

Evolution of Quantum Technologies: A Multi-Metric Analysis of Scientific, Industrial, and Strategic Growth

Harsh Verma¹, Sriranjani S², Asha S B³, Shubha C⁴, Dr. Venkatesha G⁵

¹Assistant Professor Department of CSE(AI&ML) & East West Institute of Technology, Bengaluru, India

²Assistant Professor Department of CSE (IoT, CyS including BCT) & East West Institute of Technology, Bengaluru, India

³ Economics Expert Department of CSE (IoT, CyS including BCT) & East West Institute of Technology, Bengaluru, India

⁴ Assistant Professor Department of CSE (IoT, CyS including BCT) & East West Institute of Technology, Bengaluru, India

⁵ Professor & Head Department of CSE (IoT, CyS including BCT) & East West Institute of Technology, Bengaluru, India

Abstract - Quantum computing has evolved from a physics-driven theoretical concept into a rapidly expanding technological ecosystem encompassing computation, communication, sensing, and security. This paper presents a timeline-based analytical study of this evolution, examining how successive scientific and technological eras shaped the transition from foundational quantum theory to modern noisy intermediate-scale quantum (NISQ) platforms and distributed quantum infrastructures. Rather than offering a purely chronological account, the study evaluates each phase using comparative metrics such as scientific maturity, technological capability, scalability, error resilience, application readiness, and interdisciplinary integration. Beyond technical progress, the paper highlights the growing role of academic institutions in developing foundational methods and workforce capacity, alongside industrial efforts in hardware engineering, cloud-based access, and commercialization. These developments are further reinforced by large-scale public investments through national quantum missions and regional innovation programs, positioning quantum technologies as strategic components of future digital infrastructure. By integrating historical evolution with ecosystem and policy perspectives, this work aims to clarify how scientific constraints, engineering challenges, and institutional drivers collectively shape the current trajectory and future direction of quantum technologies.

Key Words: quantum, timeline, global impact, hybrid, evolution

1. INTRODUCTION

Quantum computing has emerged as a promising alternative to classical computation by exploiting quantum mechanical principles such as superposition, entanglement, and interference to process information in fundamentally new ways. While classical computing has driven technological progress for decades, continued scaling is increasingly constrained by physical, economic, and energy limitations,

particularly for computationally intensive problems such as cryptographic security, large-scale optimization, molecular simulation, and high-dimensional data analysis. These challenges have motivated the exploration of non-classical computational paradigms, positioning quantum computing as a candidate for achieving provable advantages over classical architectures for specific problem classes [1][2].

The scientific foundations of quantum computing originate in early twentieth-century quantum mechanics, which established the mathematical and physical principles governing microscopic systems. However, these foundational theories were initially developed to explain physical phenomena such as blackbody radiation and atomic spectra, rather than to support information processing or algorithmic control. The reinterpretation of quantum systems as computational resources emerged much later with the development of quantum information theory, quantum circuit models, and formal complexity frameworks. Subsequent algorithmic breakthroughs, including polynomial-time quantum algorithms for integer factorization and unstructured search, demonstrated theoretical quantum advantage and provided strong motivation for constructing physical quantum devices [3][4][5][6]. Despite this progress, experimental realizations remained constrained by decoherence, control limitations, and scalability challenges, giving rise to the current Noisy Intermediate-Scale Quantum (NISQ) era characterized by limited qubit counts and the absence of full fault tolerance [7].

In recent years, quantum computing has expanded beyond isolated processors into a broader quantum technology ecosystem that includes quantum communication networks, secure communication protocols, quantum-enhanced sensing, and application-specific quantum devices. Developments such as entanglement distribution over metropolitan fiber networks, satellite-based quantum key distribution, and quantum-enhanced metrology indicate that near-term quantum

advantages may arise from specialized and distributed quantum systems rather than solely from universal fault-tolerant quantum computers [8][9][10]. This shift reflects a growing recognition that practical quantum impact will likely emerge through system-level integration across computation, communication, and sensing, supported by advances in control electronics, photonic interfaces, and hybrid quantum-classical workflows.

Alongside technological expansion, the growth of quantum technologies is increasingly shaped by coordinated efforts among universities, industry, and government. Academic institutions play a central role in advancing foundational research, developing experimental prototypes, and training specialized workforces, while industrial organizations contribute through hardware engineering, cloud-based quantum platforms, and early-stage commercialization. These activities are reinforced by national quantum strategies and mission-oriented funding programs that promote academic-industrial collaboration, innovation hubs, and startup ecosystems, including India's National Quantum Mission and similar initiatives across Europe and the United Kingdom [11][12][13][14][15]. Despite this systemic transformation, much of the existing literature treats historical evolution, hardware development, ecosystem formation, and policy investment as separate themes. To address this fragmentation, this paper adopts a timeline-based analytical framework using comparative metrics including scientific maturity, technological capability, scalability, error resilience, application readiness, and interdisciplinary integration to identify key transitions in the evolution of quantum computing from a physics-driven concept to a multidisciplinary technological ecosystem.

2. Timeline

The early era of quantum development was dominated by efforts to explain experimental anomalies in classical physics rather than by any intention to develop new computational paradigms. The formulation of quantum theory emerged as a response to phenomena such as blackbody radiation, atomic emission spectra, and the photoelectric effect, which could not be explained using classical mechanics. Max Planck's quantization of energy and Albert Einstein's interpretation of light as discrete photons marked the beginning of a radical shift in physical theory, introducing the notion that physical quantities at microscopic scales are fundamentally discrete rather than continuous [17].

Subsequent theoretical advancements established the mathematical structure of quantum mechanics. Schrödinger's wave equation provided a continuous representation of quantum states, while Heisenberg's matrix mechanics introduced operator-based formulations that emphasized measurable observables. These formalisms were later unified under Hilbert space theory, which remains the mathematical

foundation of modern quantum information science. However, during this period, quantum systems were primarily viewed as objects of physical study rather than carriers of information. As a result, no formal link existed between quantum behavior and algorithmic computation [18].

One of the most significant conceptual breakthroughs of this era was the identification of quantum entanglement. The Einstein-Podolsky-Rosen (EPR) paradox and Schrödinger's subsequent characterization of entangled states revealed that quantum systems could exhibit non-classical correlations that persist across spatial separation [19]. While these phenomena were initially regarded as philosophical challenges to the completeness of quantum mechanics, they later became essential resources for quantum communication and computation. Nonetheless, practical methods for generating, maintaining, and manipulating entangled states remained beyond the technological capabilities of the time.

From a technological standpoint, experimental quantum physics during this era relied on relatively crude instrumentation, including spectroscopic measurements and early particle detectors. Precise quantum state preparation, isolation from environmental noise, and real-time control mechanisms were not feasible, making large-scale quantum system engineering impossible. Moreover, cryogenic systems, laser cooling, and nanofabrication techniques, now fundamental to quantum hardware platforms had not yet been developed. Consequently, the scalability metric remained effectively nonexistent during this phase.

