
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 1

Exception Logger Utility: Contextual Error Tracking for Enhanced Software

Application Debugging

Varadraj Patil1*, Dr. Deepamala N 2*, Dandavati Suhas3*, Prof. Rashmi R4*

1,2Computer Science and Engineering, RV College of Engineering, Bengaluru, India

3,4Information Science and Engineering, RV College of Engineering, Bengaluru, India

---***---

Abstract - Software programs that encounter errors are

considered to be in an erroneous state. Exception logging is a

critical aspect of software development that plays a pivotal

role in ensuring the stability and reliability of applications.

When unexpected errors occur during program execution,

logging these exceptions provides valuable insights into the

root causes, facilitates debugging, and aids in developing

robust software solutions. To facilitate software sustenance

and debugging, developers incorporate logging statements to

generate logs and capture system execution details. However,

determining the appropriate placement of these logging

statements is a challenging task. On one hand, insufficient

logging can impede maintenance efforts by omitting crucial

system execution data. On the other hand, excessive logging

can inundate the logs, obscuring the true issues and

significantly degrading performance. Therefore, in the

proposed system, an exception logging framework is

developed to offer developers the flexibility to log necessary

objects when exceptions occur. For instance, one such

example would be logging the request object of an API.

Key Words: Exception Logging, API Request Object,

Database, Software maintenance, Debugging

I. INTRODUCTION

Software logs are frequently used in software systems to

document how the system is executed. The generated logs are

used by developers to help with a variety of activities,

including debugging, testing, program understanding, system

verification, and performance analysis. Software logs are used

by developers for a wide range of functions, including

performance analysis, program comprehension, testing, and

debugging. Despite the significance of logs, earlier research

reveals that there is no industry standard for the formulation

of logging statements. While logs are normally assessed in

tandem, recent research on logs frequently just evaluates the

appropriateness of a log as an individual item (for example,

one single logging statement). The logging system explained

in this paper can be extended to any standalone application.

II. OVERVIEW

To capture system runtime data, developers add logging lines

to the source code. The resulting logs are then used to aid in

software debugging and maintenance. Logs are printed with

complete stack trace. Currently whenever an exception occurs

developers need to log at each exception point. As there can

be multiple exception handling, it becomes tedious and results

in fewer logs. To resolve issues in production DEBUG needs

to be enabled to figure out the exact context for which the

error occurred and needs to take assistance to reproduce this

issue. Enabling DEBUG slows down the service and also we

need to wait for the issue to be reproduced. This is a time-

consuming process and delays issue resolution. If we can log

the full error context which includes the request received and

any intermediate objects required for debugging So, the

framework would then log the objects added as part of the

request scoped in the Exception Handler.

III. RELATED WORKS

A survey on logging practices of exception stack traces in

open-source Java projects, the study in the paper [1] sheds

light on current developer practices and provides valuable

recommendations for improving the logging process. The

survey emphasises the need for careful consideration when

logging stack traces and advocates for the development of

comprehensive guidelines at the organizational or global

level. Furthermore, the survey encourages logging

frameworks to enhance flexibility to meet diverse logging

requirements.

 A comprehensive understanding of the considerations that

developers undertake when evaluating logging benefits and

costs has been discussed in paper [2] . By highlighting the ad

hoc balancing of the factors, it emphasizes the need for

improved logging practices and the development of more

flexible logging capabilities. The review serves as a valuable

resource for developers, researchers, and logging library

designers seeking to optimize the benefits of logging while

minimizing its costs in software development.

 The challenges developers face when determining logging

locations has been discussed in the paper [3] and proposes a

deep learning-based approach for finer-grained logging

location suggestions. The survey demonstrates the potential of

leveraging syntactic information in the source code and

provides insights into sharing logging location suggestions

across systems. The findings emphasize the need for further

research to combine syntactic and semantic information for

improved logging location recommendations.

