scaling

decisions after analyzing events.

 - Kubernetes Service: Based on choices made by the

Decision Service, scales consumer service pods.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 2

Component Details:

1. Producer Service:

 - Gathers metrics or events unique to applications and

forword them to the message queue.

2. RabbitMQ Service:

 - Stores events until they are used, serving as the

message broker.

 - Uses a queue data structure for messages

management.

3. Consumer Service:

 - Collects and handles messages from RabbitMQ in

accordance with predetermined capacity or guidelines..

4. Decision Service:

 - Examin the data gathered from the message queue.

 - Produce scaling decisions based on patterns and preset

policies.

- Makes autoscaling decisions by evaluating workload

demands using custom logic.

5. Kubernetes Service:

 - Adapts the number of Consumer Service pods based

on choices made by the Decision Service by integrating

with Kubernetes APIs.

 - Enables autoscaling based on user-defined metrics by

utilizing a custom metrics API.

 Fig 1. System Architecture

Communication:

1. Internal Communication:

 - Microservices can interact to others effortlessly

through messaging protocols or RESTful APIs.

 - Within the cluster, utilize secure communication

protocols.

2. External Integration:

 - For accurate metrics and analysis, integrate likely with

external monitoring systems, logging services, or other

data sources.

Data Flow and Scalability:

1. Data Flow:

 - For processing and decision-making, metrics move

from the Producer Service to the RabbitMQ Service then

to the Consumer Service.

 - The Kubernetes Service scales in response to

decisions made by the Decision Service.

2. Scalability:

 - Put scalability into practice at different levels, such as

handling message queues, the consumer service's

processing capabilities, and the scaling of the Kubernetes

infrastructure.

2.4 Applications :

1. Microservices Orchestration for Cloud-Native

Applications: Microservices orchestration is essential

for cloud-native application scaling. For optimum

performance, every microservice dynamically scales

to meet a variety of demands and traffic patterns.

2. Real-Time Analytics Platforms: To manage

dynamic data streams, real-time analytics platforms

require event-driven autoscaling. In order to guarantee

prompt processing of rising requests for insights, it

strategically distributes resources during peak periods.

3. IoT Data Processing: Autoscaling that is triggered by

events is advantageous for IoT applications that

handle different data volumes. Adaptive scaling

effectively handles growing data flows by allocating

more resources as needed.

4. E-Commerce Platforms: Event-driven autoscaling is

vital in the dynamic e-commerce landscape. It

dynamically adjusts resources to manage rapid

changes in website traffic during events like sales or

promotions, preventing crashes and facilitating

smooth transactions.

3. Literature survey

1) Paper name: Auto-scaling of Containers: the Impact of

Relative and Absolute Metrics

Author name: Emiliano Casalicchio, Vanessa Perciballi

Description: Recommends using both relative and

absolute measurements for auto-scaling decisions.

Focuses on absolute metrics for CPU-intensive

workloads. Develops and evaluates an enhanced auto-

scaling method to improve response time in Kubernetes'

horizontal auto-scaling algorithm.

2)Paper name: Database Scaling on Kubernetes

Author name: H.C.S. Perera, T.S.D. De Silva, W.M.D.C.

Wasala, R.M.P.R.L. Rajapakshe, N. Kodagoda, Udara

Srimath S. Samaratunge Arachchilage, H.H.N.C.

Jayanandana

Description: Explores Kubernetes' impact on managing

databases. Proposes a solution for highly available

PostgreSQL databases on Kubernetes, addressing data

synchronization issues and introducing a novel auto-

scaling mechanism..

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 11 | November - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 3

3)Paper name: Intelligent Autoscaling of Microservices

in the Cloud for Real-Time Applications.

Author name: ABEER ABDEL KHALEQ, ILKYEUN

RA

Description: Addresses microservices auto-scaling

challenges for cloud applications. Introduces an

autonomous system using a generic algorithm and

reinforcement learning on Google Kubernetes Engine.

Achieves a 20% increase in response time while

maintaining Quality of Service (QoS) constraints.

4)Paper name: Research on Resource Prediction Model

Based on Kubernetes Container Auto-scaling

Technology

Author name: Anqi Zhao , Qiang Huang , Yiting Huang ,

Lin Zou, Zhengxi Chen and Jianghang Song

Description: Explores cloud computing's influence on

resource acquisition and software deployment, focusing

on Docker and Kubernetes. Presents an auto-scaling

optimization technique based on predictive modeling to

minimize reaction times during capacity increase.

5)Paper name: Autoscaling Pods on an On-Premise

Kubernetes Infrastructure QoS-Aware.

Author name: LLUÍS MAS RUÍZ , PERE PIÑOL

PUEYO, JORDI MATEO-FORNÉS , JORDI

VILAPLANA MAYORAL , and FRANCESC

SOLSONA TEHÀS

Description: examines the benefits of cloud computing

and microservices. emphasizes using Docker containers

and Kubernetes to optimize SLOs (Service Level

Objectives) and dynamically scale resources to enhance

QoS (Quality of Service).

CONCLUSION AND FUTURE SCOPE

Kubernetes' real-time, event-driven autoscaling

system is a major advancement in addressing the

demands for modern applications. Several approaches are

used in this project to improve system responsiveness,

optimize resource allocation, and facilitate cost-effective

management in Kubernetes clusters. Its scalability and

adaptability could revolutionize the management of

cloud-native applications. This progress is driven by

extending supported metrics beyond message queues and

improving cost optimization techniques. By addressing

the growing need for responsive and scalable resource

management in today's computing environments, it

greatly expands Kubernetes' capabilities.

By adding more metrics (network traffic, unique

application-specific metrics, external data sources) for

dynamic autoscaling decisions, the project hopes to

continue innovating in the future. Machine learning

integration can improve prediction performance, and

dynamic policy management evolves to accommodate

changing application behaviors. Advanced event

correlation, cost optimization, and expanding autoscaling

across multiple Kubernetes clusters for hybrid cloud

environments and complex distributed applications are

priorities. Monitoring and management will also be

improved by placing a strong emphasis on user-friendly

interfaces and visualization capabilities. The goal of these

developments is to strengthen Kubernetes' position as a

resource management tool that is scalable and responsive.

ACKNOWLEDGEMENT

We are grateful to NBN Sinhgad Technical Institute
Campus, Pune, for constant support and encouragement
in working on our paper, and we are also thankful to
Prof. S.B. Bendale (HoD Comp. dept) and all guides for
their helpful guidance and support in improving our
paper.

REFERENCES

[1] MetalLB. MetalLB, Bare Metal Load-Balancer for

Kubernetes.

Accessed: Mar. 14, 2022.

 [2]F. Rossi, ‘‘Auto-scaling policies to adapt the

application deployment in Kubernetes,’’ in Proc.

ZEUS, 2020, pp. 30–38.

 [3]T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and

S. Kim, ‘‘Horizontal pod autoscaling in kubernetes for

elastic container orchestration,’’ Sensors, vol. 20, no.

16, p. 4621, Aug. 2020.

[4] Kubernetes. Horizontal Pod Autoscaler. Accessed:

Mar. 14, 2022.

[Online]. Available: https://kubernetes.io/docs/tasks/run-

application/

horizontal-pod-autoscale/

[5] S. Taherizadeh and M. Grobelnik, ‘‘Key influencing

factors of the

Kubernetes auto-scaler for computing-intensive

microservice-native

cloud-based applications,’’ Adv. Eng. Softw., vol. 140,

Apr. 2020,

Art. no. 102734. [Online]. Available:

https://www.sciencedirect.com/

science/article/pii/S0965997819304375

http://www.ijsrem.com/