In terms of computing paradigms, the absence of classical digital computing theory prior to the mid-twentieth century further constrained the conceptualization of quantum computation. Without formal models of algorithms, complexity, or programmable machines, it was not meaningful to consider whether quantum systems could outperform classical computers. Information theory itself was only formalized later with Shannon's work, further delaying the integration of physical systems with information-processing frameworks [20].

Evaluated under the proposed metric framework, the early era exhibits strong scientific maturity in terms of physical theory and mathematical formalism but scores extremely low in technological capability, scalability, application readiness, and interdisciplinary integration. Quantum phenomena were understood primarily as physical effects rather than computational resources. This explains why quantum computing did not emerge as a research field until classical computing theory and information science matured sufficiently to reinterpret quantum mechanics through an information-processing lens.

Thus, while the early era laid indispensable theoretical foundations, it lacked the conceptual, technological, and computational infrastructure necessary for the realization of

quantum information systems. The transition to the next era required not new physical laws, but a redefinition of quantum systems as programmable information carriers rather than merely objects of physical observation.

Foundational Era (1980s – 2000s)

The foundational era marks the conceptual transformation of quantum mechanics from a descriptive physical theory into a formal framework for information processing. This transition was initiated by the recognition that classical computers are fundamentally inefficient at simulating quantum systems. Feynman proposed that only systems governed by quantum mechanics could efficiently simulate other quantum systems, thereby introducing the idea of quantum computation as a solution to exponential classical complexity in physical simulation [21]. This insight reframed quantum behavior as a potential computational resource rather than merely an object of experimental study.

Building on this idea, Deutsch formalized the concept of a universal quantum computer by extending the classical Turing machine model to quantum mechanical state spaces. The quantum circuit model and the notion of quantum parallelism emerged from this theoretical foundation, establishing that quantum computers could, in principle, perform computations that are classically intractable [22]. This period also witnessed the development of complexity classes such as BQP, which provided a rigorous framework for evaluating quantum computational advantage within computational complexity theory.

A decisive catalyst for experimental and industrial interest came with the discovery of efficient quantum algorithms. Shor's polynomial-time algorithm for integer factorization and discrete logarithms demonstrated that quantum computers could break widely used public-key cryptosystems, fundamentally altering the landscape of cryptographic security [5]. Similarly, Grover's search algorithm provided quadratic speedup for unstructured search problems, illustrating that quantum advantage could extend beyond highly specialized tasks [6]. These algorithms provided strong motivation for hardware development by demonstrating that quantum computing could impact real-world applications.

Parallel to algorithmic advances, this era also saw the birth of quantum communication protocols. Bennett and Brassard's BB84 protocol established quantum key distribution as a method for achieving information-theoretic security based on physical principles rather than computational hardness assumptions [23]. Quantum teleportation further demonstrated that quantum states could be transmitted using shared entanglement and classical communication, reinforcing the view of entanglement as a functional resource for information transfer [24]. These developments laid the groundwork for future quantum networking and distributed quantum systems.

Despite strong theoretical maturity, technological capabilities remained limited throughout this period. Experimental demonstrations were confined to small systems using nuclear magnetic resonance, optical photons, and trapped atoms, typically involving only a few qubits with short coherence times and limited controllability. Scalable architectures, quantum error correction implementations, and long-term qubit stability were not yet experimentally feasible. As a result, while scientific and computational paradigms matured rapidly, technological and scalability metrics remained weak.

From the perspective of interdisciplinary integration, this era marked the first sustained collaboration between physicists and computer scientists. Information theory, computational complexity, and cryptography became integral to quantum research, forming the discipline now known as quantum information science. However, engineering disciplines such as microfabrication, cryogenic systems, and control electronics had not yet become central to quantum research agendas.

Evaluated under the proposed metric framework, the foundational era exhibits very high scientific maturity and computing paradigm development, strong mathematical formalism, and growing application relevance in cryptography and simulation. However, technological capability, scalability, and error resilience remain at early stages, preventing translation of theoretical advantages into large-scale operational systems. This imbalance between theory and implementation directly motivated the subsequent engineering-driven research phase focused on hardware realization and system-level integration.

Engineering Era (2010s – Present)

The contemporary phase of quantum computing is characterized by a shift from theoretical feasibility to engineering-driven system development. This period, commonly referred to as the Noisy Intermediate-Scale Quantum (NISQ) era, involves quantum processors with tens to hundreds of qubits that are not yet protected by full quantum error correction and are therefore highly susceptible to decoherence and operational noise [7]. Research during this era focuses primarily on improving qubit coherence times, gate fidelities, system integration, and classical-quantum control architectures rather than implementing large-scale fault-tolerant algorithms.

Multiple physical platforms have been explored for qubit realization, each presenting distinct advantages and engineering challenges. Superconducting qubits offer fast gate operations and compatibility with microfabrication techniques, making them suitable for scalable chip-based integration. Trapped-ion systems provide long coherence times and high-fidelity gates but face challenges related to scaling and control complexity. Photonic platforms enable room-temperature operation and long-distance quantum communication but encounter difficulties in deterministic

qubit interactions and large-scale entanglement generation. Semiconductor-based approaches, including quantum dots and donor-based spin qubits, offer potential compatibility with existing CMOS technologies but remain sensitive to material defects and environmental fluctuations [25][26].

Beyond qubit fabrication, control and readout infrastructure has emerged as a critical bottleneck in quantum system scalability. Quantum processors require precise microwave or laser control, synchronized pulse sequencing, and rapid feedback mechanisms, all of which must operate at cryogenic temperatures in many hardware platforms. Recent studies highlight the role of field-programmable gate arrays (FPGAs) and real-time classical controllers in stabilizing quantum operations and coordinating multi-qubit gates, effectively making quantum computation a hybrid cyber-physical system rather than a standalone quantum device [27]. This tight integration between classical electronics and quantum hardware reflects increasing interdisciplinary convergence between electrical engineering, control theory, and quantum physics.

A defining challenge of the NISQ era is error accumulation. Qubits are highly sensitive to environmental noise, leading to decoherence, gate errors, and measurement imperfections. While quantum error correction codes theoretically enable fault-tolerant computation, their practical implementation requires large numbers of physical qubits per logical qubit, often exceeding current hardware capabilities by several orders of magnitude. As a result, current systems rely on error mitigation techniques rather than true fault tolerance, limiting algorithm depth and computational reliability [7][28].

Despite these limitations, the NISQ era has enabled experimental demonstrations of quantum advantage in restricted problem settings, including random circuit sampling and specific optimization and simulation tasks. However, these demonstrations often rely on carefully engineered benchmarks rather than broad, application-independent computational superiority. Consequently, research emphasis has shifted toward identifying near-term algorithms that can tolerate noise and exploit problem-specific quantum features, particularly through hybrid quantum-classical workflows.