 The significance of logging in performance monitoring and

modeling, particularly in web-based systems has been

discussed in paper[4]. It explores the proposed approach for

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 2

automatically suggesting logging statement locations to

support performance monitoring. The review emphasizes the

effectiveness of the approach in improving statistical

performance models and influencing system performance,

showcasing its applicability in both open-source and

commercial systems. Integrating the approach into the release

pipeline allows practitioners to benefit from periodic logging

suggestions for continuous system improvement.

 Duplicate logs are yet another problem as there are

unnecessary logs and debugging becomes difficult, therefore a

study was conducted on all logging statements, defined as

logging statements having the same static text message[5].

 A server log is a file that is created and maintained by a

server that consists of a list of activities that are performed by

the server. An AI based approach has been proposed in paper

[6] which visualises the logs and provides the knowledge-

based solution to the developer troubleshooting the root cause

of the error in the server log.

 At present developers rely on their intuition while

performing the logging activities. There aren't any logging

guidelines, hence in the paper [7] a study was conducted on

Logging-Code-Issue- Introducing changes in six popular

large-scale Java-based open source software systems.

 A study on existing deep learning frameworks and how the

platforms influence the development and deployment of deep

learning software has been conducted in the paper [8]. A

Commenting suggestion method has been demonstrated in the

paper [9] where machine learning techniques are applied to

identify the possible locations where commenting can be

done.

 An automatic log based method has been proposed in the

paper [10] which identifies cloud behaviors which are resulted

from the failed executions of the cloud operating system for

failure diagnosis. In the paper [11] , a system for analyzing

web server logs has been proposed which uses Hadoop and

MapReduce that figures out the execution time.An automated

approach has been proposed in paper [12] which is known as

LogCoCo which estimates the code coverage measures using

the execution logs which are available and the results indicate

that this approach can be used to evaluate and improve the test

suites which are existing.

 An empirical study has been done on log-related issues in the

paper [13] and conveys that files with log-related issues have

undergone frequent bug fixes and changes. An automated tool

has been developed that detects four types of log-related

issues. The focus in the paper [14] is on automated log parsing

for large-scale log analysis in modern systems. The paper

presents a comprehensive study of four representative log

parsing methods, evaluating their accuracy, efficiency, and

effectiveness for subsequent log mining tasks. Based on the

study's findings, the authors propose a parallel log parsing

method called POP. POP utilizes heuristic rules and a

hierarchical clustering algorithm, optimized on top of Spark

by employing tailored functions for selected Spark operations.

Extensive experiments are conducted on synthetic and real-

world datasets, demonstrating that POP performs accurately

and efficiently on large-scale log data. The paper also

emphasizes the release of POP and the four studied log

parsers to facilitate future research and promote their

reusability in the field.

 Through a comprehensive replication study of logging

practices in Java projects in the paper [15], this literature

survey confirms the prevalence of logging and active

maintenance of logging code. It also reveals differences

compared to C/C++ based systems, such as longer bug report

resolution time and more consistent updates to log printing

code.

 The importance of logging code quality and the challenges

associated with its development and maintenance is discussed

in paper [16]. The paper's findings on logging anti-patterns

and the introduction of LCAnalyzer provide valuable insights

and practical tools for developers to enhance the quality and

effectiveness.

 Through a large-scale analysis of try/catch blocks in Java

projects hosted on GitHub, the study in the paper [17]

provides empirical evidence of current exception handling

practices. The findings highlight prevalent issues such as local

handling, code duplication, and bad practices. The

misjudgment of risk and the tension between local and

program-wide exception handling further underscore the need

for improvements. The study suggests that future tools,

capable of suggesting complete handlers and promoting

positive handling policies, could address some of these

challenges. Code smells may be signs of poor design and

implementation decisions, which may have an impact on the

capacity to maintain [18], comprehend, and execute software

systems. Studies have been suggested to detect code smells in

order to lessen their negative effects [19][20]. Developers who

copy and paste a piece of code from one place to another may

result in duplicate code (also known as code clones) [19].

