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Abstract 

Integral equations serve as a central tool in modelling phenomena across physics, engineering, and applied 

sciences. Proving existence and uniqueness of solutions for nonlinear integral equations remains a core 

challenge, especially when kernels depend nonlinearly on the unknown function. In this work we establish 

novel, easily verifiable conditions under which a nonlinear Fredholm integral equation admits a unique solution 

by constructing a contraction mapping in a Banach space. The novelty of our approach lies in refining the 

classical Lipschitz framework to accommodate variable kernels and providing explicit convergence estimates. 

We also present a completely verified example and relate our method to recent advances in fixed point 

techniques for integral equations. This combination of rigorous theory and concrete verification makes the paper 

suitable for applications in mathematical modelling. 
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1. Introduction 
Integral equations are indispensable in modern mathematical modelling because many phenomena in physics, 

biology, and engineering naturally admit an integral formulation [7,11,12]. In particular, nonlinear Fredholm 

integral equations describe nonlocal interactions such as diffusion with fading memory [5]. 

Classically, the existence of solutions is often shown using compactness methods like Schauder’s theorem. In 

contrast, the Banach contraction principle [6,9] provides a constructive and uniqueness-guaranteeing route, 

which is especially attractive for numerical implementation. 

Recent developments. Recent research has renewed interest in Banach-type techniques for integral equations. 

Ezquerro and Hern´andez-Ver´on (2024) analyse global convergence of successive approximations for 

nonlinear Fredholm equations. Matoog et al. (2023) propose new algorithms based on Banach’s theorem for 

mixed Volterra–Fredholm equations. Sahebi et al. (2024) establish existence for nonlinear q-integral equations 

via fixed point methods. These works show that refined contraction arguments remain a vibrant field of current 

research. 

Contribution of this paper. We present a self-contained treatment that (i) formulates natural hypotheses 

ensuring that the integral operator is a contraction on 𝐶[0, 1], (ii) provides a detailed, stepwise proof of existence 

and uniqueness together with quantitative convergence rates, and (iii) includes a fully verified illustrative 

example. This combination of classical rigour and practical verifiability is aimed at readers interested both in 

pure analysis and in applications. The rest of the paper is organised as follows: Section 2 recalls the necessary 
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functional analytic tools. Section 3 formulates the problem and hypotheses. Section 4 presents the main theorem 

with an extensive stepwise proof. Section 5 provides a verified example demonstrating the hypotheses. 

 

2. Preliminaries 

 
Let 𝐶[0, 1] be the Banach space of all real-valued continuous functions on [0, 1], endowed with the supremum 

norm 

 

∥ 𝑥 ∥∶=     |𝑥(𝑡)|t∈[0,1]
𝑠𝑢𝑝 . 

 

Definition 2.1 (Banach space). A normed linear space (𝑋, ‖∙‖) is a Banach space if it is complete; i.e. every 

Cauchy sequence converges in 𝑋. 

Definition 2.2 (Lipschitz and contraction mappings). An operator 𝑇 ∶  𝑋 →  𝑌 is Lipschitz if ∥ 𝑇𝑥 −  𝑇𝑦 ∥ ≤

 𝐿 ∥ 𝑥 −  𝑦 ∥ for some 𝐿 ≥  0. If X = Y and 𝐿 <  1, 𝑇 is a contraction. 

Definition 2.3 (Fixed point). A point 𝑥∗  ∈  𝑋 is a fixed point of 𝑇 ∶  𝑋 →  𝑋 if 𝑇𝑥∗  =  𝑥∗. 

 

Theorem 2.4 (Banach Contraction Principle [6, 9]). Every contraction on a nonempty complete metric space 

has a unique fixed point. Moreover, Picard iterates converge to this point with a geometric rate. 

If 𝐾 ∶  [0, 1]2 ×  𝑅 →  𝑅 and 𝑔 ∶  [0, 1]  →  𝑅 are continuous, define 

 

(𝑇𝑥)(𝑡)  =  𝑔(𝑡)  + ∫ 𝐾(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠.
1

0

 

 

By standard arguments, 𝑇 ∶  𝐶[0, 1]  →  𝐶[0, 1] is well defined and continuous. 

 

3. Statement of the Problem 
 

We study the existence and uniqueness of nonlinear Fredholm integral equation 

 

𝑥(𝑡) =  𝑔(𝑡) + ∫ 𝐾(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠
1

0

,       𝑡 ∈ [0, 1], 

 

4. Hypotheses: 
 

(H1)   K(t, s, u) is continuous on [0, 1]  ×  [0, 1]  ×  𝑅. 

(H2)   There exists 𝑀 >  0 with 

 ∫ |𝐾(𝑡, 𝑠, 𝑢)|𝑑𝑠
1

0
t∈[0,1]

𝑠𝑢𝑝 ≤ 𝑀 

 

     for all 𝑢 ∈  𝑅. 