Importantly, this era also marks the expansion of quantum technologies beyond computation. Hardware advances developed for processors are simultaneously enabling progress in quantum communication, sensing, and metrology. Entanglement distribution, quantum repeaters, and photonic interfaces are increasingly studied alongside computing architectures, indicating that quantum processors are becoming components of larger networked systems rather than isolated machines [8][9][10].

Evaluated under the proposed metrics, the NISQ era demonstrates moderate to high technological capability and strong interdisciplinary integration, particularly across

physics, materials science, electrical engineering, and computer science. However, scalability and error resilience remain critical barriers preventing transition to large-scale fault-tolerant computation. This imbalance explains why research momentum has expanded toward ecosystem-level quantum technologies, including networks and application-specific devices, rather than focusing exclusively on universal quantum processors.

3. Expansion to Quantum Technology Ecosystem

While early research on quantum computing focused primarily on building universal quantum processors, recent developments indicate a clear expansion toward a broader quantum technology ecosystem. In this paradigm, quantum processors function not as isolated machines but as components of interconnected systems that include communication networks, sensing platforms, and application-specific quantum devices. This shift reflects recognition that near-term quantum advantage is more likely to emerge from specialized and distributed quantum technologies rather than from fully fault-tolerant universal computers.

Quantum Communication and Networked Architectures

Quantum communication has progressed from point-to-point quantum key distribution (QKD) toward more complex networked infrastructures that support entanglement distribution across multiple nodes. Satellite-based quantum links and metropolitan fiber networks have demonstrated long-distance entanglement distribution, providing experimental validation of quantum networking concepts originally proposed in the context of the quantum internet [6]. Recent studies emphasize the need for quantum repeaters, entanglement swapping, and network routing protocols to enable scalable and reliable quantum communication systems.

With the emergence of next-generation communication systems, quantum networking is increasingly studied as part of future 6G architectures, where quantum and classical communication channels may coexist to support ultra-secure and low-latency services [29]. In this context, quantum networks are no longer viewed solely as cryptographic tools, but as integral components of future digital infrastructure capable of supporting distributed quantum computing and sensing applications.

Quantum Secure Communication and Blockchain Integration

Beyond conventional QKD, quantum secure direct communication (QSDC) has gained attention as a protocol that enables direct transmission of confidential information without first generating cryptographic keys. Recent surveys outline the evolution of QSDC from laboratory

demonstrations to network-oriented architectures that support multi-user communication and integration with classical networking layers [30]. These developments indicate a transition from isolated security experiments to scalable secure communication frameworks suitable for quantum internet deployment.

Furthermore, quantum-secured communication protocols are now being explored in conjunction with distributed ledger technologies. Quantum blockchain architectures based on QSDC and entanglement-assisted authentication aim to provide tamper-resistant transaction validation while addressing vulnerabilities of classical cryptographic systems in the presence of future quantum attacks [31]. Such approaches illustrate how quantum technologies are beginning to influence system-level cybersecurity design rather than remaining confined to niche cryptographic protocols.

Quantum-Enhanced Sensing and Metrology

Another critical component of the quantum technology ecosystem is quantum sensing, where quantum coherence and entanglement are exploited to surpass classical measurement limits. Recent experimental studies demonstrate entanglement-enhanced quantum lock-in detection using trapped ions, achieving Heisenberg-limited sensitivity in noisy environments [32]. These results confirm that quantum resources can provide practical advantages in precision measurement tasks, including magnetic field detection, gravitational sensing, and time synchronization.

Quantum sensors are often easier to deploy than large-scale quantum computers because they require fewer qubits and simpler error management. As a result, quantum sensing is widely considered one of the earliest domains in which quantum technologies will achieve commercial viability. These systems also benefit from hardware advances originally developed for quantum computing, including laser stabilization, cryogenic environments, and precision control electronics, reinforcing the interconnected nature of the quantum technology ecosystem.

Quantum-Inspired and Hybrid AI Systems

Parallel to hardware and networking developments, quantum computing has influenced algorithm design in classical machine learning through quantum-inspired optimization techniques. Hybrid quantum-classical algorithms, particularly variational methods, rely on classical processors to optimize quantum circuits, creating tightly coupled computational workflows. These approaches are especially relevant in the NISQ era, where fully quantum algorithms are impractical due to noise constraints.

Recent studies classify the relationships between quantum physics, information processing, and machine learning into categories ranging from fully quantum algorithms to quantum-inspired classical methods [33]. This cross-fertilization enables

near-term algorithmic benefits even in the absence of large-scale quantum hardware, while also preparing software frameworks and optimization strategies that will remain relevant in future fault-tolerant systems.

Ecosystem-Level Implications

Collectively, these developments demonstrate that quantum computing has evolved into a multi-domain technological ecosystem encompassing computation, communication, sensing, and security. Rather than progressing linearly toward universal quantum computers, the field is now advancing through multiple application-driven pathways that leverage quantum effects under different operational constraints. This diversification reduces reliance on a single technological breakthrough and increases the likelihood of incremental real-world impact.

From the perspective of the proposed evaluation metrics, the ecosystem expansion phase exhibits high interdisciplinary integration and growing application readiness, while scalability and error resilience remain uneven across different platforms. These characteristics suggest that future quantum innovation will be shaped not only by advances in qubit technology, but also by network architectures, protocol design, and system-level co-design between quantum and classical components.

Academic-Industrial Co-Evolution of Quantum Technologies

The maturation of quantum technologies has been accompanied by increasingly structured collaboration between academic institutions, industrial organizations, and government agencies. Universities and national research laboratories remain primary drivers of foundational advances in quantum algorithms, materials, and device physics, while also serving as critical training grounds for the specialized workforce required to support emerging quantum industries. Academic research groups typically initiate proof-of-concept demonstrations and theoretical frameworks that later transition into experimental prototypes and platform technologies.

Industrial participation has expanded rapidly in parallel, particularly in the areas of hardware engineering, control systems, cryogenic infrastructure, and cloud-based quantum access platforms. Technology companies and specialized startups contribute through scalable fabrication processes, system packaging, and reliability engineering that are essential for transforming laboratory devices into deployable platforms. Cloud-accessible quantum processors further enable academic and industrial users to conduct experiments without direct access to hardware, accelerating software development, benchmarking, and workforce training.

This co-evolution is increasingly institutionalized through joint research centers, startup incubators, technology transfer programs, and government-funded innovation hubs. National

initiatives such as India's National Quantum Mission, along with coordinated quantum programs across Europe and the United Kingdom, explicitly emphasize academic-industrial partnerships, shared testbeds, and translational research pipelines that connect theoretical advances to commercial deployment [11][12][13]. These programs aim to reduce the traditional gap between laboratory research and industrial adoption by supporting multidisciplinary collaboration and infrastructure sharing.