Such code clones could be an indication of poor quality.

Numerous research [21] have been done that concentrate on

understanding and identifying code clones.

 The paper [22] explores the design and implementation of a

configurable error logging framework for web applications.

The paper highlights the advantages of this framework,

including the ability to remotely configure logging settings,

eliminating the need for application developers to specify log

settings. The framework provides a graphical user interface

(GUI) for administrators to modify logging settings stored in

an XML file, enabling flexible configuration. Additional

features such as sending log messages to a remote machine for

storage, sending log information via email, and integrating

with Chainsaw for log information querying are also

discussed. The proposed framework stands out by allowing

granular configuration of logging settings, contrasting with

static logging in conventional MVC frameworks.

 The importance of web data classification and categorization

in managing the vast amount of information available on the

web was discussed in paper [23]. The role of web server log

files as a valuable resource for web mining is highlighted,

along with an overview of their types and formats. The

comparative analysis of log file formats offers guidance for

selecting the most appropriate format for efficient web mining

processes. Ultimately, this literature review sets the

foundation for further research and advancements in the field

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 3

of web data mining. The importance of the information library

of active nodes within the Workflow Exception Handling

System and its contributions to exception tracking, resolution,

and efficient workflow design are discussed in paper [24]. The

survey highlights the complementary nature of the subsystems

for exception warning and exception handling. Overall, the

survey provides insights into the functionality and benefits of

Workflow Exception Handling System in managing

exceptions within hierarchical modeling frameworks, setting

the stage for further research and advancements in this

domain.

 The literature review in the paper [25] concludes by

summarizing the key findings and contributions of the

practical approach for exception handling design rule

checking in software product lines. It emphasizes the

significance of employing JUnit test cases and dynamic mock

objects for comprehensive testing. The review highlights the

benefits of the approach, as demonstrated through the case

study on the Mobile Media product line. It underscores the

approach's ability to improve system confidence, support

maintainability tasks, and effectively uncover bugs in

exception handling code.

IV. METHODOLOGY

As intended, to build an Exception logging framework that

would provide flexibility to developers to log required objects

on Exception, it is important to understand the flow and

decide which object is important to be logged.

 To further proceed with the project a class with two methods;

one to add the logs into a data structure (to store the objects

that are to be logged) and the other to print the logs in case of

an exception, was created. The framework is built to function

in request-scoped i.e. once the program enters a new API the

objects stored in the data structure concerning the previous

API are cleared, to achieve this dependency injection is used,

and in case of an exception all the objects added in are printed

concerning context. ExceptionLogger is used to print the logs

concerning the context and the stack trace. The objective

behind implementing request-scoped is to avoid any issues

concerning memory and performance and printing logs in

request-scoped would result in lesser and more efficient and

important logs which is one of the main problems of

traditional logging systems.

 System consist of 2 modules which consist of namely

AddObjects Module and LogObjects Module.

 AddObject module’s purpose to add the logs into a data

structure (to store the objects that are to be logged). The

critical object or the object requested is the input for the

module and the output consists of Objects added into the data

structure in the requested scope. Once the program enters a

new API the objects stored in the data structure concerning

the previous API are cleared. Fig 2 depicts the functionality of

the AddObject module.

 Fig 1: AddObject Module

LogObject Module’s purpose is to print the logs in case of an

exception. Objects in the data structure are the input to the

module. Logs are printed as output in a format that is easily

understandable to the developer which has the complete stack

trace. In case of an exception, all the objects added in, are

printed concerning the context. ExceptionLogger is used to

print the logs concerning the context. Fig 2 depicts the

functionality of the LogObject module.