(H3)   There exists 𝑚(𝑡, 𝑠)  ≥  0 such that 

|𝐾(𝑡, 𝑠, 𝑢1)  −  𝐾(𝑡, 𝑠, 𝑢2)|  ≤  𝑚(𝑡, 𝑠) |𝑢1  −  𝑢2| 

for all 𝑡, 𝑠 ∈  [0, 1], 𝑢1, 𝑢2  ∈  𝑅. 

(H4)  The contraction constant 
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 ∫ 𝑚(𝑡, 𝑠)𝑑𝑠
1

0
t∈[0,1]

𝑠𝑢𝑝
 

 

satisfies 𝑞 <  1. 

 

5. Main Theorem 
Theorem 4.1. Under hypotheses (H1)–(H4) the integral equation ion 

𝑥(𝑡) =  𝑔(𝑡) + ∫ 𝐾(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠
1

0

, 

 

has a unique continuous solution 𝑥∗ ∈  𝐶[0, 1]. Moreover, the Picard iteration 𝑥𝑛+1 =  𝑇𝑥𝑛 converges to 𝑥∗ at 

a geometric rate and satisfies explicit a priori and a posteriori error 

bounds. 

Proof: Let 𝑇 ∶  𝐶[0, 1]  →  𝐶[0, 1] be defined by 

 

(𝑇𝑥)(𝑡)  =  𝑔(𝑡) + ∫ K(t, s, x(s)) ds
1

0
. 

 

Step 1: T maps 𝐶[0, 1] into itself. Take any 𝑥 ∈  𝐶[0, 1]. Because 𝐾 is continuous in all variables (H1) and 𝑥 

is continuous, the function (𝑡, 𝑠)  →  𝐾(𝑡, 𝑠, 𝑥(𝑠)) is continuous on the compact square [0, 1]2. Continuous 

functions on compact sets are integrable and bounded. Hence, for each t, the integral ∫ K(t, s, x(s)) ds
1

0
  is well 

defined. Dominated convergence (with the uniform bound from (H2)) shows that the mapping 

 

𝑡 → ∫ 𝐾(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠
1

0

. 

 

is continuous. Since g is continuous, (𝑇𝑥)(𝑡) is continuous, proving 𝑇 indeed maps 𝐶[0, 1] into itself. 

Step 2: Uniform a priori bound on the image of 𝑻. For each 𝑡 ∈  [0, 1], 

|(𝑇𝑥)(𝑡)|  ≤  |𝑔(𝑡)| + ∫ |K(t, s, x(s))| ds
1

0
. 

By (H2) the integral is bounded by 𝑀. Taking supremum in t we obtain 

‖𝑇𝑥‖  ≤  ‖𝑔‖  + 𝑀. 

In particular, any fixed point 𝑥∗ satisfies ∥ 𝑥∗ ∥ ≤ ∥ 𝑔 ∥  + 𝑀, which is a global bound independent of initial 

guess. 

Step 3: Lipschitz estimate for 𝑻. Let 𝑥, 𝑦 ∈  𝐶[0, 1] and fix 𝑡 ∈  [0, 1]. Using the linearity of integration and 

the triangle inequality, 

|(𝑇𝑥)(𝑡)  − (𝑇𝑦)(𝑡)|  ≤ ∫ |𝐾(𝑡, 𝑠, 𝑥(𝑠) − 𝐾(𝑡, 𝑠, 𝑦(𝑠)|𝑑𝑠
1

0
. 

Hypothesis (H3) provides the pointwise Lipschitz bound 

|𝐾(𝑡, 𝑠, 𝑥(𝑠))  −  𝐾(𝑡, 𝑠, 𝑦(𝑠))|  ≤  𝑚(𝑡, 𝑠) |𝑥(𝑠)  −  𝑦(𝑠)|. 

Consequently, 

|(𝑇𝑥)(𝑡) −  (𝑇𝑦)(𝑡)| ≤ (∫ 𝑚(𝑡, 𝑠)𝑑𝑠
1

0

) ‖𝑥 − 𝑦‖. 

 

Now take the supremum over 𝑡 to obtain 

∥ 𝑇𝑥 −  𝑇𝑦 ∥ ≤  𝑞 ∥ 𝑥 −  𝑦 ∥, 

where 𝑞 ∶=  𝑠𝑢𝑝𝑡 ∫ 𝑚(𝑡, 𝑠)𝑑𝑠.
1

0
 

https://ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 10 | Oct - 2025                                SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                     

 

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM53331                                              |        Page 4 
 

Step 4: T is a strict contraction. By (H4) we know 𝑞 <  1. Hence 𝑇 is a strict 

contraction on the complete metric space (𝐶[0, 1], ‖∙‖). 

Step 5: Existence and uniqueness of the fixed point. The Banach contraction 

principle (Theorem 2.4) asserts that every contraction on a complete metric space possesses a unique fixed 

point. Therefore there exists a unique 𝑥∗  ∈  𝐶[0, 1] such that 𝑇𝑥∗ =  𝑥∗. By the definition of 𝑇, 𝑥∗ satisfies the 

integral equation (1), proving existence and uniqueness of the solution. 