Workforce development has emerged as a central strategic priority within this ecosystem. Policy and research studies highlight growing global demand for professionals trained in quantum engineering, quantum software, and systems integration, alongside persistent shortages of qualified personnel [14][15][16]. As quantum technologies increasingly intersect with telecommunications, cybersecurity, and cloud computing, future innovation will depend not only on advances in qubit hardware, but also on sustained investment in education, curriculum development, and cross-disciplinary skill formation. Consequently, the long-term success of quantum technologies is shaped as much by institutional coordination and human capital development as by breakthroughs in physical device performance.

4. Global Inclusion and the Internationalization of Quantum Technologies

Quantum technologies are increasingly being shaped as a global and cooperative domain rather than as a purely national competition, with growing emphasis on inclusive access, technical standards, skills mobility, and responsible deployment. A major signal of this shift is the proclamation of **2025 as the International Year of Quantum Science and Technology by the United Nations**, led by UNESCO, with the objective of promoting international collaboration, capacity building, and wider participation in quantum science, particularly in developing regions, while also addressing the emerging risk of a global quantum divide in science and technology education [34].

Complementing this, recent cross-country ecosystem mapping studies indicate that quantum innovation is geographically distributed and driven by interactions among public research institutions, startups, established industrial firms, investment networks, and national talent pipelines. Joint assessments by the European Patent Office and the OECD, as well as OECD policy surveys of national quantum strategies, emphasize that coordinated policy instruments such as institutional research funding, competitive project grants, business R and D incentives, and public equity participation are central to building globally competitive yet interconnected quantum ecosystems [12][13]. These policy frameworks reflect a

transition from isolated national programs to internationally aligned innovation systems.

From an application and governance perspective, global policy forums increasingly frame quantum technologies in terms of societal value, sustainability, and cross-border cooperation. Reports by the World Economic Forum identify quantum computing and communication as emerging general-purpose technologies whose long-term benefits depend on shared regulatory frameworks, international partnerships, and responsible sectoral adoption in areas such as cybersecurity, healthcare, logistics, and climate modeling [35]. This perspective highlights that technological capability alone is insufficient to ensure equitable impact without coordinated governance structures.

Together, these developments indicate that the next phase of quantum progress will be shaped not only by advances in hardware performance, but also by international cooperation on workforce development, technical standards, trusted infrastructure, and equitable access to innovation resources. In this context, global inclusion functions as a strategic enabler of sustained quantum innovation rather than merely a secondary policy objective.

India and National-Scale Inclusion in Quantum Technologies

India's quantum technology pathway is increasingly structured as a national-scale inclusion strategy that links frontier research with workforce development, startup participation, and mission-driven infrastructure creation. The Government of India approved the **National Quantum Mission (NQM)** on 19 April 2023 with a total financial outlay of **INR 6,003.65 crore** for the period 2023 to 2031, with the explicit objective of seeding, nurturing, and scaling both scientific research and industrial development in quantum technologies and applications [11][36]. This mission framework integrates long-term research investment with near-term ecosystem development goals.

The mission architecture is organized around four thematic hubs (T-Hubs) corresponding to quantum computing, quantum communication, quantum sensing and metrology, and quantum materials and devices. These hubs are hosted at major academic institutions including IISc Bengaluru and leading Indian Institutes of Technology, and operate under a hub-spoke-spoke model that connects national laboratories, university research groups, startups, and industry partners within coordinated research and innovation networks [36]. This distributed institutional design promotes regional participation while enabling centralized strategic coordination.

Beyond infrastructure development, the NQM also incorporates mechanisms to broaden participation through structured calls for proposals, startup engagement programs, and technology translation pathways that support prototype development and early-stage commercialization. Workforce

development is treated as a core mission objective, with emphasis on interdisciplinary training spanning physics, engineering, computer science, and cybersecurity. This approach aligns with international policy assessments that identify human capital formation and academic-industrial collaboration as essential to preventing long-term skill shortages in quantum-enabled sectors [13][35].

Collectively, these mechanisms position India's National Quantum Mission not merely as a research funding initiative, but as an integrated national inclusion framework designed to expand institutional participation, regional capacity, and innovation activity across the entire quantum value chain, thereby strengthening both scientific competitiveness and long-term industrial readiness.

5. Analysis

Timeline-Based Metric Comparison Across Evolutionary Eras

Metric	Early Era(1900–1970s)	Foundational Era (1980s–2000s)	Engineering Era (2010s–Present)
Scientific Maturity	Quantum mechanics formally established (wave mechanics, matrix mechanics, probabilistic interpretation). Focused on explaining physical phenomena such as atomic spectra and radiation. No computational abstraction of quantum systems.	Formal quantum computation models developed (quantum circuits, Turing models). Quantum complexity theory and algorithmic speedups rigorously proven. Quantum information recognized as a scientific discipline.	Scientific theory is mature and stable; focus shifts to system engineering, device optimization, and performance benchmarking. Experimental validation dominates research objectives.
Mathematical & Physical Foundations	Development of Hilbert spaces, operators, eigenvalue problems, and probability amplitudes. Mathematics served physical modeling, not information processing.	Linear algebra, tensor products, unitary operators, and information-theoretic entropy formally integrated into computation models. Quantum channels and measurement theory formalized.	Advanced numerical simulation, control theory, noise modeling, quantum tomography, and optimization methods applied to device calibration and algorithm tuning.
Technological	Limited to	Small	Multi-qubit

Capability	spectroscopic and particle experiments. No ability to isolate, initialize, or control quantum states for programmable tasks.	laboratory-scale demonstrations using NMR, photons, and atomic systems. Qubit numbers typically below 10, with limited coherence and gate control.	processors built using superconducting circuits, trapped ions, photonics, and semiconductors. Cryogenic systems, laser control, nanofabrication, and scalable readout technologies deployed.
Computing Paradigm Maturity	No formal concept of algorithms, programmable machines, or computational complexity in quantum context. Classical computing itself was not yet mature.	Fully developed quantum circuit model, complexity classes (BQP), and algorithmic frameworks. Quantum algorithms for cryptography, search, and simulation established.	Emphasis on hybrid quantum-classical workflows, variational algorithms, quantum control software stacks, and cloud-accessible quantum platforms. Software engineering becomes central.
Application Readiness	Applications limited to explaining physical observations (atomic stability, radiation, chemical bonding). No technological or industrial use.	Conceptual applications in cryptography, secure communication, and physical simulation demonstrated theoretically; few real-world deployments.	Practical applications explored in optimization, chemistry, materials science, quantum communication, sensing, and cybersecurity, though still limited by noise and scale.
Scalability & System Integration	No concept of building large quantum systems or networks. Experiments focused on isolated microscopic phenomena.	Scalability recognized as necessary but not technologically feasible; architectures for large-scale systems largely theoretical.	Major research focus on qubit connectivity, modular processors, quantum interconnects, and distributed quantum networks. System integration becomes core challenge.
Error & Noise Management	Measurement uncertainty treated as fundamental property of nature, not as correctable system errors.	Quantum error correction theory developed (stabilizer codes, fault-tolerance thresholds), but no physical implementation	Error mitigation actively used; partial error correction demonstrated; fault-tolerant architectures remain long-

	No concept of error correction.	at scale.	term goal due to extreme qubit overhead requirements.
Interdisciplinary Integration	Dominated by theoretical physics. Minimal involvement of engineering or computation disciplines.	Strong interaction between physics and computer science. Birth of quantum information science as an interdisciplinary field.	Deep integration of physics, materials science, electrical engineering, computer science, control systems, networking, and cybersecurity forming a full technology ecosystem.