 Fig 2: LogObjects Module

V. CONCLUSION

A bug could bring on other faults in the application itself,

issues with communication with the server, or issues with

database access. To aid in software maintenance and to debug,

developers provide logging statements that create logs and

record system execution characteristics. But choosing where

to put logging statements is a critical but difficult assignment.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 4

 This proposed system can help organizations and companies

of any size to analyze and understand the logs and debug the

error in an effective way. Exception logging frameworks often

include features for monitoring and alerting. They can

automatically notify developers or system administrators

when critical errors occur, ensuring that problems are

addressed promptly. This helps in maintaining the overall

health and stability of the application.

 Exception logging frameworks provide a centralized

repository for storing and analyzing exception data. This

allows developers to track and manage exceptions across

multiple components or instances of an application. It

facilitates the identification of recurring issues and helps

prioritize bug fixes and improvements. By logging exceptions

in a production environment, developers gain insights into the

real-world behavior of their application. They can analyze

patterns, detect edge cases, and uncover scenarios that were

not anticipated during development. This feedback loop

contributes to iterative improvements and enhances overall

software quality.

 In conclusion, an exception logging framework is a valuable

tool for capturing, analyzing, and managing exceptions in

software applications. It enhances debugging capabilities,

facilitates error monitoring and alerting, provides centralized

error tracking.

REFERENCES

[1] H. Li, H. Zhang, S. Wang and A. E. Hassan, "Studying the

Practices of Logging Exception Stack Traces in Open-Source

Software Projects," in IEEE Transactions on Software Engineering,

vol. 48, no. 12, pp. 4907-4924, 1 Dec. 2022, doi:

10.1109/TSE.2021.3129688.

[2] H. Li, W. Shang, B. Adams, M. Sayagh and A. E. Hassan, "A

Qualitative Study of the Benefits and Costs of Logging From

Developers’ Perspectives," in IEEE Transactions on Software

Engineering, vol. 47, no. 12, pp. 2858-2873, 1 Dec. 2021.

[3] Zhenhao Li, Tse-Hsun (Peter) Chen, Weiyi Shang, “Where

ShallWe Log? Studying and Suggesting Logging Locations in Code

Blocks”, International Conference on Automated Software

Engineering (ASE), (2020).

[4] Yao, K., de Pádua, G.B., Shang, W. et al. Log4Perf: suggesting

and updating logging locations for web-based systems’ performance

monitoring. Empir Software Eng 25, 488–531 (2020).

[5] Zhenhao Li, Tse-Hsun (Peter) Chen, Jinqiu Yang, Weiyi Shang,

“DLFinder: Characterizing and Detecting Duplicate Logging Code

Smells”, International Conference on Software Engineering (ICSE),

(2019).

[6] Pratik Padman, Atharva Narlawar, Priya Surana, Roshan

Kasliwal, Mayuri Sonwale, “AI-Powered System Providing

Knowledge-Based Solution for Errors in Server Logs”, International

Conference On Computing, Communication, Control And

Automation (ICCUBEA), (2019).

[7] Boyuan Chen, Zhen Ming (Jack) Jiang, “Extracting and studying

the Logging-Code-Issue- Introducing changes in Java-based large-

scale open-source software systems”, Empirical Software

Engineering 24, 4, (2019), 2285–2322.

[8] Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao

Liu, Yang Liu, Jianjun Zhao, Xiaohong Li, “An Empirical Study

Towards Characterizing Deep Learning Development and

Deployment Across Different Frameworks and Platforms”,

IEEE/ACM International Conference on Automated Software

Engineering (ASE), (2019).

[9] Yuan Huang, Xinyu Hu, Nan Jia, Xiangping Chen, Yingfei

Xiong, Zibin Zheng, “Learning Code Context Information to Predict

Comment Locations”, IEEE Transactions on Reliability, (2019).

[10] Y. Yuan, W. Shi, B. Liang and B. Qin, "An Approach to Cloud

Execution Failure Diagnosis Based on Exception Logs in

OpenStack," 2019 IEEE 12th International Conference on Cloud

Computing (CLOUD), Milan, Italy, 2019, pp. 124-131, doi:

10.1109/CLOUD.2019.00031.