Step 6: Convergence of Picard iteration and error bounds. Choose any 

𝑥0  ∈  𝐶[0, 1] and define the sequence 𝑥𝑛+1  =  𝑇𝑥𝑛. Applying the contraction estimate recursively, 

∥ 𝑥𝑛 −  𝑥∗ ∥ ≤  𝑞 ∥ 𝑥𝑛−1  −  𝑥∗ ∥ ≤  𝑞2 ∥ 𝑥𝑛−2  −  𝑥∗ ∥ ≤  ∙∙∙ ≤  𝑞𝑛 ∥ 𝑥0  − 𝑥∗ ∥. 

Because 𝑞 <  1, 𝑥𝑛  →  𝑥∗ geometrically. A practical a posteriori bound, useful for stopping criteria, follows 

from the standard telescoping series: 

∥ 𝑥𝑛 −  𝑥∗ ∥ ≤
𝑞𝑛

1 − 𝑞
‖𝑇𝑥0 − 𝑥0‖. 

This shows that after finitely many iterations the error can be made arbitrarily small. 

Step 7: Summary of quantitative information. Combining Steps 2–6 we conclude 

∥ 𝑥∗ ∥ ≤ ∥ 𝑔 ∥  +𝑀, ∥ 𝑥𝑛  −  𝑥∗ ∥ ≤
𝑞𝑛

1 − 𝑞
‖𝑇𝑥0 − 𝑥0‖. 

This complete the proof. 

 

6. Verified Example 
To illustrate the applicability of Theorem 4.1, consider 

𝐾(𝑡, 𝑠, 𝑢) =  𝜆𝑒−(𝑡−𝑠)2sin u,    𝑔(𝑡) =  𝑡2,        𝑡, 𝑠 ∈  [0, 1], 

 

where λ is a real parameter. 

Step 1: Checking hypothesis (H1) 

The function (𝑡, 𝑠, 𝑢)  →  𝜆𝑒−(𝑡−𝑠)2 sin u is smooth (hence continuous) on the compact set 

[0, 1]2  ×  𝑅, so (H1) is satisfied. 

 

Step 2: Uniform integral bound (H2) 

For every 𝑡 ∈  [0, 1] and 𝑢 ∈  𝑅, 

∫ |𝐾(𝑡, 𝑠, 𝑢)|𝑑𝑠 ≤
1

0

|𝜆| ∫ 𝑒−(𝑡−𝑠)2
𝑑𝑠 =

1

0

|𝜆| ∫ 𝑒−𝑟2
𝑑𝑟.

1−𝑡

−𝑡

 

Since  ∫ 𝑒−𝑟2
𝑑𝑟 = √𝜋

1

−1
erf (1)  ≈  1.49365, we may take 

𝑀 ∶=  1.49365 |𝜆|. 

Step 3: Lipschitz continuity in u (H3) 

The sine function satisfies | 𝑠𝑖𝑛 𝑢1  −  𝑠𝑖𝑛 𝑢2|  ≤  |𝑢1  −  𝑢2|. Hence 

|𝐾(𝑡, 𝑠, 𝑢1) −  𝐾(𝑡, 𝑠, 𝑢2)| ≤  |𝜆|𝑒−(𝑡−𝑠)2
|u1  −  u2|. 

. 

Thus (H3) holds with 𝑚(𝑡, 𝑠)  =  |𝜆|𝑒−(t−s)2
 . 

 

Step 4: Contraction constant (H4) 

Compute 

𝑞 =  ∫ 𝑚(𝑡, 𝑠)𝑑𝑠 ≤
1

0
t∈[0,1]

𝑠𝑢𝑝 |𝜆| ∫ 𝑒−𝑒2
1

−1

𝑑𝑟 ≈ 1.49365|𝜆|. 
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Hence 𝑞 <  1 whenever 

|𝜆| <
1

1.49365
≈ 0.67. 

 

Step 5: Existence, uniqueness and iterative approximation 

For example, choose 𝜆 =  0.5. Then 𝑀 ≈  0.75 and 𝑞 ≈  0.75 <  1. By Theorem 4.1, the integral equation 

𝑥(𝑡) =  𝑡2  + 0.5 ∫ 𝑒−(𝑡−𝑠)2
1

0

sin(𝑥(𝑠)) 𝑑𝑠 

has a unique continuous solution 𝑥∗  ∈  𝐶[0, 1]. 

Starting with 𝑥0(𝑡)  ≡  0, compute one Picard step: 

𝑥1(𝑡)  =  𝑡2, 

and the next step 

𝑥2(𝑡)  =  𝑡2  +  0.5 ∫ 𝑒−(𝑡−𝑠)2
1

0

sin(𝑠2) 𝑑𝑠 

By the contraction estimate ∥ 𝑥2  − 𝑥1 ∥ ≤  0.75 ∥ 𝑥1  − 𝑥0 ∥, and in general 

∥ 𝑥𝑛+1  −  𝑥𝑛 ∥ ≤  0.75𝑛 ∥ 𝑥1  −  𝑥0 ∥, 

which confirms rapid convergence. 

 

Thus every hypothesis of Theorem 4.1 is met, the solution is unique, and the Picard sequence provides a 

constructive approximation with guaranteed geometric rate. 
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