Table 1: Metric-based comparison of quantum computing across evolutionary eras

The comparative evaluation in Table reveals a clear shift in dominant drivers and limitations across the three evolutionary eras of quantum computing. The Early Era exhibits high scientific maturity in terms of physical theory and mathematical formalism, but lacks any meaningful technological capability, scalability, or computing paradigm. Quantum systems during this period were understood primarily as physical phenomena rather than programmable information carriers.

In the Foundational Era, major progress occurs in computing paradigms and algorithmic frameworks, with formal models of quantum computation, complexity classes, and cryptographic applications becoming well established. However, technological capability and system scalability remain limited to small laboratory demonstrations, creating a significant gap between theoretical potential and practical realization. This imbalance explains why large-scale quantum computing did not materialize during this period despite strong theoretical motivation.

The Engineering Era demonstrates substantial growth in hardware platforms, system integration, and interdisciplinary collaboration. Multiple qubit technologies, real-time control systems, and quantum classical software stacks have emerged, enabling experimental processors with increasing qubit counts and connectivity. Nevertheless, scalability and error resilience remain critical bottlenecks, as full fault tolerance is still beyond present hardware capabilities. Consequently, research emphasis has expanded beyond universal quantum processors toward ecosystem-level technologies, including communication networks, sensing platforms, and cybersecurity applications.

Overall, the table highlights that quantum computing evolution has been constrained not by lack of scientific theory, but by engineering feasibility and system-level integration. Sustainable progress requires balanced advancement across all

eight metrics rather than isolated improvements in theory or hardware alone.

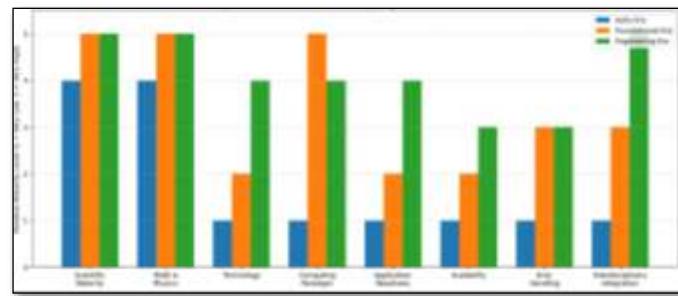


Figure 1: Comparative maturity of quantum computing across evolutionary eras

Figure 1 visualizes the relative maturity of eight analytical metrics across the three evolutionary eras of quantum computing. The plot highlights that scientific and mathematical foundations reached high maturity by the foundational era and remain stable in the engineering era, indicating that theoretical limitations are no longer the primary barrier to progress. In contrast, technological capability and system integration show substantial growth only in the engineering era, reflecting the recent shift toward hardware development and experimental scalability.

The figure also demonstrates that computing paradigm maturity peaks during the foundational era with the development of quantum algorithms and complexity frameworks, while modern research emphasizes hybrid software architectures and system control rather than new algorithmic breakthroughs. Application readiness follows a similar delayed trend, remaining low in earlier periods and increasing significantly only with the emergence of specialized quantum technologies such as secure communication and sensing platforms.

Notably, error and noise management remains a persistent limitation across all eras, underscoring that fault tolerance continues to be the dominant unresolved challenge for large-scale quantum computation. Finally, interdisciplinary integration exhibits the steepest growth in the engineering era, supporting the view that quantum computing has evolved into a multi-domain technological ecosystem requiring coordinated progress across physics, engineering, computer science, and communication systems.

India's Academic-Industrial Quantum Ecosystem under National Quantum Mission

India's strategy for advancing quantum technologies under the National Quantum Mission (NQM) is structured around a coordinated academic-industrial ecosystem rather than a narrowly focused research funding program. The mission integrates universities, national laboratories, startups, and industry partners into a unified innovation framework designed to accelerate scientific discovery, system

engineering, and early-stage commercialization simultaneously. This approach reflects an understanding that sustainable quantum progress requires not only advances in fundamental physics, but also parallel development of hardware platforms, fabrication capabilities, control electronics, and application-oriented system integration.

Sl. No.	Institution	City / State
1	BITS Pilani, Goa Campus	Goa
2	BITS Pilani, Hyderabad Campus	Telangana
3	C-DAC, Bengaluru	Karnataka
4	C-DAC, Thiruvananthapuram	Kerala
5	C-DOT, New Delhi	Delhi
6	Harish-Chandra Research Institute (HRI)	Prayagraj, Uttar Pradesh
7	IACS (Indian Association for the Cultivation of Science)	Kolkata, West Bengal
8	IISc Bengaluru (Indian Institute of Science)	Karnataka
9	IISER Bhopal	Madhya Pradesh
10	IISER Mohali	Punjab
11	IISER Pune	Maharashtra
12	IISER Thiruvananthapuram	Kerala
13	IIT Bhilai	Chhattisgarh
14	IIT Bhubaneswar	Odisha
15	IIT Bombay	Maharashtra
16	IIT Delhi	Delhi
17	IIT Gandhinagar	Gujarat
18	IIT Guwahati	Assam
19	IIT Hyderabad	Telangana
20	IIT Indore	Madhya Pradesh
21	IIT Jammu	Jammu and Kashmir (UT)
22	IIT Kanpur	Uttar Pradesh
23	IIT Kharagpur	West Bengal
24	IIT Madras	Tamil Nadu
25	IIT Patna	Bihar
26	IIT Roorkee	Uttarakhand
27	IIT Ropar	Punjab
28	IIT Tirupati	Andhra Pradesh
29	IMSc (Institute of Mathematical Sciences)	Chennai, Tamil Nadu
30	IIIT Hyderabad	Telangana

31	JIIT Noida (Jaypee Institute of Information Technology)	Uttar Pradesh
32	JNCASR (Jawaharlal Nehru Centre for Advanced Scientific Research)	Karnataka
33	NISER Bhubaneswar	Odisha
34	Raman Research Institute (RRI)	Karnataka
35	SETS (Society for Electronic Transactions and Security)	Chennai, Tamil Nadu
36	SNBNCBS (S. N. Bose National Centre for Basic Sciences)	Kolkata, West Bengal
37	TCG CREST	Kolkata, West Bengal
38	TIFR Mumbai (Tata Institute of Fundamental Research)	Maharashtra
39	TIFR Hyderabad	Telangana
40	University of Hyderabad	Telangana
41	ISRO Ahmedabad	Gujarat
42	SSPL (Solid State Physics Laboratory, DRDO)	Delhi
43	IIT Ropar – IISER Mohali Cluster Participation*	Punjab

Table 2. Indian Institutions Participating in Quantum Technology Research under NQM^[11]

A defining feature of NQM is the establishment of four national Thematic Hubs (T-Hubs) dedicated to quantum computing, quantum communication, quantum sensing and metrology, and quantum materials and devices. These hubs are led by major research institutions, including the Indian Institute of Science (IISc) Bengaluru and leading Indian Institutes of Technology (IITs), and operate using a hub–spoke–spike model that connects core centers with affiliated research groups across the country.