[11] Pranjali Borgaonkar, Gaurav Kumar, Jyoti Yaduwanshi,

“Framework for Analyzing Web Access Logs using Hadoop and

MapReduce”, International Conference on Recent Innovations in

Electrical, Electronics & Communication Engineering (ICRIEECE),

(2018).

[12] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, Zhen Ming (Jack)

Jiang, “An Automated Approach to Estimating Code Coverage

Measures via Execution Logs”, IEEE/ACM International Conference

on Automated Software Engineering (ASE), (2018).

[13] Mehran Hassani, Weiyi Shang, Emad Shihab, Nikolaos

Tsantalis, “Studying and Detecting Log-Related Issues”, Empirical

Software Engineering, (2018).

[14] P. He, J. Zhu, S. He, J. Li and M. R. Lyu, "Towards Automated

Log Parsing for Large-Scale Log Data Analysis," in IEEE

Transactions on Dependable and Secure Computing, vol. 15, no. 6,

pp. 931-944, 1 Nov.-Dec. 2018, doi: 10.1109/TDSC.2017.2762673.

[15] Boyuan Chen, Zhen Ming (Jack) Jiang, “Characterizing logging

practices in Java-based open-source software projects – a replication

study in Apache Software Foundation”, Empirical Software

Engineering 22, 1, (2017), 330–374.

[16] B. Chen and Z. M. Jiang, "Characterizing and Detecting Anti-

Patterns in the Logging Code," 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE), Buenos Aires,

Argentina, 2017, pp. 71-81, doi: 10.1109/ICSE.2017.15.

[17] M. B. Kery, C. Le Goues and B. A. Myers, "Examining

Programmer Practices for Locally Handling Exceptions," 2016

IEEE/ACM 13th Working Conference on Mining Software

Repositories (MSR), Austin, TX, USA, 2016, pp. 484-487.

[18] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, A. Sarma,

“An Empirical Examination of the Relationship between Code

Smells and Merge Conflicts”, ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement (ESEM),

(2017).

[19] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, T.

Xie, “Share on Where do developers log? an empirical study on

http://www.ijsrem.com/
https://ieeexplore.ieee.org/xpl/conhome/9285973/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9285973/proceeding

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 5

logging practices in industry”, Companion Proceedings of the 36th

International Conference on Software Engineering, (2014).

[20] S. L. Abebe, S. Haiduc, P. Tonella, A. Marcus, “The Effect of

Lexicon Bad Smells on Concept Location in Source Code”, IEEE

11th International Working Conference on Source Code Analysis

and Manipulation, (2011).

[21] N. Busany, S. Maoz, “Behavioral Log Analysis with Statistical

Guarantees”, IEEE/ACM 38th International Conference on Software

Engineering (ICSE), (2016).

[22] V. Krishnamurthy, C. Babu, P. M. Krishnan, C. Aravindan, S.

Balamurugan. "ReCon - Aspect oriented remotely reconfigurable

error logging framework for web applications", International

Conference on Information Communication and Embedded Systems

(ICICES), 2013.

[23] P. Sharma, S. Yadav and B. Bohra, "A review study of server

log formats for efficient web mining," 2015 International Conference

on Green Computing and Internet of Things (ICGCIoT), Greater

Noida, India, 2015.

[24] Weili Kou, Peng Gong, Kai Cai and Jing Wang, "Workflow

exception handling system application in hierarchical modeling,"

2008 12th International Conference on Computer Supported

Cooperative Work in Design, Xi'an, China, 2008, pp. 693-698, doi:

10.1109/CSCWD.2008.4537062.

[25] R. J. Sales Júnior and R. Coelho, "Preserving the Exception

Handling Design Rules in Software Product Line Context: A

Practical Approach," 2011 Fifth Latin-American Symposium on

Dependable Computing Workshops, Sao Jose dos Campos, Brazil,

2011.

http://www.ijsrem.com/