As summarized in **Table 2**, a total of **43 institutions distributed across more than 17 states and two union territories** participate in NQM-supported research activities. This network includes IIT campuses, Indian Institutes of Science Education and Research (IISERs), autonomous research centers such as TIFR, RRI, IMSc, and SNBNCBS, as well as strategic laboratories associated with space, electronics, and cybersecurity agencies. Such institutional diversity enables collaboration across physics, materials science, electrical engineering, computer science, and applied cryptography, supporting interdisciplinary system development.

From a capacity-building perspective, the distributed institutional model enables the development of regional research capabilities while maintaining centralized strategic coordination through the T-Hubs. This design facilitates doctoral and postdoctoral training at multiple locations, promotes mobility of researchers between institutions, and

supports shared access to specialized infrastructure such as cryogenic facilities, nanofabrication platforms, and precision measurement laboratories. Consequently, workforce development and scientific research advance in parallel, addressing long-term talent requirements alongside immediate research goals.

Sl. No.	Startup Name	Location	Technology Focus
1	QNu Labs Pvt. Ltd.	Bengaluru, Karnataka	Quantum-safe communication networks and cryptography
2	QpiAI India Pvt. Ltd.	Bengaluru, Karnataka	Superconducting quantum computing platforms and AI integration
3	Dimira Technologies Pvt. Ltd.	Mumbai, Maharashtra (IIT Bombay)	Cryogenic cables and low-temperature quantum interconnects
4	Prenishq Pvt. Ltd.	New Delhi (IIT Delhi)	Precision diode-laser systems for quantum experiments
5	Quspray Pvt. Ltd.	Pune, Maharashtra	Optical atomic clocks and precision timing systems
6	Quanstra Pvt. Ltd.	New Delhi	Cryogenic systems and superconducting detectors
7	Pristine Diamonds Pvt. Ltd.	Ahmedabad, Gujarat	Diamond-based quantum sensors and photonic devices
8	Quan2D Technologies Pvt. Ltd.	Bengaluru, Karnataka	Single-photon sources and quantum photonic detectors

Table 3. Quantum Technology Startups Supported under NQM and NM-ICPS (India)^[37]

Beyond academic research, NQM explicitly supports technology translation through coordinated startup funding mechanisms implemented jointly with the National Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS). Government announcements confirm that **eight quantum technology startups** have been selected for direct support under these programs, as listed in **Table 3**.

The supported startups span critical segments of the quantum technology stack, including superconducting quantum processors, quantum-safe communication systems, cryogenic interconnects, precision laser sources, atomic clocks, diamond-based quantum sensors, and single-photon detection technologies. Several of these startups are closely linked to IIT research laboratories, reflecting a tight coupling between academic research and entrepreneurial development. This proximity enables rapid feedback between experimental results and engineering refinement, which is particularly important in quantum systems where materials constraints and device stability strongly influence algorithmic feasibility.

The integration of startups into the national mission framework reduces the typical delay between laboratory proof-of-concept and system-level prototyping. Instead of treating commercialization as a downstream process, innovation and product engineering are embedded within the research ecosystem itself. This approach also expands employment pathways for quantum-trained graduates beyond academia, supporting workforce absorption into hardware development, system integration, and field deployment roles. Such diversification of career trajectories is essential for sustaining long-term ecosystem growth and preventing talent bottlenecks in emerging quantum industries.

Sl. No.	State	Funds Released (₹)
1	Uttar Pradesh	28,76,82,086
2	Karnataka	3,73,69,120
3	Maharashtra	5,34,21,220
4	Tamil Nadu	1,75,74,980
5	Delhi	2,48,43,970
6	Telangana	39,18,900
7	Gujarat	3,82,560
8	West Bengal	79,54,600
9	Assam	6,92,800
10	Bihar	14,61,240
11	Odisha	11,57,600
12	Chhattisgarh	14,16,000
13	Andhra Pradesh	7,51,000
14	Kerala	20,20,000
15	Punjab	24,25,000
16	Uttarakhand	38,19,300
17	Jammu & Kashmir	1,00,000
18	Goa	1,25,000

Table 4. Quantum Technology Startups Supported under NQM and NM-ICPS (India)^[36]

In addition to institutional participation and startup support, NQM promotes regional inclusion through state-wise funding allocations reported by official government releases for the 2024–25 funding cycle, as summarized in **Table 4**. Funding is concentrated in states hosting major research hubs, including Karnataka, Maharashtra, Tamil Nadu, Delhi, and Uttar Pradesh, reflecting the presence of lead institutions and advanced laboratory infrastructure.

However, financial support is also extended to states such as Assam, Bihar, Chhattisgarh, Odisha, Uttarakhand, and Jammu and Kashmir, indicating efforts to seed quantum research capacity beyond traditional metropolitan research clusters.

While funding magnitudes vary significantly across regions, the nationwide distribution of supported projects contributes to early-stage institutional participation, local faculty engagement, and student exposure to quantum research methodologies.

From a systems development perspective, regional funding dispersion supports long-term ecosystem sustainability by encouraging geographically distributed talent development and infrastructure expansion. Such decentralization is particularly important for future industrial scaling, where manufacturing, testing, and deployment facilities cannot remain indefinitely confined to a small number of urban research centers. Moreover, early participation by regional institutions facilitates integration of quantum curricula into broader engineering and science education programs, strengthening the national skills pipeline.

Global Quantum Strategies and Investment Landscape

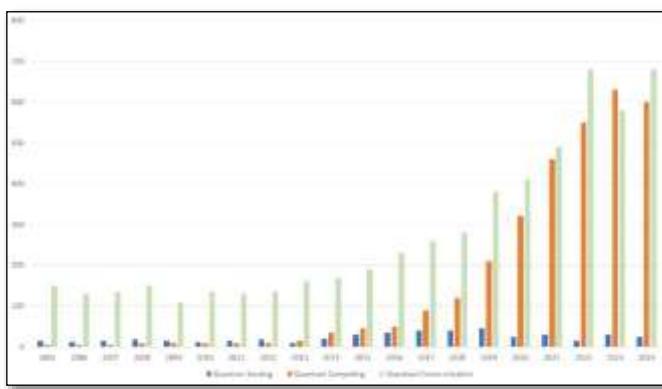


Figure 2: Year-wise comparison of International Patent Families across major quantum technology domains (quantum communication, computing, and sensing) ^[12]

Figure 2 presents a year-wise comparison of International Patent Families (IPFs) across major quantum technology domains, namely quantum communication, quantum computing, and quantum sensing, based on data referenced from the OECD ^[12]. The results indicate that quantum communication consistently dominates patent activity throughout the timeline, reflecting its relatively higher technological maturity and earlier commercialization pathways. However, from around 2018 onwards, quantum computing exhibits a sharp acceleration in patent filings, highlighting increased industrial and research focus driven by advances in hardware platforms and algorithmic applications. In contrast, quantum sensing shows comparatively steady but lower growth, suggesting a more specialized and application-specific development trajectory. Overall, the trends demonstrate a shift from communication-centric innovation toward rapidly expanding efforts in quantum computing in recent years.

Rank	Country / Coalition	Investment
1	China	\$15.30 billion
2	United States	\$7.67 billion
3	Japan	\$7.91 billion
4	United Kingdom	\$4.66 billion
5	Germany	\$3.45 billion
6	South Korea	\$2.14 billion
7	France	\$2.07 billion
8	Russia	\$1.83 billion
9	Canada	\$1.90 billion
10	Spain	\$1.27 billion
11	Sweden	\$1.32 billion
12	Netherlands	\$1.10 billion
13	EU – Quantum Flagship (Coalition)	\$1.15 billion
14	India	\$720 million
15	Singapore	\$616 million
16	Australia	\$610 million
17	Denmark	\$448 million
18	Finland	\$315.3 million
19	Israel	\$338 million
20	Taiwan	\$248 million
21	Italy	\$262 million
22	Austria	\$125 million
23	Switzerland	\$122 million
24	New Zealand	\$29 million
25	Brazil	\$15 million
26	Philippines	\$15.6 million
27	South Africa	\$10.7 million
28	Qatar	\$10 million
29	Hungary	\$20 million
30	Ireland	\$11.7 million
31	Thailand	\$6 million

Table: 5 Global Quantum Technology Investments by Country/Coalition (July 2025)

Source: *Intelligence Report on Quantum Diplomacy in Action 2025–2026, Third Edition (Geneva, Oct 2025); QURECA Overview of Quantum Initiatives Worldwide 2025.*

Note: Investment figures represent publicly announced national or coalition-level funding commitments and may not include private-sector R&D expenditures.

The investment data reflects a highly concentrated global funding landscape, with China, the United States, and Japan accounting for the largest national commitments toward quantum technology development [38]. Within Europe, leadership is distributed across multiple countries, with the United Kingdom and Germany contributing substantial national funding alongside coordinated regional efforts such as the EU Quantum Flagship program. Emerging quantum economies, including India, Singapore, and Australia, demonstrate increasing strategic engagement focused on building domestic research capacity and innovation ecosystems. However, a significant number of countries remain at early stages of quantum adoption with comparatively limited financial commitments. This uneven distribution of investments indicates the potential for a widening global quantum capability gap, highlighting the need for strengthened international collaboration, shared research infrastructure, and coordinated capacity-building initiatives.

6. Future Scope & Research Directions

Although substantial progress has been achieved in quantum hardware platforms, control systems, and application-oriented demonstrations, several foundational challenges must still be resolved before quantum computing can transition from experimental prototypes to reliable industrial infrastructure. Foremost among these is the realization of fault-tolerant quantum computing (FTQC). Existing quantum error correction techniques require a large number of physical qubits to encode a single logical qubit, resulting in significant hardware and control overhead. Future research must therefore prioritize reducing physical error rates, improving qubit coherence and gate fidelities, and developing more resource-efficient error correction codes and fault-tolerant architectures.

Scalability remains another dominant constraint. As monolithic quantum processors encounter fabrication, cryogenic, and control bottlenecks, modular and distributed quantum computing architectures are gaining increasing attention. In such models, multiple quantum processing units are interconnected through entanglement-based quantum networks, enabling system-level scalability rather than purely local qubit expansion. This approach further strengthens the importance of research in quantum communication technologies, including quantum repeaters, entanglement distribution protocols, synchronization mechanisms, and network-level error management.

In parallel, advances in software and algorithm co-design are critical for realizing near-term and medium-term quantum advantage. Hybrid quantum-classical algorithms currently represent the most viable computational paradigm for noisy intermediate-scale quantum (NISQ) devices, yet their effectiveness remains highly dependent on noise characteristics and problem structure. Future algorithmic

research must emphasize noise-aware circuit compilation, adaptive error mitigation techniques, and domain-specific algorithm design tailored to practical applications such as optimization, materials science, and machine learning. Standardized benchmarking frameworks and cross-platform performance metrics are also essential to enable reproducibility and objective evaluation across heterogeneous quantum systems.

From a cybersecurity and infrastructure standpoint, the prospect of cryptographically relevant quantum computers introduces urgent systemic risks to existing public-key cryptographic systems. Given the long deployment cycles of secure digital infrastructure, migration to post-quantum cryptographic (PQC) standards must occur well in advance of large-scale quantum computer availability. Consequently, future research should integrate quantum hardware development with cryptographic transition planning, secure protocol redesign, regulatory preparedness, and resilience of legacy systems, particularly in critical sectors such as finance, healthcare, and national infrastructure.

Beyond technological challenges, workforce development and institutional readiness will significantly influence the long-term sustainability of quantum ecosystems. As quantum technologies increasingly intersect with cloud computing, telecommunications, embedded systems, and cybersecurity, interdisciplinary education and training programs are essential to bridge gaps between physics, engineering, computer science, and applied domains. In addition, global disparities in funding, infrastructure, and talent pipelines may intensify the emerging quantum divide, underscoring the need for coordinated international capacity-building initiatives, shared research platforms, and inclusive innovation strategies. Ultimately, the successful deployment of quantum technologies will depend not only on scientific breakthroughs but also on effective governance models, skilled human capital, and long-term ecosystem development.

7. CONCLUSIONS

This paper presented a timeline-based analytical survey of the evolution of quantum computing, examining its transition from foundational quantum theory to an emerging multi-domain quantum technology ecosystem. By evaluating each evolutionary phase using eight complementary metrics, the study demonstrates that progress in quantum computing has been driven not by isolated scientific breakthroughs, but by the sustained interaction between theoretical maturity, engineering feasibility, and system-level integration.

The early era established the physical and mathematical principles of quantum mechanics but lacked computational interpretation and technological control.

The foundational era introduced formal models of quantum computation and algorithmic advantages, yet remained constrained by experimental limitations. The engineering era enabled tangible hardware progress and interdisciplinary collaboration, while simultaneously revealing that noise, scalability, and error resilience remain persistent barriers to large-scale quantum computation. More recently, the expansion toward quantum communication, sensing, and secure infrastructure indicates that quantum technologies are evolving into an interconnected ecosystem rather than a single-purpose computational paradigm.

A central insight from this study is that theoretical readiness alone is insufficient to drive technological adoption. Sustainable advancement requires coordinated progress across scientific theory, hardware engineering, software abstraction, network integration, and application development. This observation helps explain both the prolonged developmental trajectory of quantum computing and the recent acceleration of ecosystem-level innovation reflected in patent activity, national strategies, and global investment patterns.

In conclusion, quantum computing should be understood not as a singular technological destination, but as a convergence of quantum-enabled capabilities that will progressively integrate into future digital infrastructure. The metric-based evolutionary framework proposed in this paper offers a structured approach for interpreting past transitions, identifying present limitations, and informing future research priorities. As quantum technologies continue to mature, coordinated interdisciplinary development, supported by strategic policy initiatives and inclusive capacity-building efforts, will be essential for translating experimental advances into reliable and socially impactful systems.

REFERENCES

1. Grigoryan, E., Kumar, S., Pinheiro, P.R.: Models and applications of quantum computing: A review. *Quantum Reports* 7(3), Art. 39 (2025)
2. Memon, Q.A.: Quantum computing: Navigating the future of computation, challenges, and technological breakthroughs. *Quantum Reports* 6(4) (2024)
3. Nielsen, M.A., Chuang, I.L.: *Quantum Computation and Quantum Information*, 10th Anniversary edn. Cambridge University Press, Cambridge (2010)
4. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. *Nature* 404(6775), 247–255 (2000)
5. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: *Proc. 35th Annu. Symp. Foundations of Computer Science (FOCS)*, Santa Fe, NM, pp. 124–134 (1994)
6. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: *Proc. 28th Annu. ACM Symp. Theory of Computing (STOC)*, Philadelphia, PA, pp. 212–219 (1996)
7. Preskill, J.: Quantum computing in the NISQ era and beyond. *Quantum* 2, Art. 79 (2018)
8. Kimble, H.J.: The quantum internet. *Nature* 453, 1023–1030 (2008)
9. Pirandola, S., et al.: Advances in quantum cryptography. *Advances in Optics and Photonics* 12(4), 1012–1236 (2020)
10. Mosca, M., Piani, M.: *Quantum Threat Timeline Report 2024*. Global Risk Institute, Vancouver, BC (2024)
11. Department of Science and Technology (DST), Government of India: *National Quantum Mission (NQM)*. New Delhi (2023)
12. OECD: *Mapping the Global Quantum Ecosystem*. OECD Publishing, Paris (2025)
13. OECD: *An Overview of National Strategies and Policies for Quantum Technologies*. OECD Digital Economy Papers, OECD Publishing, Paris (2025)
14. UK Department for Science, Innovation and Technology: *UK Quantum Skills Taskforce Report*. Government of the United Kingdom, London (2023)
15. European Quantum Flagship: *Extending the European Competence Framework for Quantum Technologies*. European Commission Working Groups, Brussels (2024)
16. Deville, Y., et al.: The future quantum workforce: Competences and forecasts. arXiv preprint (2022–2024)
17. Planck, M.: On the law of distribution of energy in the normal spectrum. *Annalen der Physik* 4(3), 553–563 (1901)
18. Schrödinger, E.: Quantisierung als Eigenwertproblem. *Annalen der Physik* 79, 361–376 (1926); Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. *Zeitschrift für Physik* 33, 879–893 (1925)
19. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? *Phys. Rev.* 47(10), 777–780 (1935); Schrödinger, E.: Discussion of probability relations between separated systems. *Proc. Cambridge Philos. Soc.* 31, 555–563 (1935)
20. Shannon, C.E.: A mathematical theory of communication. *Bell Syst. Tech. J.* 27(3), 379–423; 27(4), 623–656 (1948)
21. Feynman, R.P.: Simulating physics with computers. *Int. J. Theor. Phys.* 21(6–7), 467–488 (1982)
22. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. *Proc. R. Soc. Lond. A* 400(1818), 97–117 (1985)
23. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: *Proc. IEEE Int. Conf. Computers, Systems and Signal Processing*, Bangalore, pp. 175–179 (1984)
24. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. *Phys. Rev. Lett.* 70(13), 1895–1899 (1993)
25. Yoneda, J., Takeda, K., Otsuka, T., et al.: A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. *Nature Nanotechnology* 13, 102–106 (2018)
26. Hernández, N., López-Doria, R.A., Suaza, Y.A., Fulla, M.R.: Neutral donors confined in semiconductor coupled quantum dot-rings: Position-dependent properties and optical transparency phenomenon. *Physica E* 165, Art. 116122 (2025)
27. Qin, X., et al.: An FPGA-based hardware platform for the control of spin-based quantum systems. *IEEE Trans. Instrum. Meas.* 69(4), 1127–1139 (2020)
28. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: Towards practical large-scale quantum computation. *Phys. Rev. A* 86, Art. 032324 (2012)
29. Qian, L., Zhao, J.: Quantum networks in 6G communications: Technologies, challenges, and applications. In: *Proc. Int. Conf. Quantum Communications, Networking, and Computing (QCNC)*, Nara, pp. 701–703 (2025)

30. Pan, D., et al.: The evolution of quantum secure direct communication: On the road to the Qinternet. *IEEE Commun. Surveys Tuts.* 26(3), 1898–1949 (2024)
31. Sun, Z.Z., et al.: Quantum blockchain relying on quantum secure direct communication network. *IEEE Internet Things J.* 12(10), 14375–14385 (2025)
32. Zhang, J.W., Zhuang, M., Wang, B., et al.: Entanglement-enhanced quantum lock-in detection achieving Heisenberg scaling. *Nature Communications* 17, Art. 149 (2026)
33. Deville, Y., et al.: A taxonomy of relationships between information processing, machine learning and quantum physics. In: *Proc. IEEE M2GARSS*, pp. 361–365 (2024)
34. UNESCO: *International Year of Quantum Science and Technology 2025: Programme and Objectives*. Paris (2024)
35. World Economic Forum: *Quantum for Society and Quantum Economy Blueprint*. Geneva (2024)
36. Press Information Bureau, Government of India: National Quantum Mission: India's quantum leap. Press Release ID 2111953 (Mar. 17, 2025)
37. India Science and Technology Portal, Government of India: National Quantum Mission and NM-ICPS startup support announcements (2025)
38. GESDA, Open Quantum Institute (OQI): *Intelligence Report on Quantum Diplomacy in Action 2025–2026*, 3rd edn. Geneva (2025); QURECA: Overview of Quantum Initiatives Worldwide (2025)